

ProFlex 500

Copyright Notice

Copyright 2010 Ashtech. All rights reserved.

P/N 631634-01D, April 2011

Trademarks

All product and brand names mentioned in this publication are trademarks of their respective holders.

FCC Notice

ProFlex 500 Receiver complies with the limits for a Class B digital device, pursuant to the Part 15 of the FCC rules when it is used in Portable Mode. See Note below related to Class B device.

Class B digital devices NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try and correct the interference by one or more of the following measures:

- Reorient or locate the receiving antenna.
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

When ProFlex 500 is used with an external power supply or connected to an external device using the USB port, it complies with the limits for a Class A digital device, pursuant to the Part 15 of the FC rules. See Note below related to Class A device.

Class A digital devices NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Remark: Any changes or modifications not expressly approved by Ashtech, could void the right for user to operate the equipment.

RF Safety Exposure To Radio Frequency Energy (SAR)

Radio transmitting devices radiate Radio Frequency (RF) energy during its operation. RF energy can be absorbed into the human body and potentially can cause adverse health effects if excessive levels are absorbed. The unit of measurement for human exposure to RF energy is "Specific Absorption Rate" (SAR).

The Federal Communications Commission (FCC), Industrie Canada (IC), and other agencies around the world have established limits that incorporate a substantial safety margin designed to assure the safety of all persons using this equipment. In order to certify this unit for sale in the US, Canada and Europe this unit has been tested for RF exposure compliance at a qualified test laboratory and found to comply with the regulations regarding exposure to RF Energy. SAR was measured with the unit (GSM Module) transmitting at its maximum certified RF power. Often, however, during normal operation the unit (GSM Module) will transmit much less than maximum power. Transmit power is controlled automatically and, in general is reduced as you get closer to a cellular base station. This reduction in transmit power will result in a lower RF energy exposure and resulting SAR val-

FCC and CE UHF Safety Statement

The different versions of the UHF Transmitters are FCC and CE compliant.

In order to comply with FCC and CE RF exposure safety guidelines as body-worn, normal use of unit, the following must be followed:

A distance of AT LEAST 10 feet (3 m) of separation between the users body and the unit (UHF Transmitter). This distance has been defined taken into account the FCC and CE Requirements and the worst output power configuration.

Do NOT use the device in a manner such that it is in direct contact with the body (e.g. on the lap). Such use will likely exceed FCC RF safety exposure limits. See www.fcc.gov/oet/rfsafety/ for more information on RF exposure safety.

To comply with CE and FCC electrical safety regulations, ProFlex 500 should only be powered from a 9 to 28 V DC external source, with 20 W power limitation, or the recommended battery (P/N 111374). The battery should be charged only with the supplied battery charger (P/N 802064).

CAUTION

RISK OF EXPLOSION IF BATTERY REPLACED BY AN INCORRECT TYPE. DISPOSE OF USED BATTERIES ACCORDING TO THE INSTRUCTIONS.

Ashtech Products - Limited Warranty (North, Central and South America)

Ashtech warrants their GPS receivers and hardware accessories to be free of defects in material and workmanship and will conform to our published specifications for the product for a period of one year from the date of original purchase. THIS WARRANTY APPLIES ONLY TO THE ORIGINAL PURCHASER OF THIS PRODUCT.

In the event of a defect, Ashtech will, at its option, repair or replace the hardware product with no charge to the purchaser for parts or labor. The repaired or replaced product will be warranted for 90 days from the date of return shipment, or for the balance of the original warranty, whichever is longer. Ashtech warrants that software products or software included in hardware products will be free from defects in the media for a period of 30 days from the date of shipment and will substantially conform to the then-current user documentation provided with the software (including updates thereto). Ashtech's sole obligation shall be the correction or replacement of the media or the software so that it will substantially conform to the then- current user documentation. Ashtech does not warrant the software will meet purchaser's requirements or that its operation will be uninterrupted, error-free or virus-free. Purchaser assumes the entire risk of using the software.

PURCHASER'S EXCLUSIVE REMEDY UNDER THIS WRITTEN WARRANTY OR ANY IMPLIED WARRANTY SHALL BE LIMITED TO THE REPAIR OR REPLACEMENT, AT ASHTECH'S OPTION, OF ANY DEFECTIVE PART OF THE RECEIVER OR ACCESSORIES WHICH ARE COVERED BY THIS WARRANTY. REPAIRS UNDER THIS WARRANTY SHALL ONLY BE MADE AT AN AUTHORIZED ASHTECH SERVICE CENTER. ANY REPAIRS BY A SERVICE CENTER NOT AUTHORIZED BY ASHTECH WILL VOID THIS WARRANTY

To obtain warranty service the purchaser must obtain a Return Materials Authorization (RMA) number prior to shipping by calling 1-800-229-2400 (press option #1) (U.S.) or 1-408-615-3981 (International), or by submitting a repair request on-line at: http://www.ashtech.com/en/support/rma.asp. The purchaser must return the product postpaid with a copy of the original sales receipt to the address provided by Ashtech with the RMA number. Purchaser's return address and the RMA number must be clearly printed on the outside of the package.

Ashtech reserves the right to refuse to provide service free-of-charge if the sales receipt is not provided or if the information contained in it is incomplete or illegible or if the serial number is altered or removed. Ashtech will not be responsible for any losses or damage to the product incurred while the product is in transit or is being shipped for repair. Insurance is recommended. Ashtech suggests using a trackable shipping method such as UPS or FedEx when returning a product for service.

EXCEPT AS SET FORTH IN THIS LIMITED WARRANTY, ALL OTHER EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING THOSE OF FITNESS
FOR ANY PARTICULAR PURPOSE, MERCHANTABILITY OR NON-INFRINGEMENT, ARE HEREBY
DISCLAIMED AND IF APPLICABLE, IMPLIED WARRANTIES UNDER ARTICLE 35 OF THE UNITED NATIONS CONVENTION ON CONTRACTS FOR THE
INTERNATIONAL SALE OF GOODS. Some national,
state, or local laws do not allow limitations on im-

plied warranty or how long an implied warranty lasts, so the above limitation may not apply to you.

The following are excluded from the warranty coverage: (1) periodic maintenance and repair or replacement of parts due to normal wear and tear; (2) batteries and finishes; (3) installations or defects resulting from installation; (4) any damage caused by (i) shipping, misuse, abuse, negligence, tampering, or improper use; (ii) disasters such as fire, flood, wind, and lightning; (iii) unauthorized attachments or modification; (5) service performed or attempted by anyone other than an authorized Ashtechs Service Center; (6) any product, components or parts not manufactured by Ashtech; (7) that the receiver will be free from any claim for infringement of any patent, trademark, copyright or other proprietary right, including trade secrets; and (8) any damage due to accident, resulting from inaccurate satellite transmissions. Inaccurate transmissions can occur due to changes in the position, health or geometry of a satellite or modifications to the receiver that may be required due to any change in the GPS. (Note: Ashtech GPS receivers use GPS or GPS+GLONASS to obtain position, velocity and time information. GPS is operated by the U.S. Government and GLONASS is the Global Navigation Satellite System of the Russian Federation, which are solely responsible for the accuracy and maintenance of their systems. Certain conditions can cause inaccuracies which could require modifications to the receiver. Examples of such conditions include but are not limited to changes in the GPS or GLONASS transmission.) Opening, dismantling or repairing of this product by anyone other than an authorized Ashtech Service Center will void this warranty.

ASHTECH SHALL NOT BE LIABLE TO PURCHASER OR ANY OTHER PERSON FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DAMAGES RESULTING FROM DELAY OR LOSS OF USE, LOSS OF OR DAMAGES ARISING OUT OF BREACH OF THIS WARRANTY OR ANY IMPLIED WARRANTY EVEN THOUGH CAUSED BY NEGLIGENCE OR OTHER FAULT OFASHTECH OR NEGLIGENT USAGE OF THE PRODUCT. IN NO EVENT WILL ASHTECH BE RESPONSIBLE FOR SUCH DAMAGES, EVEN IF ASHTECH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This written warranty is the complete, final and exclusive agreement between Ashtech and the purchaser with respect to the quality of performance of the goods and any and all warranties and representations. This warranty sets forth all of Ashtech's responsibilities regarding this product. This limited warranty is governed by the laws of the State of California, without reference to its conflict of law provisions or the U.N. Convention on Contracts for the International Sale of Goods, and shall benefit Ashtech, its successors and assigns.

This warranty gives the purchaser specific rights. The purchaser may have other rights which vary from locality to locality (including Directive 1999/44/EC in the EC Member States) and certain limitations contained in this warranty, including the exclusion or limitation of incidental or consequential damages may not apply.

For further information concerning this limited warranty, please call or write:

Ashtech, LLC., El Camino Real 451, Suite 210, CA 95050, Santa Clara, USA, Tél. : +1 408 572 1103, Fax : + +1 408 572 1199 or

Ashtech SAS - ZAC La Fleuriaye - BP 433 - 44474 Carquefou Cedex - France Phone: +33 (0)2 28 09 38 00. Fax: +33 (0)2 28 09 39 39.

Ashtech Products Limited Warranty (Europe, Middle East, Africa)

All Ashtech global positioning system (GPS) receivers are navigation aids, and are not intended to replace other methods of navigation. Purchaser is advised to perform careful position charting and use good judgment. READ THE USER GUIDE CAREFULLY BEFORE USING THE PRODUCT.

1. ASHTECH WARRANTY

Ashtech warrants their GPS receivers and hardware accessories to be free of defects in material and workmanship and will conform to our published specifications for the product for a period of one year from the date of original purchase or such longer period as required by law. THIS WARRANTY APPLIES ONLY TO THE ORIGINAL PURCHASER OF THIS PRODUCT.

In the event of a defect, Ashtech will, at its option, repair or replace the hardware product with no charge to the purchaser for parts or labor. The repaired or replaced product will be warranted for 90 days from the date of return shipment, or for the balance of the original warranty, whichever is longer. Ashtech warrants that software products or software included in hardware products will be free from defects in the media for a period of 30 days from the date of shipment and will substantially conform to the then-current user documentation provided with the software (including updates thereto). Ashtech's sole obligation shall be the correction or replacement of the media or the software so that it will substantially conform to the then- current user documentation. Ashtech does not warrant the software will meet purchaser's requirements or that its operation will be uninterrupted, error-free or virus-free. Purchaser assumes the entire risk of using the software.

2. PURCHASER'S REMEDY

PURCHASER'S EXCLUSIVE REMEDY UNDER THIS WRITTEN WARRANTY OR ANY IMPLIED WARRANTY SHALL BE LIMITED TO THE REPAIR OR REPLACEMENT, AT ASHTECH'S OPTION, OF ANY DEFECTIVE PART OF THE RECEIVER OR ACCESSORIES WHICH ARE COVERED BY THIS WARRANTY. REPAIRS UNDER THIS WARRANTY SHALL ONLY BE MADE AT AN AUTHORIZED ASHTECH SERVICE CENTER. ANY REPAIRS BY A SERVICE CENTER NOT AUTHORIZED BY ASHTECH WILL VOID THIS WARRANTY.

3. PURCHASER'S DUTIES

To obtain service, contact and return the product with a copy of the original sales receipt to the dealer from whom you purchased the product.

Ashtech reserves the right to refuse to provide service free-of-charge if the sales receipt is not provided or if the information contained in it is incomplete or illegible or if the serial number is altered or removed. Ashtech will not be responsible for any losses or damage to the product incurred while the product is in transit or is being shipped for repair. Insurance is recommended. Ashtech suggests using a trackable shipping method such as UPS or FedEx when returning a product for service.

4. LIMITATION OF IMPLIED WARRANTIES

EXCEPT AS SET FORTH IN ITEM 1 ABOVE, ALL OTHER EXPRESSED OR IMPLIED WARRANTIES, INCLUDING THOSE OF FITNESS FOR ANY PARTIC-ULAR PURPOSE OR MERCHANTABILITY, ARE HEREBY DISCLAIMED AND IF APPLICABLE, IMPLIED WARRANTIES UNDER ARTICLE 35 OF THE UNITED NATIONS CONVENTION ON CONTRACTS FOR THE INTERNATIONAL SALE OF GOODS.

Some national, state, or local laws do not allow limitations on implied warranty or how long an implied warranty lasts, so the above limitation may not apply to you.

5. EXCLUSIONS

The following are excluded from the warranty coverage:

- (1) periodic maintenance and repair or replacement of parts due to normal wear and tear;
- (2) batteries;
- (3) finishes;
- (4) installations or defects resulting from installation;
- (5) any damage caused by (i) shipping, misuse, abuse, negligence, tampering, or improper use; (ii) disasters such as fire, flood, wind, and lightning; (iii) unauthorized attachments or modification:
- (6) service performed or attempted by anyone other than an authorized Ashtech Service Center;
- (7) any product, components or parts not manufactured by Ashtech,
- (8) that the receiver will be free from any claim for infringement of any patent, trademark, copyright or other proprietary right, including trade secrets
- (9) any damage due to accident, resulting from inaccurate satellite transmissions. Inaccurate transmissions can occur due to changes in the position, health or geometry of a satellite or modifications to the receiver that may be required due to any change in the GPS. (Note: Ashtech GPS receivers use GPS or GPS+GLONASS to obtain position, velocity and time information. GPS is operated by the U.S. Government and GLONASS is the Global Navigation Satellite System of the Russian Federation, which are solely responsible for the accuracy and maintenance of their systems. Certain conditions can cause inaccuracies which could require modifications to the receiver. Examples of such conditions include but are not limited to changes in the GPS or GLONASS transmission.).

Opening, dismantling or repairing of this product by anyone other than an authorized Ashtech Service Center will void this warranty.

6. EXCLUSION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES

ASHTECH SHALL NOT BE LIABLE TO PURCHASER OR ANY OTHER PERSON FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES WHAT-SOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DAMAGES RESULTING FROM DELAY OR LOSS OF USE, LOSS OF OR DAMAGES ARISING OUT OF BREACH OF THIS WARRANTY OR ANY IMPLIED WARRANTY EVEN THOUGH CAUSED BY NEGLIGENCE OR OTHER FAULT OFASHTECH OR NEGLIGENT USAGE OF THE PRODUCT. IN NO EVENT WILL ASHTECH BE RESPONSIBLE FOR SUCH DAMAGES, EVEN IF ASHTECH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Some national, state, or local laws do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

7. COMPLETE AGREEMENT

This written warranty is the complete, final and exclusive agreement between Ashtech and the purchaser with respect to the quality of performance of the goods and any and all warranties and representations. THIS WARRANTY SETS FORTH ALL OF Ashtech'S RESPONSIBILITIES REGARDING THIS PRODUCT.

THIS WARRANTY GIVES YOU SPECIFIC RIGHTS. YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM LOCALITY TO LOCALITY (including Directive 1999/44/EC in the EC Member States) AND CERTAIN LIMITATIONS CONTAINED IN THIS WARRANTY MAY NOT APPLY TO YOU.

8. CHOICE OF LAW.

This limited warranty is governed by the laws of France, without reference to its conflict of law provisions or the U.N. Convention on Contracts for the International Sale of Goods, and shall benefit Ashtech, its successors and assigns.

THIS WARRANTY DOES NOT AFFECT THE CUSTOMER'S STATUTORY RIGHTS UNDER APPLICABLE LAWS IN FORCE IN THEIR LOCALITY, NOR THE CUSTOMER'S RIGHTS AGAINST THE DEALER ARISING FROM THEIR SALES/PURCHASE CONTRACT (such as the guarantees in France for latent defects in accordance with Article 1641 et seq of the French Civil Code).

For further information concerning this limited warranty, please call or write:

Ashtech - ZAC La Fleuriaye - BP 433 - 44474 Carquefou Cedex - France.

Phone: +33 (0)2 28 09 38 00, Fax: +33 (0)2 28 09 39 39.

NOTICE:

The FCC (Federal Communications Commission) requests that equipment manufacturers take every step to increase user awareness about the responsibilities inherent in being an FCC licensee on shared channels.

Users are indeed requested to obtain a FCC license before operating their RTK equipment on the US territory. Once a license has been granted, users should observe all the FCC regulations (see http://wireless.fcc.gov/). Licensees are encouraged to avoid any use of voice frequencies in the 450-470 MHz band.

For ambient temperatures over 40° C, touching the unit may be hazardous as the unit temperature may exceed 55° C in this case (re. EN60950 standard from R&TTE directive).

April 2011 Manual Release Note (Rev D)

New receiver features are introduced in this release:

- "Embedded NTRIP caster" firmware option,
- "Flying RTK" firmware option,
- Backup FTP server,
- Hot Standby RTK.
- Implementation of a mechanism to use the DynDNS service when DHCP is activated.
- As a base, the receiver can generate DBEN differential data.
- Web Server updated to support all these new features. When clicking on the STA-TUS or CONFIGURATION tab, the Web Server now always displays the page you last opened in this tab.

Compared to the previous release of this manual (June 2010, Rev C), the present publication includes the following enhancements and changes:

- Receiver part number corrected (page 2)
- MAG111406 antenna phased out, replaced by ASH-660 or ASH-661 (page 3).
- List of optional accessories updated (pages 4-5)
- Receiver specifications updated (pages 22-26)
- New firmware options added (page 26).
 More explanations provided on some of the available options (page 27).
- New Ethernet port Q (pages 38, 334)
- With the introduction of the Flying RTK firmware option, the possible values for the Ambiguity Fixing parameter now depend on the installed firmware options (page 48).
- "Hot Standby RTK" in rover mode (page 63)
- New NMEA messages: DTM, SGL, SGP (page 64).
- New way of programming NMEA and Raw Data messages with the Web Server (pages 64-65)
- The receiver's two differential streams can be routed to the Internet through two independent connections (page 67).
- New differential message RTCM 2.3 #36 (page 70)
- More explanations on ATOM standard and compact formats (pages 71-72)
- New raw data messages (ATOM EVT, Ashtech legacy DPC) (page 73).

- New section about the free DynDNS service (page 86) for use when DHCP is activated.
- Embedded NTRIP caster added to Configuration Memo diagrams (page 87)
- Chapter 3 updated to reflect all the changes made to the Web Server.
- Chapter 4 about ProFlex 500 CORS updated to cover the new features (backup FTP server, embedded NTRIP caster, new way of defining raw data with the Web Server).
- Chapter 5: Sections about ProMark 3 and MobileMapper 6 used as field terminals removed
- Chapter 12: List of commands updated (pages 348-353).
- New \$PASHS commands in Chapter 13: AGB - ATL - CST,ON/OFF - CST,MTP,ADD - CST,MTP,DEL - CST-PAR - CST,RST -CST,USR,ADD - CST,USR,DEL -DBN,TYP - DBN,PAR - DDN,SET - RCS -NPT - RCP,DEL - RCP,REF - RCP,GBx -UNT - UTS.
- New PASHQ commands in Chapter 14: AGB - CST - DBN,MSI - DDN - DTM - LCS - NPT - RCP,OWN - RCP,REF - SGL - SGP - UNT - UTS.
- Changes in existing \$PASH commands.
 Chapters 13: BAS BDS BRD CPX,AFP DIP DIP,ON/OFF DIP,PAR DSY ELM,PAR ELM,TST FTP,PAR NME NME,ALL NTR,LOD NTR,MTP NTR,PAR OCC OPTION RNX,TYP RTC,TYP SES,FTP,PAR.
 - Chapter 14: ANP,REF ATL BAS BDS BRD CRT DCR DIP DPO DST,STS DSY FTP NTR NTR,MTP OCC OPTIO PAR POS RCP RDP,PAR RDP,TYP RID RNX,MSI RTC SES VEC.
- Chapter 15: DPC message description added (page 661).
- List of alarms updated (pages 695-703).

NOTICE: The procedure to use an external CDMA modem is only described with the now phased-out MobileMapper CX (see page 275). This section should have been enriched to describe the same procedure using the ProMark 100 field terminal. This will be done in a future release.

How To Use this Documentation

Please read this section to understand the organization of this manual. This will help you navigate more easily through the pages and find more quickly the information you are looking for.

The manual is divided into six volumes:

- Receiver Description (Chapter 1)
- Web Server (Chapters 2-3)
- CORS station (Chapter 4)
- Backpack Land Surveying (Chapters 5-9)
- The Integrator's Corner (Chapters 10-15)
- Appendix (Chapters 16-17)

Note that these six volumes only appear in the PDF version of the manual as bookmarks created at the highest level in the PDF file. On the other hand, the table of contents only shows a succession of numbered chapters without any reference to these volumes. Therefore, the different chapters come as follows.

Chapter 1 provides a full description of the ProFlex 500 (front panel display screens, connectors, accessories, batteries, etc.). Additional sections cover the following topics: Specifications, Firmware Options, U-Link radios, Port Pinouts, 1PPS Output and Event Marker Input.

Chapters 2 and 3 are about the ProFlex 500 Web Server, an embedded web application allowing users to control and monitor the receiver via the Internet. Chapter 2 provides step-by-step instructions for several typical applications. Chapter 3 is an illustrated collection of the ProFlex 500 Web Server on-line help files.

**

Chapter 4 deals exclusively with the ProFlex 500 CORS extension. The content is virtually the same as the corresponding Getting Started Guide, except for the list of items and hardware description which here are addressed in Chapter 1.

**

Chapters 5 to 9 cover all the topics relevant to the use of the ProFlex 500 in RTK land surveying applications, either as a temporary base mounted on a tripod, and/or as a rover used in backpack configuration.

Chapter 5 gives detailed instructions on how to install, register and use the FAST Survey field software on different platforms. Some specific FAST Survey functions are addressed such as setting the position of a base, saving and restoring base and rover configurations, using a geoid in the localization process and using a background map.

Chapter 6 focuses on setup and configuration steps at the base and the rover, including radio setups and network connections for RTK operation. This chapter also addresses the following topics: Network Connection, Direct IP Connection To Your Own Base Through RTDS Software, Using an External CDMA Cell Phone for Network Connections and Using a U-Link Repeater to Extend the Radio Range.

Chapter 7 provides step-by-step procedures to perform RTK surveying with ProFlex 500 and FAST Survey. Compared to the ProFlex 500 Getting Started Guide (backpack configuration), this chapter includes two additional sections: Localization and Logging Points in Continuous Mode.

Chapter 8 deals with raw data logging.

Chapter 9 provides all the instructions required to run post-processed surveys. This chapter is somewhat redundant with Chapter 8. However, whereas Chapter 8 is more focused on describing the receiver's raw data logging capabilities and all the functions attached to it, Chapter 9 is more survey-oriented, focusing on field instructions when the equipment is used with FAST Survey for post-processed surveys exclusively.

Chapters 10 to 15 give in-depth information on the receiver. They are more particularly intended for integrators and technical experts. This is the biggest part in this manual.

Chapter 10 explains how to install the Pro-Flex 500 when used on board a machine or a vessel and provides typical scripts (based on \$PASH commands) to configure the receiver as a base or a rover.

Chapters 11 lists the connection facilities offered by the Ethernet port.

Chapter 12 is about the \$PASH proprietary commands, introducing the two categories of commands, and telling you how to apply them. Chapter 12 also describes the conventions used in their description and provides an alphabetical list, combining set and query commands in a single table.

Chapters 13 to 15 provide a full description of respectively the set commands, the query commands and the data output formats.

*

Chapters 16 and 17 are grouped together to constitute the Appendix of the manual.

Chapter 16 is a collection of first-level maintenance instructions you may have to refer to, should you encounter any problems with your equipment. This chapter also includes the list of alarms the receiver may generate.

Chapter 17 is designed as a memo gathering various typical procedures you may sometimes have to run.

Table of Contents

What is ProFlex 500? 1 System Components Overview. 2 Equipment Description & Basic Functions 8 Display Screens 14 Charging Batteries Before Use 15 Specifications 22 Firmware Options 26 U-Link Radios 28 U-F Port Pinouts 31 Port Pinouts 32 1PPS Output 36 Event Marker Input 37 Physical and Virtual Ports 38 Chapter 2. Using the ProFlex 500 Web Server 39 Introduction 39 Getting the ProFlex 500 Ready for Running the Web Server 40 Setting a Rover 47 Setting a Base 66 Creating an Account on DynDNS.com 86 Configuration Memo 87 Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Tab 96 Configuration Tab 126 Advanced Setup (Configuration Tab) <th>Chapter 1. Receiver Description</th> <th> 1</th>	Chapter 1. Receiver Description	1
Equipment Description & Basic Functions 8 Display Screens 14 Charging Batteries Before Use 15 Specifications 22 Firmware Options 26 U-Link Radios 26 UHF Data Link Compatibility Table 31 Port Pinouts 32 1PPS Output 36 Event Marker Input 37 Physical and Virtual Ports 38 Chapter 2. Using the ProFlex 500 Web Server 38 Introduction 39 Getting the ProFlex 500 Ready for Running the Web Server 40 Setting a Rover 47 Setting a Rover 47 Setting an Account on DynDNS.com 86 Creating an Account on DynDNS.com 86 Configuration Memo 87 Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Bar and Units Used 93 Status Tab 126 Chapter 4. ProFlex 500 CORS Station 186	What is ProFlex 500?	1
Display Screens	System Components Overview	2
Charging Batteries Before Use 19 Specifications 22 Firmware Options 26 U-Link Radios 28 UHF Data Link Compatibility Table 31 Port Pinouts 32 1PPS Output 36 Event Marker Input 37 Physical and Virtual Ports 38 Chapter 2. Using the ProFlex 500 Web Server 39 Introduction 39 Getting the ProFlex 500 Ready for Running the Web Server 40 Setting a Base 66 Creating an Account on DynDNS.com 86 Configuration Memo 87 Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Tab 96 Configuration Tab 120 Advanced Setup (Configuration Tab) 185 Chapter 4. ProFlex 500 CORS Station 195 What is ProFlex 500 CORS? 195 Display Screens 197 Introduction to ProFlex 500 CORS Configuration 202 <	Equipment Description & Basic Functions	8
Specifications 22 Firmware Options 26 U-Link Radios 28 UHF Data Link Compatibility Table 31 Port Pinouts 32 1PPS Output 36 Event Marker Input 37 Physical and Virtual Ports 38 Chapter 2. Using the ProFlex 500 Web Server 39 Introduction 39 Getting the ProFlex 500 Ready for Running the Web Server 40 Setting a Rover 47 Setting an Account on DynDNS.com 86 Configuration Memo 87 Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Tab 96 Configuration Tab 120 Advanced Setup (Configuration Tab) 185 Chapter 4. ProFlex 500 CORS Station 195 Ushat is ProFlex 500 CORS Station 195 Introduction to ProFlex 500 CORS Configuration 202 Setting a CORS Reference Station 218 Chapter 5. FAST Survey Field Softwa		
Firmware Options 26 U-Link Radios 28 UHF Data Link Compatibility Table 31 Port Pinouts 32 1PPS Output 36 Event Marker Input 37 Physical and Virtual Ports 38 Chapter 2. Using the ProFlex 500 Web Server 35 Introduction 39 Getting the ProFlex 500 Ready for Running the Web Server 40 Setting a Rover 47 Setting a Base 66 Creating an Account on DynDNS.com 86 Configuration Memo 87 Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Tab 96 Configuration Tab 120 Advanced Setup (Configuration Tab) 185 Chapter 4. ProFlex 500 CORS Station 195 What is ProFlex 500 CORS? 195 Display Screens 195 Installing FAST Survey Field Software 233 Installing FAST Survey Field Software 233		
U-Link Radios 28 UHF Data Link Compatibility Table 31 Port Pinouts 32 1PPS Output 36 Event Marker Input 37 Physical and Virtual Ports 38 Chapter 2. Using the ProFlex 500 Web Server 39 Introduction 39 Getting the ProFlex 500 Ready for Running the Web Server 40 Setting a Rover 47 Setting a Base 66 Creating an Account on DynDNS.com 86 Configuration Memo 87 Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Tab 96 Configuration Tab 120 Advanced Setup (Configuration Tab) 185 Chapter 4. ProFlex 500 CORS Station 195 What is ProFlex 500 CORS? 195 Display Screens 197 Introduction to ProFlex 500 CORS Configuration 202 Setting a CORS Reference Station 218 Chapter 5. FAST Survey Field Software 233 Installing FAST Survey Interfaces With	Specifications	22
UHF Data Link Compatibility Table	·	
Port Pinouts		
1PPS Output		
Event Marker Input		
Physical and Virtual Ports		
Chapter 2. Using the ProFlex 500 Web Server		
Introduction	-	
Getting the ProFlex 500 Ready for Running the Web Server	Chapter 2. Using the ProFlex 500 Web Server	39
Setting a Rover	Introduction	39
Setting a Base	Getting the ProFlex 500 Ready for Running the Web Server	40
Creating an Account on DynDNS.com	Setting a Rover	47
Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Tab 96 Configuration Tab 120 Advanced Setup (Configuration Tab) 185 Chapter 4. ProFlex 500 CORS Station 195 What is ProFlex 500 CORS? 195 Display Screens 197 Introduction to ProFlex 500 CORS Configuration 202 Setting a CORS Reference Station 218 Chapter 5. FAST Survey Field Software 233 Installing FAST Survey User 234 Creating a New FAST Survey User 234 Creating a New FAST Survey Job 235 How FAST Survey Interfaces With Your Equipment Via Bluetooth 237 Setting the Base Position With FAST Survey 238 Saving/Restoring Base and Rover Configurations 240 Using a Geoid File in the Localization Process 241 Using a Background Map In FAST Survey 243	Setting a Base	66
Chapter 3. ProFlex 500 Web Server Help Files Collection 91 Home Tab 91 Status Bar and Units Used 93 Status Tab 96 Configuration Tab 120 Advanced Setup (Configuration Tab) 185 Chapter 4. ProFlex 500 CORS Station 195 What is ProFlex 500 CORS? 195 Display Screens 197 Introduction to ProFlex 500 CORS Configuration 202 Setting a CORS Reference Station 218 Chapter 5. FAST Survey Field Software 233 Installing FAST Survey 233 Registering as a FAST Survey User 234 Creating a New FAST Survey Job 235 How FAST Survey Interfaces With Your Equipment Via Bluetooth 237 Setting the Base Position With FAST Survey 238 Saving/Restoring Base and Rover Configurations 240 Using a Geoid File in the Localization Process 241 Using a Background Map In FAST Survey 243	Creating an Account on DynDNS.com	86
Home Tab	Configuration Memo	87
Status Bar and Units Used	Chapter 3. ProFlex 500 Web Server Help Files Collection	91
Status Tab	Home Tab	91
Configuration Tab	Status Bar and Units Used	93
Advanced Setup (Configuration Tab)	Status Tab	96
Chapter 4. ProFlex 500 CORS Station	Configuration Tab	120
What is ProFlex 500 CORS?	Advanced Setup (Configuration Tab)	185
Display Screens	Chapter 4. ProFlex 500 CORS Station	195
Display Screens	What is ProFlex 500 CORS?	195
Setting a CORS Reference Station		
Chapter 5. FAST Survey Field Software	Introduction to ProFlex 500 CORS Configuration	202
Chapter 5. FAST Survey Field Software	Setting a CORS Reference Station	218
Installing FAST Survey		
Registering as a FAST Survey User		
Creating a New FAST Survey Job		
How FAST Survey Interfaces With Your Equipment Via Bluetooth 237 Setting the Base Position With FAST Survey		
Setting the Base Position With FAST Survey		
Saving/Restoring Base and Rover Configurations		
Using a Geoid File in the Localization Process		
Using a Background Map In FAST Survey243		
	-	
	Chapter 6. RTK Configuration Steps	

Temporary RTK Base Setup	251
RTK Base Configuration	255
RTK Rover Setup	259
RTK Rover Configuration	262
Network Connection	269
Direct IP Connection To Your Own Base Through GPRS	
Modem and RTDS Software	271
Using a CDMA Cell Phone for Network Connection	275
Using a U-Link Repeater to Extend the Radio Range	276
Chapter 7. RTK Surveying	279
Uploading Stakeout Points	279
Running Localization	280
Staking Out Points	283
Logging Points	286
Logging a Line	287
Downloading RTK Points to GNSS Solutions	288
Chapter 8. Logging Raw Data	289
Introduction	
Raw Data Logging Methods	290
Downloading Raw Data	
Deleting Raw Data Files	
Chapter 9. Post-Processed Surveying	
System Setup	
System Configuration	
Static Survey	
"Stop & Go" Kinematic Survey	
Continuous Kinematic Survey	
Chapter 10. Integrating ProFlex 500 into Your Application	
Installation Instructions	
Manual Configuration Steps: Introductory Notes	
Rover Using Internal Radio	
Rover Using Port A as Corrections Input	
Rover Using Port B or F as Corrections Input	
NTRIP Rover (Via Modem)	
Direct-IP Rover (Via Modem)	
Direct-Dial (CSD) Rover	317
Rover Operating in Long-Range Flying RTK Mode	318
Base With Pacific Crest Radio Transmitter	
Base With Ashtech Radio Transmitter	
Base Using Port A as Corrections Output	
Base Using Port B or F as Corrections Output	
Base Using the Ethernet Port as the Corrections Output	
Direct-IP Base (Via Modem)	
Direct-Dial (CSD) Base	
NTRIP Station	327
Chapter 11. ProFlex 500 Ethernet Connection	221

Setting Up the Ethernet Connection	331
Using the ProFlex 500 Ethernet Port	333
Chapter 12. Using Serial Commands	339
Introduction to Serial Commands	
Applying Commands Through Bluetooth or a Serial Port	
Applying Commands Through TCP/IP	
Running Serial Commands from a USB Key	
List of Commands	
Chapter 13. Set Command Library	
AGB: Enabling/Disabling GLONASS Bias Adjustments	
ANH: Antenna Height	
ANP,PCO & ANP,EDx: Creating/Editing Antenna Definitions	
ANP,DEL: Delete User-Defined Antenna	
ANP,OUT: Defining a Virtual Antenna	
ANP,OWN: Naming the Local Antenna	
ANP,REF: Naming the Antenna Used at the Base	
ANR: Antenna Reduction Mode	
ANT: Antenna Height	
ATL: Debug Data Recording	
ATM: Enabling/Disabling ATOM Messages	
ATM,ALL: Disabling All ATOM Messages	369
ATM, PER: Setting Unique Output Rate for all ATOM Messages.	
BAS: Differential Data Type	371
BDS: Setting Differential Data Streams on Ports Ix	
BEEP: Beeper Setup	373
BRD: Enabling/Disabling the RTC Bridge Function	
BTH, NAME: Bluetooth Device Name	377
BTH,PIN: Bluetooth Device Pin Code	378
CMD,LOD: Running a List of \$PASH Commands	
CMD,WTI: Inserting Wait Times	380
CMR,TYP: CMR Message Type and Rate	381
CPD,AFP - CP2,AFP: Setting the Confidence Level of	
Ambiguity Fixing	
CPD,FST: RTK Output Mode	
CPD,MOD: Base/Rover/Backup Mode	
CPD,NET: Network Corrections	
CPD,REM: Differential Data Port	
CPD,RST - CP2,RST: RTK Process Reset	
CPD,VRS: VRS Assumption Mode	
CST,MTP,ADD: Adding/Modifying Mount Points	
CST,MTP,DEL: Deleting a Mount Point	
CST,OFF: Stopping the Embedded NTRIP Caster	
CST,ON: Starting the Embedded NTRIP Caster	
CST,PAR: Embedded NTRIP Caster Parameters	
CST,RST: Resetting the Embedded NTRIP Caster	
CST,USR,ADD: Adding/Modifying NTRIP Caster Users CST,USR,DEL: Deleting an NTRIP Caster User	
COI, UOK, DEL: Delethig an INTKIP Caster User	აყე

CTS: Handshaking	396
DBN,TYP: DBEN Message Type & Output Rate	397
DDN,PAR: Setting the DynDNS Service	398
DDN,SET: Sending the IP Address Manually to DynDNS	399
DIP: Server Connection	400
DIP,OFF: Terminating Direct IP Connection	
DIP,ON: Establishing the Programmed Direct IP Connection	402
DIP,PAR: Setting Direct IP Parameters	
DRI: Raw Data Recording Rate	404
DST: Data Stream Connection Modes	
DSY: Daisy Chain	
DYN: Receiver Dynamics	
ECP,OFF: Powering Off Ports B & F	
ECP,ON: Powering On Ports B & F	
EFT,ON: Starting Embedded FTP Server	410
EFT,OFF: Stopping Embedded FTP Server	
EFT,PAR: Embedded FTP Server Settings	
EFT,USR,ADD: Adding FTP Server User	412
EFT,USR,DEL: Deleting FTP Server User	
ELM: Setting the Elevation Mask for Raw Data Output	
EML,PAR: Email Parameters	
EML,TST: Testing Email	415
ETH,OFF: Powering Off the Ethernet Port	
ETH,ON: Powering On the Ethernet Port	
ETH,PAR: Ethernet Parameters	
FIL,D: Deleting Files	
FIL,DEL: Deleting Files and Directories	
FTP,OFF: Ending Data Transfer with FTP	
FTP,PAR: FTP Settings	
FTP,PUT: Uploading Files to FTP	422
GLO: GLONASS Tracking	
GNS,CFG: Selecting a GNSS Mode	424
INI: Receiver Initialization	
LCS: Enabling/Disabling Use of Local Coordinate System	426
LOG, DEL: Deleting Log Files	
LOG,PAR: Log File Settings	
LTZ: Time Zone	
MDM,DAL: Dialing and Hanging up	429
MDM,INI: Initializing the Modem	
MDM,OFF: Powering Off the Internal Modem	431
MDM,ON: Powering On the Internal Modem	431
MDM,PAR: Setting the Modem Parameters	
MDP: Setting Port A to RS232 or RS422	433
MEM: Selecting Memory Device Used	
MET,CMD: Trigger String Querying Meteorological Unit	
MET, INIT: Initialization String for Meteorological Unit	436
MET, INTVL: Query Time Interval for Meteo Data	

MET,PAR: Setting the Meteorological Unit	.438
MWD: Setting the Modem Timeout	.439
NME: Enabling/Disabling NMEA Messages	
NME,ALL: Disabling All NMEA and NMEA-Like Messages	
NME,PER: Setting Unique Output Rate for all NMEA Messages.	
NPT: Tagging SBAS Differential Positions in NMEA &	
NMEA-Like Messages	.443
NTR,LOD: Loading the NTRIP Caster Source Table	
NTR,MTP: Connecting Receiver to NTRIP Caster Mount Point	
NTR,PAR: NTRIP Settings	
OCC: Writing Occupation Data to Raw Data File	
OPTION: Receiver Firmware Options	
OUT,x,MET: Starting Meteo Data Acquisition	
OUT,x,TLT: Starting Tiltmeter Data Acquisition	
PEM: Setting the Position Elevation Mask	
PHE: Setting the Active Edge of the Event Marker Pulse	
POP: Setting Internal Update Rate for Measurements and PVT	
POS: Setting the Antenna Position	
PPS: Setting PPS Pulse Properties	
PRT: Setting Baud Rates	
PWR,OFF: Powering Off the Receiver	
PWR,PAR: Power Management	
RAW: Enabling/Disabling Raw Data Messages	.437
in Legacy Ashtech Format	458
RAW,ALL: Disabling All Raw Data Messages	
RAW,PER: Setting Unique Output Rate for Raw Data	
RCP,GBx: GLONASS Carrier Phase Biases for User-Defined	
Receiver	.461
RCP,DEL: Deleting User-Defined Receiver Name	
RCP,REF: Naming Reference Receiver	
RDP,OFF: Powering Off the Internal Radio	
RDP,ON: Powering On the Internal Radio	
RDP,PAR: Setting the Radio	
RDP,TYP: Defining the Type of Radio Used	
REC: Enable/Disable, Start/Stop Raw Data Recording	
REF: Enabling/Disabling External Reference Clock	
RFB: Enabling/Disabling Ring File Buffering	
RFT: Choosing File Format for Meteorological & Tiltmeter Data	
RNX,TYP: ATOM RNX Differential Message	
RST: Default Settings	
RTC,MSG: Defining a User Message	
RTC,TYP: RTCM Message Type	
RXC,PAR: Embedded RINEX Converter	
SBA: Enabling/Disabling SBAS Tracking	
SES, AUT: Setting a Series of Sessions Automatically	
SES, DEL: Deleting One or All Sessions	
SES,FTP,PAR: Setting FTP Server for Record Files	.485

	SES,ON: Starting Sessions	487
	SES,OFF: Stopping Sessions	487
	SES,PAR: Session Recording Parameters	488
	SES,SET: Setting Sessions Manually	491
	SIT: Defining a Site Name	492
	SNM: Signal-To-Noise Ratio Mask	492
	SOM: Masking Signal Observations	
	SOM,CTT: Cumulative Tracking Time Mask	
	SOM, NAV: Navigation Data Mask	496
	SOM, SNR: Signal-to-Noise Ratio Mask	
	SOM, WRN: Channel Warnings Mask	499
	STI: Defining a Station ID	
	SVM: Setting the Maximum Number of Observations in the PVT	
	TCP,PAR: TCP/IP Server Settings	
	TCP,UID: TCP/IP Authentication	
	TLT,CMD: Defining the Trigger String Used to Query	
	the Tiltmeter	505
	TLT, INIT: Defining the String Used to Initialize the Tiltmeter	506
	TLT, INTVL: Defining the Time Interval to Acquire Tiltmeter Data	
	TLT,PAR: Setting the Tiltmeter	
	UDP: User-Defined Dynamic Model Parameters	
	UNT: Distance Unit Used on Display Screen	
	UPL,PAR: Setting the FTP Server Providing Firmware Upgrades	
	UPL,UPG: Upgrading the Receiver Firmware from FTP	
	UTS: Synchronizing Onto GPS Time	513
	WAK: Acknowledging Alarms	514
	WEB,OWN: Setting Owner Information	
	WEB,PAR: Web Server Control & Administrator Profile	
	WEB, USR, ADD: Adding/Modifying User Profiles	516
	WEB, USR, DEL: Deleting a User Profile	517
	ZDA: Setting Date & Time	
Cha	opter 14. Query Command Library	
Cito	AGB: Reading GLONASS Bias Setting	
	ALM: Almanac Message	
	ANH: Antenna Height	
	ANP: Antenna Parameters	
	ANP,OUT: Virtual Antenna	
	ANP,OWN: Local Antenna Used	
	ANP,REF: Antenna Used at the Base	
	ANR: Antenna Reduction Mode	
	ANT: Antenna Height	
	ATD,MSI: ATOM Differential Message Status	
	ATL: Debug Data Recording	
	ATM: ATOM Data Parameters	
	ATO: ATOM Message Output Settings	
	BDS: Differential Data Streaming	334

REED, Rooner State	535
BEEP: Beeper State	
BTH: Bluetooth Settings	
CMR,MSI: CMR Message Status	
CP2,AFP: Ambiguity Fixing Parameter, Second RTK Engine	
CPD, AFP: Ambiguity Fixing Parameter	
CPD,ANT: Base Antenna Height	
CPD,FST: Fast RTK Output Mode	
CPD,MOD: Base/Rover/Backup Mode	
CPD,NET: RTK Network Operation Mode	
CPD,POS: Base Position	
CPD,REM: Differential Data Port	
CPD,VRS: VRS Assumption Mode	
CRT: Cartesian Coordinates of Position	
CST: NTRIP Caster Parameters	548
CTS: Handshaking	549
DBN,MSI: DBEN Message Status	550
DCR: Cartesian Coordinates of Baseline	550
DDN: DynDNS Parameters	552
DIP: Direct IP Parameters	553
DPO: Delta Position	
DRI: Raw Data Recording Rate	
DST: Connection Modes for the Different Data Streams Available	556
DST,STS: Data Stream Port Status	558
DSY: Daisy Chain Status	559
DTM: Datum Reference	
DYN: Receiver Dynamics	
ECP: Power Status of Extended Communication Port	562
EFT: Embedded FTP Server	562 563
EFT: Embedded FTP Server	562 563 564
EFT: Embedded FTP Server	562 563 564 564
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters	562 563 564 564 565
EFT: Embedded FTP Server	562 563 564 564 565 566
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key	562 563 564 564 565 566 567
EFT: Embedded FTP Server	562 563 564 564 565 566 567 569
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings	562 563 564 564 565 566 567 569
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message	562 563 564 565 566 567 569 570
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude	562 563 564 565 566 567 569 570 571
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude GLO: GLONASS Tracking Status	562 563 564 564 565 566 567 570 571 572 573
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude GLO: GLONASS Tracking Status GNS,CFG: Reading the GNSS Mode Used in the Receiver	562 563 564 564 565 566 567 571 572 573 574
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude. GLO: GLONASS Tracking Status. GNS,CFG: Reading the GNSS Mode Used in the Receiver GRS: GNSS Range Residuals	562 563 564 564 565 566 567 571 572 573 574 575
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude. GLO: GLONASS Tracking Status GNS,CFG: Reading the GNSS Mode Used in the Receiver GRS: GNSS Range Residuals GSA: GNSS DOP and Active Satellites	562 563 564 564 565 566 567 570 571 572 573 574 575
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude GLO: GLONASS Tracking Status GNS,CFG: Reading the GNSS Mode Used in the Receiver GRS: GNSS Range Residuals GSA: GNSS DOP and Active Satellites GST: GNSS Pseudo-Range Error Statistics	562 563 564 564 565 566 567 570 571 572 573 574 575 576
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude. GLO: GLONASS Tracking Status. GNS,CFG: Reading the GNSS Mode Used in the Receiver GRS: GNSS Range Residuals GSA: GNSS DOP and Active Satellites GST: GNSS Pseudo-Range Error Statistics GSV: GNSS Satellites in View	562 563 564 564 565 566 570 571 572 573 574 575 576 578
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude. GLO: GLONASS Tracking Status GNS,CFG: Reading the GNSS Mode Used in the Receiver GRS: GNSS Range Residuals GSA: GNSS DOP and Active Satellites GST: GNSS Pseudo-Range Error Statistics GSV: GNSS Satellites in View LCS: Local Coordinate System Status.	562 563 564 564 565 566 567 571 572 573 574 575 576 578 579 580
EFT: Embedded FTP Server ELM: Elevation Mask EML: Email Settings ETH: Ethernet Status and Parameters FIL,CUR: Information On G-File Being Recorded FIL,LST: Listing Files in Receiver Memory or USB Key FLS: List of Raw Data Files FTP: FTP Status and Settings GGA: GNSS Position Message GLL: Geographic Position - Latitude/Longitude. GLO: GLONASS Tracking Status. GNS,CFG: Reading the GNSS Mode Used in the Receiver GRS: GNSS Range Residuals GSA: GNSS DOP and Active Satellites GST: GNSS Pseudo-Range Error Statistics GSV: GNSS Satellites in View	562 563 564 565 566 567 570 571 572 573 574 575 576 578 579 580 582

LOG,PAR: Log File Settings	584
MDM: Modem Status and Parameters	584
MDM,LVL: Modem Signal Level	586
MDP: Port A Setting	586
MEM: Selected Memory Device	
MET: Meteorological Unit Settings	588
MWD: Modem Watchdog Timeout	588
NMO: NMEA Message Output Settings	
NPT: Tagging of SBAS Differential Positions in NMEA &	
NMEA-Like Messages	591
NTR: NTRIP Settings	592
NTR,MTP: Connection to Mount Point	593
NTR,TBL: Source Table	
OCC: Ocupation State and Parameters	
OPTION: Installed Receiver Firmware Options	596
PAR: Receiver Parameters	
PEM: Position Elevation Mask	
PHE: Active Edge of Event Marker Pulse	
POP: Reading Internal Update Rate	
POS: Computed Position Data	
PPS: PPS Settings	
PRT: Baud Rate Settings	
PTT: PPS Time Tag	
PWR: Power Status	
RAW: Raw Data Logging Settings	
RCP: Receiver Parameters	
RCP,OWN: Receiver Name	
RCP,REF: Reference Receiver Name	
RDP,CHT: Radio Channel Table	
RDP,LVL: Reading the Radio Reception Level	
RDP,PAR: Radio Parameters	
RDP,TYP: Radio Type Used	
REC: Raw Data Recording Status	
REF: External Reference Clock	
RFB: Ring File Buffering	
RFT: Record File Type for Meteo & Tiltmeter Data	
RID: Receiver Identification	
RMC: Recommended Minimum Specific GNSS Data	
RNX,MSI: ATOM RNX Differential Message	
RRE: Residual Error	
RTC: RTCM Status	
RTC, MSI: RTCM Message Status	
RWO: Raw Data Output Settings	
SAT: Satellites Status	
SBA: SBAS Tracking Status	
SES: Session Programming	630
SGL: GLONASS Satellites Status	

SGP: GPS & SBAS Satellites Status	635
SIT: Site Name	637
SNM: Signal-to-Noise Ratio Mask	638
SOM: Signal Observations Masking	639
SOM,CTT: Cumulative Tracking Time Mask	640
SOM,NAV: Navigation Data Mask	640
SOM,SNR: Signal-to-Noise Ratio Mask	
SOM,WRN: Channel Warnings Mask	642
STI: Station ID	643
SVM: Satellite Use Mask	644
TCP: TCP/IP Server Settings	644
TLT: Tiltmeter Setup	645
UDP: User-Defined Dynamic Model	646
UNT: Distance Unit Used on Display Screen	647
UPL: FTP Server Providing Firmware Upgrades	
UPL,LOG: Editing the Firmware Upgrade Log File	648
UPL,LST: Listing the Firmware Upgrades Available on FTP	651
UTS: GPS Time Synchronization Status	652
VEC: Vector & Accuracy Data	652
VERSION: Firmware Version	654
VTG: Course Over Ground and Ground Speed	655
WARN: Warning Messages	656
WEB: Web Server Control, Owner Data & Connection Profiles	657
XDR: Transducer Measurements	657
ZDA: Time & Date	659
Chapter 15. Data Output	661
DPC: Compact GPS Measurements	
ION: Ionosphere Parameters	
LTN: Latency	664
MPC: GNSS Measurements	665
PBN: Position Information	668
SBA,DAT: SBAS Data Message	669
SAL: GPS Almanac Data	670
SAG: GLONASS Almanac Data	671
SAW: SBAS Almanac Data	673
SNG: GLONASS Ephemeris Data	675
SNV: GPS Ephemeris Data	677
SNW: SBAS Ephemeris Data	679
TTT: Event Marker	680
Chapter 16. Troubleshooting	681
Bluetooth Connection from FAST Survey Failed	681
Receiver is Not Tracking Satellites	682
Receiver is Not Logging Data	
Radio Data Link Fails to Provide Base Corrections to Rover	685
Data Link Okay but No Fixed Position Computed	
Rover is Computing Positions with High Uncertainties	690
Logging Data for RTK Troubleshooting Purposes - Reporting	

a Problem to Ashtech Tech Support	693
List of Alarms	694
Chapter 17. Other Procedures & Memos	705
Special Button Combinations Summary	705
Reset Procedure	705
Firmware Upgrade Procedure	705
Time-tagged RTK vs. FAST RTK Position Output	707
ATOM File Naming Conventions	707
Changing the Radio Module	709
Installing a SIM Card	709
Configuring Serial Port A	709
Enabling a Firmware Option	
Enabling or Disabling the External Reference Clock	710
Decoding an NTRIP Source Table	710

Chapter 1. Receiver Description

What is ProFlex 500?

Congratulations! You have just acquired the latest dual-frequency ProFlex 500 GNSS(1) receiver from Ashtech! GNSS have revolutionized control surveys, topographic data collection, construction surveying, marine surveying and machine guidance and control. Purchasing the right tools for a professional job is essential in today's competitive business environment. Learning to put these tools to work quickly and efficiently will be the focus of this manual.

ProFlex 500 is a flexible, rugged and high-performance GNSS receiver integrating the best of today's technologies, including the exclusive BLADE™ algorithms and multiconstellation (GPS+GLONASS+SBAS) capabilities.

ProFlex 500 can be used in numerous applications where real-time precise positioning is required:

- Used in conjunction with the Backpack Kit, ProFlex 500 is an interesting alternative to the Ashtech ProMark 500 for those land surveyors who prefer to carry their GNSS antennas and field terminals on a pole while holding their receivers separately on their backs.
 - Also usable with FAST Survey, ProFlex 500 in this configuration offers the same level of performance as the Ashtech ProMark 500.
- Used in conjunction with a UHF Accessory Kit, ProFlex 500 can also be used aboard ships for precise marine surveying applications. Like the Ashtech ProMark 500, ProFlex 500 comes with a choice of UHF radio transmitter and receiver kits allowing autonomous operation of base/ rover systems, which is a valuable asset for numerous maritime applications.
- The use of ProFlex 500 can also be extended to those terrestrial applications, like machine guidance or machine

^{1.} GNSS= Global Navigation Satellite System.

- control, where real-time precise positioning, or long-range decimetric accuracy (using the Flying RTK solution) is also required. Being compact, rugged and flexible, the new Ashtech ProFlex 500 is proving to be the best system available today for this kind of requirement.
- As an extension of the ProFlex 500, ProFlex 500 CORS is an advanced CORS reference station for use in the most demanding applications. This extension is the subject of a separate chapter in this Reference Manual.

System Components Overview

The tables below provide an overview of the different key items composing the ProFlex 500.

Depending on your purchase and based on the type of survey you wish to perform, you may only have some of the listed items. Please refer to the packing list for an accurate description of the equipment that has been delivered to you. Ashtech reserves the right to make changes to the items listed below without prior notice.

Basic Supply

Item	Part Number	Picture
ProFlex 500 GNSS Receiver, L1/L2 GPS ProFlex 500 GNSS Receiver, L1 GPS/Glonass	990622 990621	0
ProFlex 500 CORS	990627	
Cellular antenna (quad-band)	111397	
Bluetooth antenna	111403	
7.4 V-4.4 Ah Li-ion Battery Pack (rechargeable)	111374	
USB Host-to-Device Cable, 0.2 m Makes ProFlex 500 a USB device.	702104	
Ethernet adaptor cable	702426	

Item	Part Number	Picture
Serial data cable	700461	O
Multi-function cable, 7C circular connector, bare wires, length: 3 m approx. (ProFlex 500 CORS)	702450	
Soft transport bag	206410	bishtech
AC/DC Power Supply Kit (includes external AC adapter, battery charger and cable extension for powering ProFlex 500 directly from the AC adapter)	802064	
ProFlex 500 User Documentation CD	501510	Profilms 200

Optional Accessories

Item	Part Number	Picture
item	i ait itallibei	ricture
ASH-661 L1/L2/L5 GNSS antenna, gain: 38 dB	802135	Partition.
ASH-660 L1 GNSS antenna, gain: 38 dB	802133	- settlem
Choke ring GNSS antenna, 38 dB, 4.2-15 V DC, includes "antibird" radome	111584	
Choke ring antenna bundle (CORS), includes the following part numbers: 111584 (choke ring) 702455 (coaxial cable) + N-male / TNC-female adaptor	802120	0+0
GNSS antenna & L band, 38 dB, 4.2-15 V DC Machine/Marine applications	111407	
RTDS Software	990610	(PC software)
DC power kit for port A	802086	(Internal part)
Choice of radio transmitter kits	Refer to page 4	See table on page 4

Item	Part Number	Picture
Choice of radio receiver kits	Refer to page 5	See table on
	The second of th	page 5
Survey Backpack kit	890309	See table on
		page 5
Machine Installation & Connectivity kit	802089	See table on
masimo motanaron a comiscimi, in	002000	page 6
UHF accessory kit (30 meters)	P0101390	See table on
orn decessory in (co meters)	. 0.0.000	page 7
UHF accessory kit (10 meters)	P0101391	See table on
orn decession in (10 meters)		page 8
External reference clock input kit: Consists of		
an internal coaxial cable fitted with a TNC		(Coaxial cable
female connector (mounted on rear panel),	802097	is an internal
and a protective cap for this connector		part)
(GNSS input #2).		

Optional Transmitter Kits

Item	Part Number	Picture
U-Link TRx, 12.5- kHz channel band- width	Transmitter: 802080-10 (0.5/2/4W; 410-430 MHz) 802080-30 (0.5/2/4W; 430-450 MHz) 802080-50 (0.5/2/4W; 450-470 MHz) Repeater: 802106-10 (0.5/2/4W; 410-430 MHz) 802106-30 (0.5/2/4W; 410-430 MHz) 802106-50 (0.5/2/4W; 430-450 MHz) 802106-50 (0.5/2/4W; 450-470 MHz) Each P/N includes a whip antenna, and an antenna bracket. The Y-shaped power/data cable is an integral part of the transmitter (no connector).	Picture of transmitter with its cable
Pacific Crest radio transmitter, 25-kHz channel bandwidth	110972-30 (35 W, 430-450 MHz) 110972-50 (35 W, 450-470 MHz) Each P/N includes a whip antenna, an antenna bracket and an OEM Y-shaped data/power cable.	Transmitter alone

Optional Receiver Kits

ltem	Part Number	Picture
U-Link Rx, 12.5 kHz channel bandwidth (includes whip antenna).	802081-10 (410-430MHz) 802081-30 (430-450 MHz) 802081-50 (450-470 MHz)	(internal part)
PDLRXO receiver kit, 25-kHz channel bandwidth (includes whip antenna).	802087-35 (430-450 MHz) 802087-55 (450-470 MHz)	(Internal part)

Survey Backpack Kit Option

Item	Part Number	Picture
"Quick Release" male/TNC-male coaxial cable, 1.50 meters.	P076500A	
"Quick Release" female/TNC-male coaxial cable, 0.75 meters.	P076510A	
7.4 V-4.4 Ah Li-ion Battery Pack (rechargeable)	111374	
Backpack	206247	Liber)
GNSS Solutions package, includes CD	702081-01	and the second s
Range pole option for UHF antenna (includes 0.50-meter pole with 5/8" female adaptor, TNC receptacle and TNC-female/TNC-female cable extension, 0.80 meter long)	802088	
HI Measurement Tool	111146-1	ushtech H.I.Tape Warse The State of the Stat

Machine Installation & Connectivity Kit Option

Item	Part Number	Picture
Serial data cable	700461	0,
TNC/TNC coaxial cable, 10 meters	700439	O
External DC Power Cable for Receiver (fuse included)	730477	103
USB-Device-to-PC Cable, 1.5 m. Makes ProFlex 500 a USB host.	702103	
Multi-function serial cable	702443	
Low-loss LMR-240GPS/GNSS cable, 30 meters, TNC male / TNC male	702455	0
N-m/N-m, 50-ohm, KX13 coaxial cable, 10 meters	P0101131	O
Range pole option for UHF antenna (includes 0.50-meter pole with 5/8" female adaptor, TNC receptacle and TNC-female/TNC-female cable extension, 6.0 meter long)	802098	Q
FMP 40 clamp	C3310115	
Right-angle bracket for GNSS antenna	206389	
Pair of brackets for GNSS antenna P/N 111406	C3310169	

Item	Part Number	Picture
Screw H UNC5/8-11, for fixing GNSS antenna fitted with 5/8" tapped hole onto P/N 111407.	206262	(Small part)

UHF Accessory Kit (30 meters)

ltem	Part Number	Picture
TNC-m/TNC-m, KX15 coaxial cable, 1 meter, + N-f/TNC-f coaxial adaptor	C5050156 C5050216	Q
Low-loss LMR-240GPS/GNSS cable, 30 meters, TNC male / TNC male	702455	0
UHF antenna, 3 dB (CXL70-3 C/L)	C3310145	

UHF Accessory Kit (10 meters)

Item	Part Number	Picture
TNC-m/TNC-m, KX15 coaxial cable, 1 meter, + N-f/TNC-f coaxial adaptor	C5050156 C5050216	Q
N-m/N-m, 50-ohm, KX13 coaxial cable, 10 meters	P0101131	O
UHF antenna, 3 dB (CXL70-3 C/L)	C3310145	

Equipment Description & Basic Functions

Front View

From left to right:

Bluetooth Antenna

A coaxial female connector (reverse SMA type) allowing you to connect a Bluetooth antenna for wireless communication with a field terminal or other device.

Cellular Antenna

A coaxial female connector (SMA type) allowing you to connect a cellular antenna. A cellular antenna is required when the ProFlex 500 sends or receives RTK or differential corrections data via its internal cellular modem (GSM).

Take care not to swap the Bluetooth antenna and the cellular antenna. The picture below shows where the shorter and longer antennas should be connected.

USB Host & Device

A nine-contact female connector (Fischer type). Depending on how it is configured, the USB port can be used in two different ways:

- 1. For a USB host, such as a mass storage device using optional device cable P/N 702103.
- 2. For a USB device allowing ProFlex 500 to be seen as a disk from the computer connected to this port. In this configuration, files can be transferred between the ProFlex 500's internal memory and the computer using the USB cable provided (P/N 702104).

Display Screen

The display consists of a 128 x 64-pixel, 1.5-inch monochrome yellow screen using organic LED technology (OLED).

Used in conjunction with the Scroll button, the display screen allows you to view different pages of information. See *Display*

Screens on page 14 for a detailed description of the information available from this screen.

After a few seconds of inactivity (i.e. Scroll button idle), screen luminosity turns from high to low level.

Power button

To turn on the ProFlex 500, hold the Power button pressed until the power LED lights up.

To turn off the ProFlex 500, hold the Power button pressed until the "Ashtech" screen is displayed. Then release the button and wait until the ProFlex 500 shuts down.

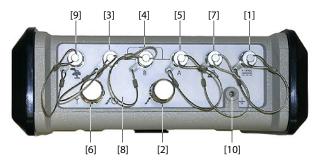
Power LED

- This indicator light is off when the ProFlex 500 is off and no external power source is connected to the DC power input.
- It is on and red when an external power source is present at the DC power input and the ProFlex 500 is off.
- It is on and green when the ProFlex 500 is on, regardless of whether it is powered from the internal battery or an external power source.

Log Button

Press this button briefly to start recording raw data on the selected storage medium.

Another short press on this button will immediately stop raw data recording.


Scroll button

Press this button briefly to scroll through the different pages of information viewed on the screen.

If an alarm is reported on the display screen, a short press on the Scroll button will acknowledge the alarm. The Scroll button will recover its display scrolling function only after all the alarms have been acknowledged this way.

Another function of the Scroll button is to re-activate the screen backlight after the latter has automatically been turned off. The Scroll button is also used in the firmware update procedure.

Rear View

DC Power Input

A Fischer, three-contact, female connector [1] allowing the ProFlex 500 to be powered from either the provided AC adapter (connect the cable extension between ProFlex 500 and the end of the AC adapter output cable), or an external 9- to 36-V DC power source through cable P/N 730477 (cf. base setup using an external radio transmitter).

GNSS Input #1

A TNC coaxial female connector [2] allowing you to connect a GNSS antenna to the receiver via a coaxial cable.

Serial Data Ports

These are all Fischer, seven-contact, female connectors, each allowing a serial connection to an external device..

- Ports F [3] and B [4] are both RS232-only ports
- RS232/422 Port A [5] is a switchable RS232/RS422 port (Default is RS232).

As an option (installed at the factory), port A also delivers a regulated DC power voltage between pin 1 (\pm 12 V DC) and pin 2 (GND) that can be used to power a connected device. The DC current available is 0.5 A steady state, and 1.0 A peak.

UHF Input Option

A TNC coaxial female connector [6] allowing you to connect a radio whip antenna. This connector is available only if the ProFlex 500 has been fitted with a radio module.

Ethernet Port

A Fischer, seven-contact female connector [7] allowing you to connect the ProFlex 500 to a local network (LAN). Through this connector, you may remotely control and monitor the ProFlex 500 from any computer connected to the Internet. Data may also flow through this port, in the same way as through a serial port.

GNSS Input #2 Option

A TNC coaxial female connector [8] for a second GNSS antenna input (future optional heading mode), or for applying an external reference clock. (Connector [8] is missing from the rear view above.)

CAN 2.0 Bus

A Fischer, five-contact, female connector [9] allowing you to connect the ProFlex 500 to external, NMEA2000-compatible equipment via CAN bus. (For future use.)

Earth Terminal

A screw terminal [10] for connecting the receiver chassis to Earth.

Electric Isolation

All signals available on the following connectors are optically isolated from the receiver's internal circuitry and chassis ground, as well as from each other:

- Serial ports A, B and F (including DC power output voltage on port A)
- Ethernet port
- CAN bus

Buzzer

The internal buzzer will sound whenever an error is detected. The buzzer will sound six times and then stop. The error icon will however continue to blink. To acknowledge the error notification, first press the Scroll key to view the error and associated code and then press the same button again. The buzzer can be deactivated permanently using the \$PASHS,BEEP command. See *BEEP: Beeper Setup on page 373*.

Battery Model & Battery Compartment

The battery used is a 7.4-V DC - 4400 mAh rechargeable battery. It is a standard model used in many camcorders. The battery is housed in a battery compartment accessible from above the ProFlex 500. The compartment door can be opened by lifting and then turning the quarter-turn finger screw counter-clockwise.

The battery will automatically operate as a backup power source for the receiver if for some reason the external DC source used is removed from the DC power input.

A slide switch is available at the bottom of the battery compartment to set the behavior of the receiver after removal or failure of the DC power source while the receiver is on:

- Slide switch pushed to the right: Automatic re-start. The
 receiver will automatically be switched on when DC power
 is restored. This is the typically the setting that should be
 used with ProFlex 500 CORS.
- Slide switch pushed to the left: Manual re-start. After power is restored, the receiver will stay off. Operator intervention is needed to switch the receiver back on.

Use for example the tip of a pen to slide the switch to the left or right.

Special Button Combinations

- With the ProFlex 500 OFF, pressing the Power, Log and Scroll buttons simultaneously for a few seconds will restore all the factory settings.
- With the ProFlex 500 OFF and a USB key connected, pressing the Power and Scroll buttons simultaneously for a few seconds will cause the ProFlex 500 to start a firmware upload process. If there is no USB key connected or the key does not contain a firmware upgrade, then the process will abort after a few seconds.
 Because data has to be decompressed on the USB key during upgrades, the USB key must be unlocked, with at least 10 MBytes of free memory, before starting the upgrade.

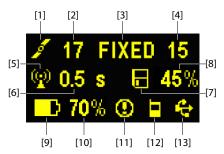
These button combinations are summarized in the table below:

Button Combination	ProFlex 500 State	Function
Power+Log+Scroll	OFF	Restores Factory Settings.
Power+Scroll	OFF	Initiates firmware update from USB key.

Display Screens

If you press the Scroll button several times, you will see the following displays successively.

Power-On Screen


When you power on the receiver, the Ashtech logo appears on the screen. It is displayed until the receiver has completed its auto-test (this takes about 30 seconds).

Then the General Status screen is displayed.

General Status Screen

An example of General Status screen is shown below.

This screen displays the following information:

- Satellite icon [1] (always displayed).
- Number of satellites tracked [2].
- Position solution status [3]:
 - NONE: Position not available.
 - AUTO: Autonomous GPS position
 - DGPS: Differential GPS position
 - S DGPS: SBAS Differential GPS position
 - FLOAT: Float solution
 - FIXED: Fixed solution (RTK is operational)
 - BASE: Receiver configured as a base.
- Number of satellites used [4]: Number of satellites used in the position processing, regardless of the current position solution status.
- Data link icon [5]. This icon is displayed only when corrections are received.
- Age of corrections [6], in seconds. This value is displayed when corrections are received and only after base station information has been received (Position status is at least "DGPS").
- Raw data logging icon [7]:

=	Data recording through front panel Log button: — Blinking: Raw data logging in progress — Fixed: No raw data logging in progress.
	Data recording through sessions: - Blinking: Raw data logging in progress - Fixed: No raw data logging in progress.
\triangle	ATL data recording for advanced diagnosis.

- Percentage of free memory in the storage medium used [8].
- Battery icon [9] with visual indication of remaining charge. If an external power source is used (AC adapter or external battery), the battery icon will be animated to indicate battery charging in progress.
 - is displayed when there is no battery in the compartment and the receiver is operated from an external power source.
- Power status [10].

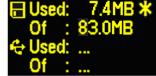
lcon	Definition
	Percentage of remaining battery. This indication will flash when
Percent	the remaining energy drops below 5%. When an internal battery is
value	used with external power applied, this icon alternates between the
	plug and the percentage of charge on the battery.
4	Replaces percentage when an external power source is used.

Alarm status [11].

Icon	Definition
①	Alarm detected. Press the Scroll button to view the alarm type. Press it again to acknowledge the alarm, which then disappears from the list. Unless there is another alarm in the queue, in which case you will have to resume the acknowledge sequence, the screen then displays the memory screens.
None	No alarm detected

 GSM module (modem) status [12]. This may be one of the following icons:

lcon	Definition
Blank	Modem turned off.
.1l	Blinking icon: Modem turned on but not initialized yet. Indicates signal strength at modem antenna input. Fixed icon: Modem turned on and initialized (ready for a connection). Indicates signal strength received at modem antenna input.
Å	The higher the number of bars, the better the signal. This icon will show four horizontal bars and an upside down antenna when the input signal is zero.
=	Modem on line.


• [13]: USB status and/or Bluetooth status and/or Ethernet port status.

Icon	Definition
C	USB port connected to active device
*	Bluetooth active
器	Ethernet port active
♣/≱/器	These three icons will appear successively when the USB port, the Ethernet port and Bluetooth are all active.
Blank	USB port unconnected, Bluetooth and Ethernet inactive.

Memory Screens

From the General Status screen, press the Scroll button to access the Memory screens. Memory screens appear successively (see examples) at a display rate of about five seconds:

Left screen:

- First line: Percentage of free space in the internal memory.
- Second line: Number of files currently stored in the internal memory.
- Third line: Percentage of free space on the USB mass storage device.
- Fourth line: Number of files currently stored on the USB mass storage device.

Right screen:

- First line: Total space occupied by the files currently stored in the internal memory.
- Second line: Nominal size of the internal memory.
- Third line: Total space occupied by the files currently stored on the USB mass storage device.
- Fourth line: Nominal size of the USB mass storage device.

About the "*" symbol:

• It can only appear at the end of the first or third line.

 Where placed, it indicates that this storage medium is used for data logging.

What if there is no USB mass storage device connected to the receiver?

- Parameters relevant to the USB key size and space used and available are void (three dots displayed instead).
- Number of files is forced to "0".

Receiver Identification Screen

From any of the two Memory screens, press the Scroll button to access the Receiver Identification screen. See example below.

SN: 200952006 FW: S518Gr22 BT: PF 0852006

IP: 10.20.2.42

- Receiver Serial Number
- Firmware Version
- Receiver Bluetooth Identifier
- IP Address

Position Computation Screen

From the Receiver Identification screen, press the Scroll button to access the Position Computation screen. This screen displays the latitude, longitude and ellipsoidal height of the position currently computed by the receiver. If the receiver is a base, the displayed coordinates are set ones (not computed ones) representing the reference position assigned to the base. See example below for a rover.

7 17 FIXED 15 47° 17' 56.2926 N 001° 30' 32.5897 W +88.1859 m

The upper line contains the same information as in the upper line of the General Status screen.

A new press on the Scroll button will take you back to the General Status screen. If however the receiver is fitted with a

radio receiver or is connected to an external radio transmitter, one or two additional display screens will show up before pressing the Scroll button takes you back to the General Status screen.

D Rx PDL ON O 446.7750Mhz TRANS 4800bds MED FEC SCR

A Tx U-Link O 446.7750Mhz TRANS 4800bds MED

These possible two screens show the current radio settings:

- First line: Serial port used, "Rx" for radio receiver or "Tx" for radio transmitter, radio type (U-Link, PDL). Extraparameter for "Rx": Power status
- Second line: Channel number, carrier frequency
- Third line: Protocol used (Transparent, Trimtalk, DSNP), airlink speed
- Fourth line: Squelch setting (medium, low, high). Extraparameters for Rx if a Pacific Crest: "FEC" if forward error correction enabled, "SCR" if scrambling enabled.

Screen Backlight

The screen backlight is automatically turned off if no key is pressed for 1 minute. When the backlight is off, a short press on the Scroll button will turn it back on. The Scroll button will then recover its usual functions.

Data Transfer Screen

For more information on the screen displayed when downloading files, refer to *Downloading Raw Data on page 291*.

Charging Batteries Before Use

Make sure the battery is fully charged for each ProFlex 500 you will be using in the field.

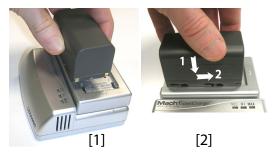
For a ProFlex 500 CORS, inserting a fully charged battery into the receiver will guarantee that the station can keep operating for several hours after a power shutdown, giving you the time to take the necessary maintenance steps.

Follow the instructions below to charge a battery.

Removing the Battery from the ProFlex 500

Unless the battery has already been taken out, do the following:

 Open the battery trapdoor, accessible from above the ProFlex 500, by lifting and then turning the quarter-turn finger screw anticlockwise. This releases the two springs located under the battery, pushing the battery slightly upward (see picture).



• Grab the battery and take it out of the compartment.

Charging the Battery

The battery charger comes with a separate universal AC adapter fitted with a 1.5-m output cable. The AC adapter includes a choice of four different, detachable plug types. Follow the instructions below to operate the charger.

- Choose the plug type that is suitable for your country.
- Secure that plug on the AC adapter.
- Connect the cable from the AC adapter to the battery charger.
- Give the battery the right orientation with respect to the charger [1] (the battery terminals should come into contact with the two sets of connectors on the charger), then push the battery against the plate and slide it forward [2] until it locks into place.

[4] MED HI MAX

[5] MED HI MAX

[6] MED HI MAX

• Plug the adapter into an AC outlet. Battery charging starts immediately.

For a low battery that's being charged, you will first see the three LEDs switch on and off, one after the other, followed by a short period of time when none of the LEDs is on (see [3]).

After about two hours of charging, the MED LED will stay on [4]. A few minutes later, the HI LED [5], and then the MAX LED [6] will also stay on.

 When the three LEDs are on, this means the battery is fully charged and can be disconnected from the charger.

Inserting the Battery in the ProFlex 500

- Insert the battery into the compartment making sure the battery has the right orientation (the battery terminals should come into contact with the two sets of connectors located at the bottom of the compartment).
- Close the trapdoor, push the finger screw in tight, and turn it fully clockwise.

Note that once it is properly secured, the trapdoor pushes the battery against the bottom of the compartment to ensure electrical connection of the battery to the ProFlex 500.

Specifications

GNSS Characteristics

- 75 channels:
 - GPS L1 C/A, L1/L2 P-code, L2C, L1/L2 full wavelength carrier
 - GLONASS L1 C/A L2 C/A and L2 P code, L1/L2 full wavelength carrier
 - SBAS code & carrier (WAAS/EGNOS/MSAS)
 - Quick signal detection engines for fast acquisition and re-acquisition of GPS/GLONASS/SBAS signals.
 - Fully independent code and phase measurements
- Ashtech BLADE™ technology for optimal performance
- · Advanced multipath mitigation
- Up to 20 Hz raw data and position output
- RTK base and rover modes, post-processing
- L5, Galileo upgradeable

RTK Base

- RTCM 2.3 & RTCM 3.1
- CMR & CMR+
- ATOM[™] (Ashtech proprietary format)
- DBEN

RTK Rover

- BLADE technology
- Up to 20 Hz Fast RTK
- RTCM 2.3 & RTCM 3.1, including message types 1021, 1022 and 1023 for coordinate systems
- CMR & CMR+
- ATOM, DBEN & LRK (proprietary formats)
- Networks: VRS, FKP, MAC
- NTRIP protocol
- NMEA0183 V3.1 messages output
- "Hot Standby RTK" (second RTK position available in the background as backup solution)

Accuracy

All mentioned values are RMS. See note (1)

SBAS

Accuracy and TTFF specifications may be affected by atmospheric conditions, signal multipath, and satellite geometry. Position accuracy specifications are for horizontal positioning. Vertical error is typically less than twice the horizontal error.

Horizontal < 50 cm typical

DGPS

- Horizontal < 30 cm typical
- 95%: 90 cm (2.9 ft)

Flying RTK™

- Within 50 km of baseline: 5 cm + 1 ppm. (1)(2).
- Beyond 50 km of baseline: 20 cm + 1 ppm. (1)(3).

RTK

Horizontal: 1 cm + 1 ppmVertical: 2 cm + 1 ppm

Velocity

• 95%: 0.1 knots

Real-Time Performance

Instant-RTK® Initialization:

- Typically 2-second initialization for baselines < 20 km
- 99.9% reliability

RTK initialization range:

• > 40 km

Time to First Fix

See Note (4)

Re-acquisition: 3 secHot start: 11 secWarm start: 35 sec

Cold start: 45 sec

Post-Processing Accuracy

All mentioned values are RMS. See also notes (2) and (5).

Static, Rapid Static:

Horizontal: 5 mm (0.016 ft) + 0.5 ppm

• Vertical: 10 mm (0.033 ft) + 1.0 ppm

Long Static (6):

^{1.} Performance values assume minimum of five satellites, following the procedures recommended in this manual. High multipath areas, high PDOP values and periods of severe atmospheric conditions may degrade performance.

^{2.} Steady state value for baselines < 50 km after sufficient convergence time.

^{3.} Typical values after 3 minutes of convergence for baselines > 50 km.

^{4.} Accuracy and TTFF specifications may be affected by atmospheric conditions, signal multipath, and satellite geometry. Position accuracy specifications are for horizontal positioning. Vertical error is typically less than twice the horizontal error

^{5.} Long baselines, long occupations, precise ephemeris used.

- Horizontal: 3 mm (0.009 ft) + 0.5 ppm
- Vertical: 6 mm (0.019 ft) + 0.5 ppm

Post-Processed Kinematic:

- Horizontal: 10 mm (0.033 ft) + 1.0 ppm
- Vertical: 20 mm (0.065 ft) + 1.0 ppm

Data Logging Characteristics

Recording Interval

0.05 to 999 seconds

Memory

- 128-MByte internal memory (expandable through USB sticks or external hard drives)
- Up to 400 hours of 15-s GNSS raw data from 18 satellites
- Ring File Memory offering unlimited use of the storage medium

Sessions

- Up to 96 sessions per day
- Embedded Rinex Converter
- Automatic FTP Push function

Ring File Buffer

 Raw data recording can be run concurrently with, and independently of, sessions to collect data with different user settings like the update rate.

Embedded Web Server

- Web 2.0 technology
- Password-protected Web Server for administrator and users
- Full-duplex, auto-negotiate 10 Base-TX / 100 Base-Tx
- DHCP or manual (static IP) configuration
- Full receiver monitoring and configuration
- FTP push function (to external primary FTP server or/and external backup FTP server)
- Embedded FTP server
- NTRIP server and instant real-time multi-data streaming over Ethernet
- Email alerts for automatic notifications of receiver status

Embedded NTRIP Caster

- A firmware option ([C] option)
- Can handle up to 10 mount points and 100 users (NTRIP clients)

- 1 or 2 internal NTRIP servers can connect to it as independent sources of correction data.
- Includes mechanism to automate the use of DynDNS.com (for automatic recognition of the receiver through its dynamic IP address).

Full MET/TILT Sensor Integration

- Both sensor types can be connected simultaneously
- Met and tilt data can be:
 - Logged and downloaded together with the GNSS data (legacy D-file supported)
 - Streamed in real time

I/O Interface

Rugged and waterproof Fischer connectors:

- 1 x RS232/RS422, up to 921.6 kbits/sec
- 2 x RS232, up to 115.2 kbits/sec
- 1 x USB 2.0, host and device
- Bluetooth 2.0 + EDR Class 2, SPP profile
- Ethernet
- 1 PPS output
- Event marker input
- · Earth terminal
- 12V DC/0.5 A (1 A peak) output available on serial port A
- All signals available are optically isolated from the receiver's internal circuitry (except for USB)
- Graphic OLED display (128 x 64 resolution)

Physical & Environmental Characteristics

Characteristic	
Size	21.5 x 20.0 x 7.6 cm (8.46 x 7.87 x 2.99 inches)
Weight	From 2.1 kg (4.6 lb)
Operating temperature	-30° to +65°C (-22° to +149°F)
Storage temperature	-40° to +70°C (-40° to +158°F)
Humidity	100% condensing
Sealing	IP67 (waterproof and dustproof).
	Salt mist in compliance with EN60945.
Shock	MIL-STD 810F, Fig. 516.5-10 (40 g, 11 ms, saw-tooth)
Vibration	MIL-STD 810F, Fig. 514.5C-17

Power Requirements

Characteristic	
Internal, removable battery	Li-ion battery, 32.5 Wh (7.4 V x4.4 Ah). Ensures UPS (Uninterrupted power supply) in case of power outage (Back-up battery)
Internal battery life time	> 6.5 hrs (UHF rover at 20°C)
External power input	Isolated, 9-36 V DC input
Power requirement	< 5 W typical (with UHF radio and GNSS antenna)

Complementary System Components

- Transmitter Kits (External radios)
 - U-Link TRx
 - Pacific Crest UHF radio
- Rover Communication Modules (Internal radios)
 - U-Link Rx
 - Pacific Crest UHF radio receiver
 - GSM/GPRS/EDGE (class 10) Quad-band
- Antennas
 - ASH-661 L1/L2/L5 GNSS antenna, gain: 38 dB
 - ASH-660 L1 GNSS antenna, gain: 38 dB
 - Choke ring GNSS antenna, 38 dB, 4.2-15 V DC, includes "antibird" radome
 - GNSS antenna & L band, 38 dB, 4.2-15 V DC for machine/marine applications
- Software solutions
 - GNSS Solutions
 - RTDS
 - FAST Survey
- Field Terminal kit with FAST Survey
- · Connectivity kit

Firmware Options

The available firmware options are summarized in the table below.

ı	D	Designation	Description	P/N
()	CASTER	Embedded NTRIP caster	680636
F		FASTOUTPUT	Allows position output at a rate of up to 20 Hz	

ID	Designation	Description	P/N
К	RTK	Allows a base to generate and send RTK corrections. Allows a rover to compute RTK position solutions using corrections received from a base (unlimited RTK).	680502
L	RTK3	For a rover, limits the RTK range to 3 km.	680581
N	STA	Enables a base receiver to generate RTCM, CMR or ATOM corrections data	680583
Р	GNSSL2	Enables the reception of the L2 frequency	680501
R	FLYING RTK	RTK computation (Flying RTK mode only) with RTCM2.3, RTCM3.0, CMR, CMR+, LRK, DBEN, ATOM. Generates RTCM2.3, RTCM3.0, CMR, CMR+, ATOM	680635
S	GLONASS	Enables the use of signals from the GLONASS constellation	680500
Z	MODEM	Enables the use of the internal GSM/GPRS modem	680528

Enabling a firmware option purchased separately from the system relies on the use of the \$PASHS,OPTION serial command. For more information on how to enable an option, refer to *OPTION: Receiver Firmware Options on page 448*.

Understanding RTK, RTK3 and STA firmware options.

Because these options have some intertwined properties, you usually don't need to have them all activated in your receiver:

- To get a full-featured RTK base, you just have to choose one of the following options:
 - RTK [K],
 - STA [N],
 - or RTK3 [L], the notion of limited RTK applying only to a rover, not to a base.

You'll get the same level of base operation whatever the option you choose.

- To operate an RTK rover, you just need to choose one of the following options:
 - RTK [K], full RTK range (unlimited),
 - or RTK3 [L], RTK operation limited to baselines up to 3 km.

Your choice will depend on the baseline length you wish to cover in RTK. Note that option [K] "includes" option [L] in the sense that option [K] also allows the rover to operate in RTK for baselines less than 3 km.

U-Link Radios

U-Link TRx Specifications

Radio specifications:

- Frequency range: 410 to 470 MHz, with factory adjustment of input filter in ± 2.5-MHz steps
- Channel spacing: 12.5 kHz
- RF link speed: 4800, 7600 or 9600 bps
- Modulation: GMSK
- Two operating modes: DSNP or Transparent
- Serial link speed: 38400 bps
- Serial link: RS232 or RS422
- Adjacent channel power: > 60 dBc
- RF connector type: TNC
- Two transmitter status LEDs (Type of RS connection, data transfer, repeater mode)

Configuration tool:

- Ashtech radio configuration software used to set channels and output power
- Up to 16 channels can be saved in the radio
- Radio output power : 0.5 W, 2 W or 4 W

Power requirements:

- DC input voltage range: 9-28 V
- Power consumption: 1.5 A @ 12 V DC and 4 W RF

Physical characteristics:

- Size: 150 x 105 x 48 mm (5.9 x 4.1 x 1.9")
- Weight: 660 grams (23.3 oz)

Environmental specifications:

- Sealing: IP65
- Full performance from -20°C to +55°C
- Extended temperature range from -30°C to +55°C

- · CE, FCC and IC marked
- EN300-113 certified

• Shock: ETS300019 - 0107

• Vibrations: MIL-STD 810F

U-Link Rx Specifications

The U-Link Rx basically is an electronic board with the following specifications:

Radio Specifications:

- Frequency range: 410 to 470 MHz, with factory adjustment of input filter in ±2.5 MHz steps
- Sensitivity: -114 dBm at 10⁻⁵ BER
- Channel spacing: 12.5 kHz
- RF link speed: 4800, 7600 or 9600 bps
- Modulation: GMSK
- Operating modes: DSNP or Transparent
- Serial link speed: 38400 bps
- Serial link: RS232
- Up to 16 channels can be saved in the radio
- Adjacent channel power: > 60 dBc
- Ashtech radio configuration software used to set channels.

Configuration Tool:

 Ashtech radio configuration software used to set channels and output power

Up to 16 channels can be saved in the radio

Power requirements:

- DC input voltage range: 5.5 to 9 V
- Power consumption: < 700 mW

Physical characteristics:

- Size: 76 x 65 x 20 mm (3 x 2.6 x 0.8")
- Weight: 50 grams (1.76 oz)

Environmental specifications:

- Full performance from -20°C to +55°C
- Extended temperature range from -30°C to +55°C
- · CE, FCC and IC marked
- EN300-113 certified

The board is installed inside the receiver.

Channel Settings

Once the central frequency has been set, the chosen channels can only be located ± 2.5 MHz around the central frequency.

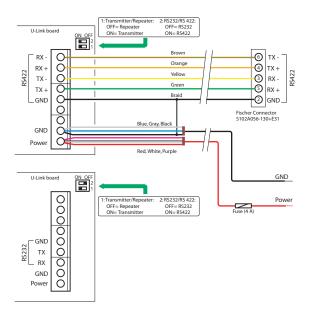
Only certified dealers are authorized to set the central frequency and channels. For both settings, the radio configuration software is used. Setting the central frequency requires additional instrumentation.

The central frequency of the U-Link TRx can be read on the label placed on the transmitter case.

The central frequency of the U-Link Rx can be read inside the battery trapdoor of your ProFlex 500.

The central frequency of both the U-Link TRx and U-Link Rx can be read using the \$PASHQ,RDP,PAR command (the central frequency setting is the last parameter in the response line).

U-Link TRx LEDs



U-Link TRx Cable Pinout and Hardware Settings

Two LEDs located at the bottom of the case are used to indicate the current status of the radio:

- ON indicator: a bi-color LED indicating power status and serial port type. It is off when no power is applied to the U-Link TRx. It is on when power is applied through the cable. The LED color then depends on the current setting of the serial port: green if it is of the RS232 type, or red if it is of the RS422 type.
- TX-RX indicator: a bi-color LED indicating the current transmission/reception status of the U-Link TRx. It is on and red while data are being transmitted; it is on and green while the U-Link TRx is properly receiving and decoding data. In repeater mode, the LED should change color at regular intervals of time (typically 1 second).

The diagram below shows the pinout of the Y-shaped cable, an integral part of the U-Link TRx, when the unit is configured in RS422. The diagram also shows the location of the hardware settings as well as the RS232 pinout in the unit.

UHF Data Link Compatibility Table

Interoperability between Ashtech and PacCrest radios is presented in this section.

In the two tables below, "Yes" means the corresponding combination of radios is possible, "No" means the opposite. The 25-kHz channel spacing is usable with PacCrest radios only.

Channel spacing: 12.5 kHz

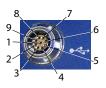
Radio module used in the rover:	PacCrest	U-Link Rx
Base using PacCrest Transmitter	Yes; Transparent protocol	No
Base using Ashtech radio trans-	Yes;	Yes;
mitter (old model)	DSNP protocol	DSNP protocol
Base using U-Link TRx	Yes; DSNP protocol	Yes; DSNP or Transparent proto- col (Transparent is rec- ommended)

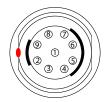
Channel spacing: 25 kHz

Radio module used in the rover:	PacCrest	U-Link Rx
Base using PacCrest Transmitter	Yes; Transparent protocol	No
Base using Ashtech radio trans- mitter (old model)	No	No
Base using U-Link TRx	No	No

Any combination of radio devices using different channel spacing will not work.

Generally speaking, a non-hybrid combination of radios is recommended.

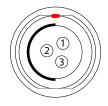

Port Pinouts


NOTE: All illustrations below show connectors seen from outside the receiver case.

USB Port

On front panel, USB 2.0, full speed.

9-C Connector, Type: Fischer DPUC 102 A059-230, fitted with sealing cap.



Pin	Signal Name
1	NC
2	GND
3	Device (D+)
4	Device (D-)
5	Host (VBus)
6	Host (D+)
7	Host (D-)
8	Device Detection
9	NC

Power In On rear panel.

3-C Connector, Type: Fischer DPUC 102 A052-130, fitted with sealing cap.

Pin	Signal Name	Description
1	GND	External Power Ground
2	PWR	External Power Input (9-36 V DC)
3	-	NC

Serial Data Ports

Ports A, B and F on rear panel.

Three 7-C connectors, Type: Fischer DPUC 102 A056-130, each fitted with a sealing cap. (Port F shown on the picture below. Ports A, B and F are similar.)

RS232 Configuration (all ports):

Pin	Signal Name	Description
1	+12 V DC or NC	12-V DC Output (port A only, and as an option). For all other ports: NC
2	GND	Ground
3	CTS	Clear To Send
4	RTS	Ready To Send
5	RXD	Receive Data
6	TXD	Transmit Data
7	PPS or EVENT	1PPS output (port A only) Event Marker input (port B only)

RS422 Configuration (port A only):

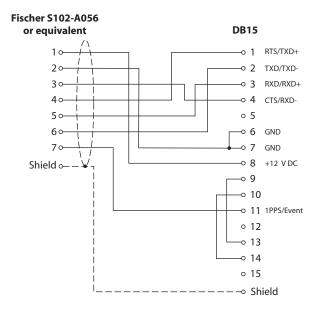
Pin	Signal Name	Description
1	+12 V DC	12-V DC Output
2	GND	Ground
3	RXD-	Receive Data-
4	TXD+	Transmit Data+
5	RXD+	Receive Data+
6	TXD-	Transmit Data-
7	PPS	1PPS output

Port A can be switched to RS232 or RS422 using the \$PASHS,MDP command. RS232 inputs/outputs are typically ± 10 Volt asymmetrical signals with respect to ground. RS422 inputs/outputs are 0/+5 Volt symmetrical signals (differential lines).

Important! Pin 1 on port A delivering 12 V DC with an average DC current of 0.5 A and a peak DC current of 1 A, is a hardware option. Do not forget to mention this option in your Purchase Order if you want port A to be fitted with this feature. With the hardware option duly installed, remember that the 12 V DC will be available only when the receiver is powered from and external source, and not solely from its internal battery.

On port A, the 1PPS output is similar to a standard TTL output (0/+5 V):

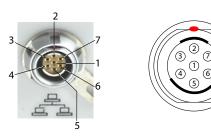
- VOH Min= 4.5 V at IOL = 4 mA
- VOH Max= 0.4 V at IOL= 4 mA


Port B consists of the following:

- 1 x RS232 output, electrically similar to that on port A
- 1 x Event input with the following characteristics:
 - VIH Min = 3.7 V
 - VIL Max = 1.6 V

Port F provides an RS232 interface, electrically similar to that on port A.

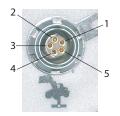
Multi-Function Serial Cable


This cable is available as an option. It is used to make one of the receiver's RS232 serial ports available on a DB15 standard connector. The cable is 25 cm long and the pinout is as indicated below.

Ethernet Port

On rear panel.

7-C Connector, Type: Fischer DPUC 102 A056-230, fitted with sealing cap. Although being also a 7-contact type, this receptacle uses a positioner that is different from the one used on ports A, B and F, thus making impossible the connection of the serial cable provided to this port.



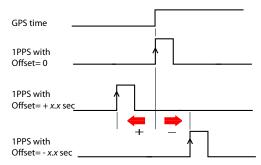
Pin	Signal Name
1	SHLD
2	RX+S
3	RX-S

Pin	Signal Name
4	TX-S
5	TX+S
6	L1
7	L2

CAN Bus

On rear panel. For use in a future release of the product. 5-C Connector, Type: Fischer DPUC 102 A054-130, protection cap provided.

Pin	Signal Name	Description
1	NET-SHIELD	Shield
2	NET-S	Power source (+)
3	NET-C	Power source (common)
4	NET-H	"High" signal line
5	NET-L	"Low" signal line


1PPS Output

This output delivers a periodic signal that is a multiple or submultiple of 1 second of GPS time, with or without offset. Using the 1PPS output is a standard feature of the receiver (no firmware option needed).

The 1PPS output is available on port A, pin 7, whatever the current configuration of this port (RS232 or RS422).

You can set the properties of the 1PPS signal using the \$PASHS,PPS command. These properties are:

- Period: a multiple (1 to 60) or submultiple (0.1 to 1 in 0.1-second increments) of 1 second of GPS time.
- Offset: Amount of time in seconds before (+?) or after (-?)
 a full second of GPS time.

 Active edge, i.e. the edge (falling or rising) synchronized with GPS time. (On the diagram above, the rising edge was set to be the active edge)

You can read the current properties of the 1PPS output using the \$PASHR,PPS command.

The signal specifications for the 1PPS output are the following:

Signal level: 0-5 VPulse duration: 1 ms

Jitter: < 100 ns

• Slope transient time: < 20 ns

You can also output the exact GPS time of the active edge of the 1PPS output signal using the \$PASHR,PTT command. The receiver will respond to this command right after the next 1PPS signal is issued, taking into account the chosen offset.

Event Marker Input

This input is used to time-tag external events. When an external event is detected on this input, the corresponding GPS time for this event is output as a \$PASHR,TTT message on port B. The time tag provided in the message represents the exact GPS time of the event to within 1 μ second. Obviously, a single message is output for each new event.

Using the Event Marker input is a standard feature of the receiver (no firmware option needed).

The event marker input is located on port B, pin 7.

You can choose whether it will be the rising or falling edge of the event marker signal that will trigger the time tagging of the event. This choice can be done using the \$PASHS,PHE command. The signal specifications of the marker event input are the following:

• Signal level: ± 10 V

• Permitted transient time on active edge: < 20 ns

Physical and Virtual Ports

Port ID	Port Definition		
Α	External serial port (RS232/RS422)		
В	External serial port (RS232)		
С	Bluetooth SPP		
D	Internal UHF radio		
E	Internal GSM/GPRS modem		
F	External serial port (RS232)		
I	External Ethernet (server)		
11-19	Data streaming port on IP		
M	Internal memory		
P, Q	External Ethernet (client)		
R	Automatic recording session		
U	External USB memory		

Chapter 2. Using the ProFlex 500 Web Server

Introduction

What is the ProFlex 500 Web Server and what is it for? The ProFlex 500 Web Server is a receiver-embedded, HTML-based firmware application designed to enable users to monitor or control the ProFlex 500 through a TCP/IP connection.

After making a TCP/IP connection physically possible between a computer and the receiver (via its Ethernet port), run a web browser on your computer (e.g. Mozilla FireFox, Microsoft Internet Explorer). Type the IP address (or host name) of the receiver in the address box, then press the Enter key. This launches the Web Server in the receiver, which in turn opens a web page in the web browser of the computer.

Who is allowed to use a receiver's Web Server application? The answer is anyone who has been given the IP address or host name of the receiver as well as a connection profile, i.e. a login and a password. These are the only parameters required to perform a remote connection through the Internet and run the Web Server.

Who gives remote access to the Web Server application? Only the owner of the receiver can as she/he knows the IP address or host name of the receiver and is allowed to create connection profiles for remote users.

How many types of connection profiles are there? There are two possible types of connection profiles:

- Administrator Profile: This profile is allowed to view the status of the receiver and change all the receiver settings.
 Only one administrator profile can be created in a receiver.
- User Profile: This profile is only allowed to view the status
 of the receiver. There can be as many different user
 profiles as needed, but only five users can connect
 simultaneously.

Note that this count of five simultaneous users does not include those users who are connected to the receiver for acquiring data through ports Ix (data streaming).

Getting the ProFlex 500 Ready for Running the Web Server

This section is more particularly intended for the receiver owner, who is also the receiver administrator.

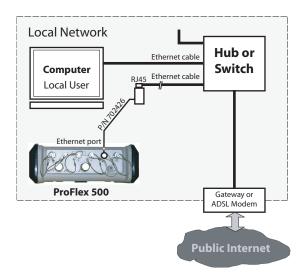
In this section are described several possible cases of TCP/IP connection between the receiver and the computer, depending on the network environment.

Also discussed in this section are the steps to be taken jointly with the local network's IT Manager to make the TCP/IP connection successful, as well as some local settings you, as the receiver administrator, may have to do. This includes the management of the connection profiles for all the users of the ProFlex 500 Web Server. As the receiver administrator, you should provide Web Server users with the following information:

- Receiver IP address or host name,
- Connection profile (login + password).

A TCP/IP connection with the receiver necessarily uses the receiver's Ethernet port. For this reason, you will always have to use the Ethernet adaptor cable provided (P/N 702426). Typically, there are three possible cases of TCP/IP connection:

- TCP/IP connection within a local network.
- TCP/IP connection through the public Internet.
- "Direct" TCP/IP connection.

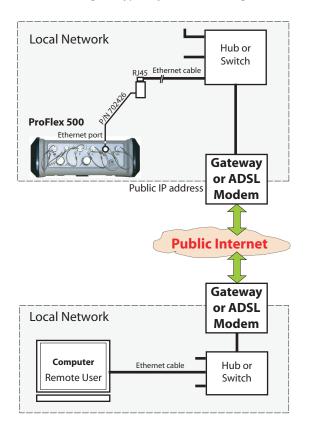

These are detailed below.

NOTE: It is assumed that the reader knows how to send \$PASH commands to the receiver through a serial line or Bluetooth (see *Using Serial Commands* chapter, for more information).

TCP/IP Connection Within a Local Network

In this case of use, the receiver and the computer are connected to the same local area network (LAN) and may even be in the same room. Here the communication will NOT take place through the public Internet, but simply within the local network.

The connection diagram typically is the following.

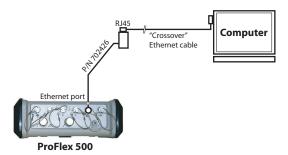

The valid receiver IP address to be sent to the users **is the one read on the receiver display screen**. To read this IP address, from the General Status screen, press the Scroll button twice to access the Receiver Identification screen. The IP address appears in the lower line. Please write it down.

The IT Manager may also create a host name for the receiver. The choice of using or not using the DHCP mode within the local network, and the consequence of this choice on which information to provide to users for the connection are also the decision and responsibility of the IT Manager.

TCP/IP Connection Through the Public Internet

In this case of use, the receiver and the computer are connected to different local networks. Here the communication will necessarily take place through the public Internet.

The connection diagram typically is the following.


In this configuration, the IT Manager should take all the necessary steps for users to be able to access the ProFlex 500 through the public IP address of the local network. **Obviously, the IP address read on the receiver display screen is NOT the one to be provided to users**.

It will therefore be the responsibility of the IT Manager to provide the receiver administrator with the appropriate connection information (<IP address:port number> or host name).

"Direct" TCP/IP Connection

The term "Direct" used here should not be confused with the "Direct IP" connection mode, which is a special case of Internet connection to a static IP address. Here the term "Direct" is used to describe a TCP/IP connection between a receiver and a local computer through a special Ethernet connection, using a crossover cable connected directly between the receiver and the computer.

In a crossover cable, the pinout is inverted at one end of the cable. The crossover cable is not provided but is widely available from computer supply stores or online.

This type of connection is required when the receiver is not otherwise using its Ethernet port and there is no network connection available in the operating environment of the receiver (machine control, machine guidance).

In this case, make the following settings BEFORE physically connecting the computer to the receiver through the crossover cable:

- On the receiver, disable the DHCP mode and define an arbitrary static IP address and a subnetwork mask for the receiver.
- On the computer, change the network configuration for an exclusive TCP/IP connection with the receiver.
 Before changing the network configuration of the computer, it is advisable to write down all the current
 - computer, it is advisable to write down all the current settings so that you can easily reverse to the previous network configuration when you are done with communicating with the receiver.
- 1. Send the following command to the receiver to read the current settings. Write them all down so that later you can easily reverse to these settings.

NOTE: It is assumed that the reader knows how to send \$PASH commands to the receiver through a serial line or

Bluetooth (see *ProFlex 500 Reference Manual, Using Serial Commands* Chapter, for more information)

\$PASHQ.ETH

Example of receiver response:

\$PASHR,ETH,I,ON,00:09:66:00:10:a0,10.20.2.123,DHP=1,ADD=192.168. 0.1,MSK=255.255.255.255.0,GTW=255.255.255,DN1=255.255.255.255,D N2=255.255.255.255*3F

Should the Ethernet port be off (2nd parameter in the above response line is "OFF" instead of "ON"), please use the following command to turn it back on:

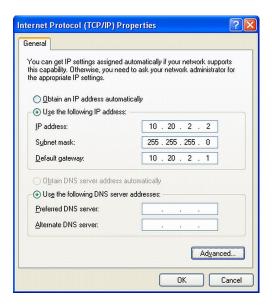
\$PASHS,ETH,ON

Receiver response should be the following if the set command is successful: \$PASHR.ACK*3D

Send the following command to the receiver to disable the DHCP mode and define an arbitrary IP address for the receiver:

\$PASHS,ETH,PAR,DHP,0,ADD,10.20.2.10,MSK,255.255.255.0,GTW, 10.20.2.1 \$PASHR ACK*3D

Where:


"10.20.2.10" is the arbitrary IP address assigned to the receiver.

"255.255.25.0" is the arbitrary, but also mandatory, subnetwork mask.

"10.20.2.1" is the arbitrary address for the gateway that will be assigned to the computer.

- On the computer (running Windows XP), from the task bar, select Start>Control Panel.
- 4. Double-click **Network Configuration**.
- 5. Right click on Local Area Connection (or Ethernet Board if there is no local network) and select Properties.
- On the General tab of the Local Area Connection properties, write down all the currently activated services so that later you can easily revert to these settings.
- Still in this dialog box, clear all the services, except for the Internet Protocol (TCP/IP) service, which must stay active.
- 8. Still in that box, select the **Internet Protocol (TCP/IP)** option an click on the **Properties** button located nearby to open the Internet Protocol Properties window.
- 9. In that window, disable the DHCP mode by selecting the Use the following IP address option.

10.Enter a different IP address for the computer (e.g. 10.20.2.2). Enter the same subnetwork mask and gateway as those entered above in the receiver through the \$PASHS,ETH,PAR command.

- 11.Click **OK** twice to close the windows.
- 12. Connect the crossover cable between the receiver and the computer.
- 13. Check that the new IP address displayed on the receiver screen is the expected one.
- 14. Open the web browser on the computer.
- 15. Type the receiver IP address in the address box. This launches the Web Server in the receiver.

NOTE: With Vista, select successively the following options to change the computer IP address: Start>Control Panel>Network and Sharing Center. On the left, click on Manage Network Connections. Right-click on Local Area Connection and select Properties. Select Internet Protocol Version 4 and click on Properties. You can now change the IP address.

Managing the Connection Profiles

Managing connection profiles can be done directly from the ProFlex 500 Web Server after you have logged in as the administrator. In this context, go to the **Configuration** tab and use the **Advanced Setup** menu (**Administrator** and **Users** submenus) to make the required changes.

The default administrator profile is defined as follows:

- · Login: admin
- Password: changeme

Local Settings for the Receiver Administrator & IT Manager

You should inform your IT Manager of the following before he/ she can set up the connection:

- The ProFlex 500 is not fitted –and cannot be fitted—with a firewall. If a firewall is needed in your local network, it should be installed on a device other than the ProFlex 500.
- The Ethernet port and the DHCP mode are active by default.
- TCP/IP port #80 is used by default in the receiver.

If however, the default settings have been changed in the receiver, you may have to do the following:

• Turn on the Ethernet port.

Use the command below to power up the Ethernet port:

\$PASHS,ETH,ON

When the port is on and connected, the Ethernet icon appears in the lower-right corner of the receiver screen. By default, the Ethernet port is on.

• Set the DHCP mode or assign a static IP address. Use the command below:

\$PASHS,ETH,PAR

The syntax of these two commands is fully described in the *ProFlex 500 Reference Manual, Set Command Library* Chapter.

Preliminary Instructions for Web Server Users

The following information should have been passed on to you:

- Receiver IP address or host name,
- Connection profile (login + password).

To make a connection with the receiver:

1. You should know for certain that the remote ProFlex 500 has properly been connected to the LAN via its Ethernet port. Otherwise no connection will be possible.

- Make sure your computer is also ready for a TCP/IP connection.
- 3. Launch the web browser on your computer.
- 4. In the Address box of the web browser, type the IP address or host name of the receiver:

http://<receiver_address>

then press the Enter key.

After the connection has successfully been established, the ProFlex 500 Web Server **Home** tab appears in your web browser.

5. Click on the **Status** tab. You are then asked to enter the login and password of your connection profile (user or administrator). After you have successfully entered these two parameters, you can start using the Web Server. If you are the administrator, you are also allowed to access and fully use the **Configuration** tab.

Setting a Rover

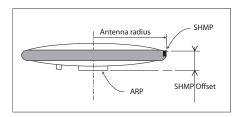
How to Start

- Open the Web Server's Configuration tab. The first time you click on this tab, the Web Server will ask you to log in as the administrator. Only the receiver administrator is authorized to access the Configuration tab.
 - You are allowed to change the destination of a receiver (e.g. it is currently a base and you want to change it into a rover). In this case, on opening the **Rover Setup** tab, the Web Server will retain part of the base settings that could be applied to the rover (e.g. antenna type, etc.).
- Whatever the way RTK corrections are delivered to the receiver, you will always have to define a number of general parameters pertaining to the rover function. These parameters are usually defined first. However when the internal modem is used, it is advisable to configure the modem first.
- Programming output messages in a rover is addressed separately (see Defining Output Messages on page 64).

General Parameters

- Click on the Rover Setup menu.
- Set the receiver parameters:

Ambiguity Fixing: Set the confidence level (percentage) controlling the ambiguity fixing process. The available choices depend on the firmware options installed:
 "RTK2" ([M]) or/and "RTK3" ([L]) installed: Several percentages are available. Choosing a high percentage will result in a highly reliable process but is liable to reduce the availability level of "fixed" RTK positions. The default -and best- value for this parameter is 99.0%.

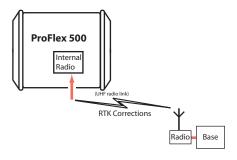

If none of these options is installed, then only the "0%" choice is available. This choice allows the receiver to operate in Flying RTK mode, which will be effective only if the FLYING RTK option ([R] option) has been installed.

- Fast RTK: Enable this option to get Fast RTK position output. With this option disabled, the receiver will deliver time-tagged RTK positions.
- Moving Base: Enable this option if corrections are received from a moving base. For all other cases where the base is static, keep this option disabled.
- Dynamic: Choose the type of motion that best suits the rover (static, quasi-static, walking, ship, automobile, aircraft, unlimited, adaptive or user-defined).

NOTE: The Web Server does not allow a rover to be configured to provide a backup RTK solution. This can only be done using command \$PASHS,CPD,MOD.

- Set the GNSS antenna parameters:
 - Reference Position: Specify the physical point on the rover system for which the receiver will accurately compute RTK positions. The three possible choices are: Antenna L1 phase center, Antenna Reference Point (ARP) or Ground Mark.
 - Measurement Type: Specify the method that was used when setting up the rover system to measure the height of the GNSS antenna (Vertical or Slant Height).
 - Antenna Height: Value of rover antenna height, expressed in the selected distance unit, as measured according to the specified measurement method.
 - Receiver Antenna: Specify the model of GNSS antenna used by the receiver. Select "UNKNOWN" if you don't know which model is used.
 - Antenna Radius: In case of a "Slant Height" measurement, enter the antenna radius (this is a manufacturer specification), taking care to enter this

- parameter in the selected distance unit. See also the diagram and table below for more information.
- SHMP Offset: In case of a "Slant Height" measurement, enter the SHMP offset (this is a manufacturer specification) taking care to enter this parameter in the selected distance unit. See also the diagram and table below for more information.

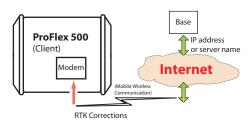

Antenna Model	P/N	Antenna Radius (m)	SHMP Offset (m)
ASH-661	802135	0.0953	0.0483
ASH-660	802133	0.0933	
MAG111406	111406	0.0921	0.0516

NOTE: The **Antenna Radius** and **SHMP Offset** fields are automatically preset to the right values when you select an antenna type in the **Receiver Antenna** field.

- Virtual Antenna: This option is useful when the rover is also used to log raw data. In this case, you can specify a virtual antenna model in this field to emulate a GNSS antenna other than the one really used.
 - Choosing a virtual antenna different from the one really used affects the raw data as if they had been collected by the virtual antenna, instead of the real one.
 - When the rover does not have to log raw data, select "Off" in this field as there is no point using a virtual antenna in this case.
- Set the parameters relevant to the GNSS constellations used by the receiver:
 - Position Elevation Mask: Choose the elevation angle above the horizon creating the desired reception mask.
 After setting this angle, any satellite seen from the rover with an elevation angle less than the specified one will be rejected from the list of usable satellites.
 The default value is 5°.
 - GLONASS, SBAS: In addition to the GPS, you can ask the receiver to track the GLONASS and/or SBAS

- satellites as well. Enable the options corresponding to the additional constellations you want the receiver to use.
- You can now click on the Configure button to save all the changes made but remember you have to complete the content of this page depending on how the receiver will get its RTK corrections. Several typical applications are listed below and described one after the other in the next sections:
 - Internal Radio on page 50
 - Direct IP Via Modem on page 52
 - Direct IP Via Ethernet on page 54
 - NTRIP Client Via Modem on page 55
 - NTRIP Client Via Ethernet on page 58
 - RTK Corrections Received on Port A, B or F on page 60
 - RTK Corrections Received Via Modem in CSD Mode on page 61
 - Rover Operating in Flying RTK Mode on page 63.
 - Rover Operating in Hot Standby RTK on page 63.

Internal Radio



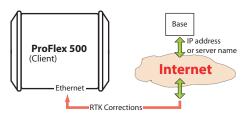
- Unless already done, please follow all the steps described in section General Parameters on page 47 before proceeding with the steps below.
- Still on the Rover Setup page, read the content of the Internal Radio Port D pane. Normally, the content of the read-only Connection field has been updated when opening the Rover Setup page to report the type of internal radio module currently used by the receiver (U-Link Rx or Pacific Crest). Just check that this field reads the name of the expected type of radio.
- Click on the Power On option to ask for radio power-up.

- At the bottom of the page, in the **Differential Port** pane, select the **Automatic** option to let the receiver detect the incoming differential stream automatically.
 - NOTE: **Automatic** is the recommended choice for the Differential Port setting because in this case, you don't need to define the ports receiving the two possible differential streams.
- Click on the **Configure** button to let the Web Server load all your new parameters to the receiver. As a result, the radio module is powered up.
 - Now that the radio is on, proceed with the last settings required on the radio side.
- Click on the Connections menu and then on the Radio submenu.
- In the **Internal Radio** pane, set the following parameters:
 - Power: (it is now necessarily "On" as you have turned on the radio in a previous step to make its configuration possible.)
 - Choose whether the radio should be turned on automatically or manually:
 - **Automatic:** The radio will be switched on or off automatically when the rover is respectively turned on or off.
 - **Manual:** The radio will be powered up only by going through the **Rover Setup** page, setting the internal radio to "Power On" and clicking on the **Configure** button (or using the \$PASHS,RDP,ON command).
 - Channel: Select the channel on which you know that the base is transmitting its RTK corrections.
 - Protocol: Select the data protocol used in the data transmission:
 - "Transparent" or "DSNP" for U-Link Rx, "Transparent", "Trimtalk" or "DSNP" for Pacific Crest. This choice should be the same as the one made at the base.
 - Airlink Speed: Choose the data transmission speed (should be the same as the one used at the base).
 - (Type is just a read-only field recalling the type of radio used.)
 - Sensitivity (U-Link and PDL): Set the radio sensitivity level ("High", "Medium" or "Low")
 - Scrambler (PDL only): On or Off
 - **FEC** (PDL only): On or Off

- Ignore the External Radio pane (Type should be set to "No radio").
- Click on the Configure button to let the Web Server load the parameters to the radio via the receiver. You just have now to define the output messages (see Defining Output Messages on page 64).

Direct IP Via Modem

The internal modem should be configured first:


- Click on the Connections menu and then on the Bluetooth/ Modem sub-menu.
- Set the following parameters in the Internal Modem/Device Settings pane:
 - Power: Select "On". Then choose whether the modem should be turned on automatically or manually:
 - **Automatic:** The modem will be switched on or off automatically when the rover is respectively turned on or off.

Manual: The modem will be powered up only by going through the **Connections** > **Bluetooth/Modem** page, setting the modem to "Power On" and clicking on the **Configure** button (or using the \$PASHS,MDM,ON command).

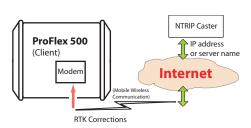
- Automatic Connection: Check this option.
- Band: Frequency band used by the modem, depending on the country where the receiver is operated.
- Pin: 4- to 8-character pin code of the SIM card used in the modem for GPRS operation.
- Ignore the content of the Internal Modem/CSD Mode Settings pane.
- Set the following parameters in the Internal Modem/GPRS
 Mode Settings pane (the mobile communication provider
 you are using should be able to give you all this
 information):

- Internet Protocol: Choose the Internet protocol (TCP or UDP) allowing the modem to perform an Internet connection.
- Access Point: Enter the URL of the mobile communication provider.
- Access Point Login: Enter the login of the mobile communication provider.
- Password: Enter the password of the mobile communication provider.
- Click on the Configure button.
- Now please follow all the steps described in section General Parameters on page 47 and then proceed with the steps below.
- Still on the Rover Setup page, in the Network pane, set the following parameters:
 - Connection: Choose "Modem Direct IP Port E". As a result, new fields appear in this pane that you should set as instructed below:
 - The rover being a client, enter the information (Connect Now, Address, Port, Login, Password) allowing it to connect to the base (the server) from which it is supposed to receive corrections. The login and passwords are required only if the server demands authentication (e.g. SpiderNet). In that case, the message "\$GPUID,<login>,<password> will be generated automatically and sent to the server when clicking on Configure.
 - Enable **Connect Now** to allow the receiver to establish the connection right after you have clicked on **Configure**.
- At the bottom of the page, in the Differential Port pane, select the Automatic option to let the receiver detect the incoming differential stream automatically.
 - NOTE: **Automatic** is the recommended choice for the Differential Port setting because in this case, you don't need to define the ports receiving the two possible differential streams.
- Click on the **Configure** button to let the Web Server load all your new parameters to the receiver. You just have now to define the output messages (see *Defining Output Messages on page 64*).

Direct IP Via Ethernet

- First, click on the **Connections**> **Ethernet** submenu.
- Set the following Ethernet parameters to allow the receiver to access the network through its Ethernet port:
 - DHCP: Enabling this option means the local network to which the receiver is connected will automatically allocate a dynamic IP address to the receiver. If this option is disabled, you need to define the receiver's static IP address, and give information about the local network (Subnetwork Mask and Gateway). You may need to be assisted by a network expert -or IT Manager- to define these parameters (as well as the three parameters below).

If you activate the **DHCP** option, then it's a good idea to define a hostname for your receiver and declare it to DynDNS (see **DynDNS** frame at the bottom of the page). DynDNS is a free service that will make sure the dynamic IP address allotted to the receiver by your ISP is always attached to your receiver's hostname. This requires that you open an account on DynDNS. For more information on this service, see *Creating an Account on DynDNS.com on page 86*.


- DNS 1 IP Address: If DHCP is disabled, enter the IP address of the primary DNS providing the correspondence between the receiver host name and its IP address.
- DNS 2 IP Address: If DHCP is disabled, enter the IP address of the secondary DNS providing the correspondence between the receiver host name and its IP address
- (MAC Address is a read-only field showing the hardware identification of the receiver's Ethernet port.)
- Ignore the Port I Settings frame.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver.

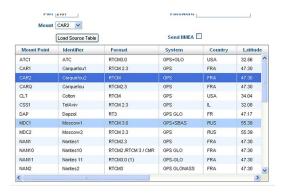
- Unless already done, please follow all the steps described in section *General Parameters on page 47* before proceeding with the steps below.
- Still on the Rover Setup page, in the Network pane, set the following parameters:
 - Connection: Choose "Ethernet Direct IP Port P". As a result, new fields appear in this pane that you should set as instructed below:
 - The rover being a client, enter the information (Connect Now, Address, Port, Login, Password) allowing it to connect to the base (the server) from which it is supposed to receive corrections. The login and passwords are required only if the server demands authentication (e.g. SpiderNet). In that case, the message "\$GPUID,<login>,<password> will be generated automatically and sent to the server when clicking on Configure

Enable **Connect Now** to allow the receiver to establish the connection right after you have clicked on **Configure**.

- At the bottom of the page, in the Differential Port pane, select the Automatic option to let the receiver detect the incoming differential stream automatically.
 - NOTE: **Automatic** is the recommended choice for the Differential Port setting because in this case, you don't need to define the ports receiving the two possible differential streams.
- Click on the **Configure** button to let the Web Server load all your new parameters to the receiver. You just have now to define the output messages (see *Defining Output Messages on page 64*).

NTRIP Client Via

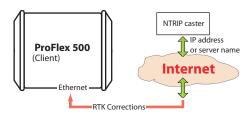
The internal modem should be configured first:


 Click on the Connections menu and then on the Bluetooth/ Modem sub-menu.

- Set the following parameters in the Internal Modem/Device Settings pane:
 - Power: Select "On". Then choose whether the modem should be turned on automatically or manually:
 - **Automatic:** The modem will be switched on or off automatically when the rover is respectively turned on or off.

Manual: The modem will be powered up only by going through the **Connections** > **Bluetooth/Modem** page and setting the modem to "Power On" (or using the \$PASHS,MDM,ON command).

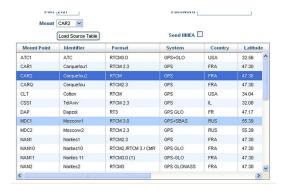
- Automatic Connection: Check this option.
- Band: Frequency band used by the modem, depending on the country where the receiver is operated.
- Pin: 4- to 8-character pin code of the SIM card used in the modem for GPRS operation.
- Ignore the content of the Internal Modem/CSD Mode Settings pane.
- Set the following parameters in the Internal Modem/GPRS
 Mode Settings pane (the mobile communication provider
 you are using should be able to give you all this
 information):
 - Internet Protocol: Choose the Internet protocol (TCP or UDP) allowing the modem to perform an Internet connection.
 - Access Point: Enter the URL of the mobile communication provider.
 - Access Point Login: Enter the login of the mobile communication provider.
 - Password: Enter the password of the mobile communication provider.
- Click on the Configure button.
- Now please follow all the steps described in section General Parameters on page 47 and then proceed with the steps below.
- Still on the Rover Setup page, in the Network pane, set the following parameters:
 - Connection: Choose "Modem Ntrip Client Port E". As a result, new fields appear in this pane that you should set as instructed below:
 - Connect Now: Enable this option to allow the receiver to establish the connection right after you have clicked on Configure.


- Address, Port, Login, Password: Enter the information allowing the receiver to connect to the NTRIP caster.
 This information should have been passed on to you earlier by the administrator of this service.
- Load Source Table button: Click on this button after you have entered the information about the NTRIP caster.
 As a result, the list of available sources from this caster appears just underneath. (See example below.)

Select the desired source by simply clicking on the corresponding row. The resulting mount point then appears in the **Mount Point** field located above the **Load Source Table** button.

- Send NMEA: Check this button when the rover operates in a VRS network so that it can return its position to the network through an NMEA message. Keep it cleared in all other cases. (This option is automatically enabled when you select a mount point for which the NMEA message is requested.)
- At the bottom of the page, in the Differential Port pane, select the Automatic option to let the receiver detect the incoming differential stream automatically.
 - NOTE: **Automatic** is the recommended choice for the Differential Port setting because in this case, you don't need to define the ports receiving the two possible differential streams.
- Click on the **Configure** button to let the Web Server load all your new parameters to the receiver. You just have now to define the output messages (see *Defining Output Messages on page 64*).

NTRIP Client Via Ethernet

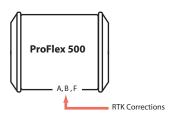


- First, click on the **Connections**> **Ethernet** submenu.
- Set the following Ethernet parameters to allow the receiver to access the network through its Ethernet port:
 - DHCP: Enabling this option means the local network to which the receiver is connected will automatically allocate a dynamic IP address to the receiver. If this option is disabled, you need to define the receiver's static IP address, and give information about the local network (Subnetwork Mask and Gateway). You may need to be assisted by a network expert -or IT Manager- to define these parameters (as well as the three parameters below).

If you activate the **DHCP** option, then it's a good idea to define a hostname for your receiver and declare it to DynDNS (see **DynDNS** frame at the bottom of the page). DynDNS is a free service that will make sure the dynamic IP address allotted to the receiver by your ISP is always attached to your receiver's hostname. This requires that you open an account on DynDNS. For more information on this service, see *Creating an Account on DynDNS.com on page 86*.

- DNS 1 IP Address: Enter the IP address of the primary DNS providing the correspondence between the receiver server name and its IP address.
- DNS 2 IP Address: Enter the IP address of the secondary DNS providing the correspondence between the receiver server name and its IP address
- (MAC Address is a read-only field showing the hardware identification of the receiver's Ethernet port.)
- Ignore the **Port I settings** frame on the right.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver.

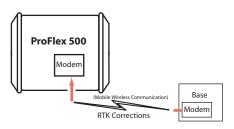
- Unless already done, please follow all the steps described in section General Parameters on page 47 before proceeding with the steps below.
- Still on the Rover Setup page, in the Network pane, set the following parameters:
 - Connection: Choose "Ethernet Ntrip Client Port P". As a result, new fields appear in this pane that you should set as instructed below:
 - Connect Now: Enable this option to allow the receiver to establish the connection right after you have clicked on Configure.
 - Address, Port, Login, Password: Enter the information allowing the receiver to connect to the NTRIP caster. This information should have been passed on to you earlier by the administrator of this service.
 - Load Source Table button: Click on this button after you have entered the information about the NTRIP caster.
 As a result, the list of available sources from this caster appears just underneath. (See example below.)



Select the desired source by simply clicking on the corresponding row. The resulting mount point then appears in the **Mount Point** field located above the **Load Source Table** button.

 Send NMEA: Check this button when the rover operates in a VRS network so that it can return its position to the network through an NMEA message. Keep it cleared in all other cases. (This option is automatically enabled when you select a mount point for which the NMEA message is requested.)

- At the bottom of the page, in the **Differential Port** pane, select the **Automatic** option to let the receiver detect the incoming differential stream automatically.
 - NOTE: **Automatic** is the recommended choice for the Differential Port setting because in this case, you don't need to define the ports receiving the two possible differential streams.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver. You just have now to define the output messages (see Defining Output Messages on page 64).

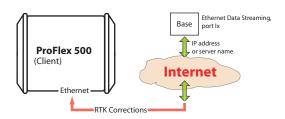

RTK Corrections Received on Port A, B or F

- Unless already done, please follow all the steps described in section *General Parameters on page 47* before proceeding with the steps below.
- Still on the **Rover Setup** page, in the **Serial Port x** pane corresponding to the port you want the receiver to use (A, B or F), set the following parameters:
 - Connection: Choose the name of the corrections receiver device connected to the port. As a general rule, choose "None/Cable" for any external corrections receiver connected to that port. But if the device used is a license-free radio, type ARF7474B EU or ARF7474A NA, choose specifically this type of radio.
 - Port settings (Baud Rate, Mode, RTS/CTS): Set the serial port to match the external device connected to it.
 Setting these fields will update the corresponding fields on the Serial Ports sub-menu page
- At the bottom of the page, in the Differential Port pane, select the Automatic option to let the receiver detect the incoming differential stream automatically.
 - NOTE: **Automatic** is the recommended choice for the Differential Port setting because in this case, you don't need to define the ports receiving the two possible differential streams.

- Click on the Configure button to let the Web Server load all your new parameters to the receiver.
- If the external radio used is a standalone, non-identified radio receiver, skip this step. But if an ARF7474x license-free radio is used, click on the Connections> Radio submenu and from the Type field located in the External Radio pane, select the type of license free radio used. Then click on the Configure button.
- If port A is used for the connection to the external radio, you just have now to define the output messages (see Defining Output Messages on page 64). But if port B or F is used, there is an additional step needed (see below) before you define the output messages.
- If port B or F is used for the connection to the external radio, click on the Connections> Serial Ports submenu, enable the Power ON option for serial ports B & F (bottom of the page) and click on the Configure button. You can switch to the output message definition.

RTK Corrections Received Via Modem in CSD Mode

The internal modem should be configured first:


- Click on the Connections menu and then on the Bluetooth/ Modem sub-menu.
- Set the following parameters in the Internal Modem/Device Settings pane:
 - Power: Select "On". Then choose whether the modem should be turned on automatically or manually:
 - **Automatic:** The modem will be switched on or off automatically when the rover is respectively turned on or off.

Manual: The modem will be powered up only by going through the **Connections** > **Bluetooth/Modem** page and setting the modem to "Power On" (or using the \$PASHS,MDM,ON command).

- Automatic Connection: Check this option.
- Band: Frequency band used by the modem, depending on the country where the receiver is operated.
- Pin: 4- to 8-character pin code of the SIM card used in the modem for GPRS operation.
- Set the following parameters in the Internal Modem/CSD Mode Settings pane:
 - CSD Mode: Enter the CSD mode standard used by your modem. Ask your mobile communication provider if you don't know. "V.32 9600 Bd" is the most widely used standard.
 - Phone Number: Enter the phone number of the base from which to receive RTK corrections through the modem.
 - Maximum Redials: Enter the number of authorized attempts to establish the mobile phone line. If all the attempts fail, the modem will hang up (default: 2).
- Ignore the content of the Internal Modem/GPRS Mode Settings pane.
- Click on the Configure button.
- Now please follow all the steps described in section General Parameters on page 47 and then proceed with the steps below.
- Still on the **Rover Setup** page, in the **Network** pane, set the following parameters:
 - Connection: Choose "Modem CSD Port E". As a result, new fields appear in this pane that you should set as instructed below:
 - Connect Now: Enable this option to allow the receiver to establish the connection right after you have clicked on Configure.
 - Phone Number: Check that this field reads the same phone number as the one you entered earlier at the modem level (see above). This is the phone number of the base from which to acquire RTK corrections.
- At the bottom of the page, in the Differential Port pane, select the Automatic option to let the receiver detect the incoming differential stream automatically.
 - NOTE: **Automatic** is the recommended choice for the Differential Port setting because in this case, you don't need to define the ports receiving the two possible differential streams.

• Click on the **Configure** button to let the Web Server load all your new parameters to the receiver. You just have now to define the output messages (see *Defining Output Messages on page 64*).

Rover Acquiring Data Stream From a Base

The rover needs to be configured as in Direct IP mode via Ethernet (see *Direct IP Via Ethernet on page 54*).

Rover Operating in Flying RTK Mode

- Follow the steps described in section General Parameters on page 47. At the top of the Rover setup page, select Ambiguity Fixing=0 in the Rover pane.
- Choose the method used to let the rover acquire RTK corrections. The most appropriate choice for long-range Flying RTK is to use the internal modem in CSD mode (for a point-to-point connection).

If several rovers in Flying RTK mode are assumed to use the same source of RTK corrections, the internal modem can still be used individually in each rover, but this time in GPRS mode. The source of corrections will typically be a ProFlex 500 base using the embedded NTRIP caster. Another possible solution is to insert the Ashtech RTDS software in the communication path so that the corrections can be distributed to all the rovers.

Rover Operating in Hot Standby RTK

Hot Standby RTK is the process of making available a second RTK position solution in the background. Should the primary RTK solution stop being delivered by the receiver for some reason, then the second RTK solution would be provided instead, until the primary RTK solution is back again and valid.

If you wish to make available this background solution, then enable the **Hot Standby RTK** option at bottom of the page. You are then asked to specify which port will route the differential corrections used to compute that solution (you should use a source of differential corrections different from the one used

for the primary solution; make sure this source of corrections will be delivered on the specified port).

Defining Output Messages

Depending on your application, you will have to define different types of data output messages as well as the way they are delivered to outside equipment (typically through a serial port for a rover).

Three categories of output data are possible (NMEA, differential and raw data) but in most rover applications, only the use of NMEA messages makes sense.

However, to allow raw data to be recorded in the rover, you should make sure the appropriate messages are set on the U and M ports.

Follow the instructions below to program the desired messages:

- On the Configuration tab, click on the Data Output menu.
- Click on the NMEA Messages submenu. Use the page that opens as explained below:
 - All possible NMEA message types are listed below.

Message Name	Description		
ALM	Almanac data for each of the tracked satellites		
ATT	Computed attitude data (not supported)		
CRT	Cartesian coordinates of computed position		
DCR	Cartesian coordinates of computed baseline		
DPO	Delta position (baseline components)		
DTM	Datum Reference		
GGA	Standard GNSS position message		
GLL	Latitude and longitude of computed position		
GRS	GNSS range residuals		
GSA	GNSS DOP and active satellites		
GST	GNSS pseudo-range error statistics		
GSV	GNSS satellites in view		
HDT	Computed true heading (not supported)		
LTN	Latency		
POS	Computed position data		
PTT	PPS signal time tag		
RMC	Recommended minimum specific GNSS data		
RRE	Residual error		
SAT	Satellites status		
SGL	GLONASS satellites status		
SGP	GPS & SBAS satellites status		
TTT	GPS time of external event		
VEC	Vector & accuracy data		

Message Name	Name Description	
VTG	Course over ground and ground speed	
XDR	Transducer measurements	
ZDA	UTC Time & date	

- To define the output of an NMEA message on a given port, you just need to select the message type from the Message drop-down list, the output port from the Output drop-down list, then enter its output rate, in seconds, in the Rate field, and finally click on the Add button. The new message definition will then appear as a new row in the table on the right. Note that for messages PTT, TTT and XDR, you don't have to define an output rate, due to the very nature of these messages.
- To change the definition of an existing message (port, rate), select the corresponding row in the table. This populates the three fields on the left with the definition of that message. Edit the port and/or rate and then click on the Modify button to save your changes. The table row is updated accordingly. Note that depending on the current selection on this page, the button located underneath the three fields on the left may be either grayed or with a different label (Add or Modify).
- Deleting a message definition can be done by simply clicking on the corresponding "trash" sign in the Clear column on the far right. This deletes the table row.
- There is also a Clear All button underneath the table that allows you to delete all the message definitions from the table in one click.
- After all your messages have been defined, don't forget to click on **Configure** to save all the message definitions.
- Click on the Raw Data Messages submenu. Use the page that opens to program the type of raw data you would like the receiver to record.

Manual raw data recording will later be initiated either remotely by enabling the **Data Recording** box on the **Recording** web page, or locally using the **Log** button on the receiver front panel.

For example, to set the MES and NAV raw data messages at 1 second, do the following:

 In the ATOM Messages pane, select "MES" from the Message field, select "M" or "U" from the Output field

- and type "1" in the **Rate** field. Click on the **Add** button underneath to validate your entry. The programmed message now appears in the table on the right.
- In the ATOM Messages pane, select "NAV" from the Message field, select "M" or "U" from the Output field and type "1" in the Rate field. Click on the Add button underneath to validate your entry. The programmed message now appears in the table on the right.
- Click on the Configure button located at the bottom of the page
- Click on the Connections menu, then on the Serial Ports submenu.
- Set each of the ports on which data output will take place.
 If port B or F is used, make sure the Power ON option (bottom of the page) is active.

Setting a Base

How to Start

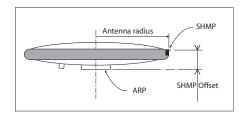
- Open the Web Server's **Configuration** tab. The first time you click on this tab, the Web Server will ask you to log in as the administrator. Only the receiver administrator is authorized to access the **Configuration** tab.
 - You are allowed to change the destination of a receiver (e.g. it is currently a rover and you want to change it into a base). In this case, on opening the **Base Setup** tab, the Web Server will retain part of the rover settings that could be applied to the base (e.g. antenna type, etc.).
- Whatever the way RTK corrections are transmitted to users (rovers), you will always have to define a number of general parameters pertaining to the base function. These parameters are usually defined first. However when the internal modem is used, it is advisable to configure the modem first.
- The ProFlex 500 Web Server includes four submenus to configure a base:
 - Full Setup
 - NTRIP Server
 - Data Streaming on IP
 - Transmitter

The **Full Setup** submenu is the most comprehensive one as it gives you the ability to implement any of the possible configurations.

The other three are abridged versions of the **Full Setup** submenu, customized for three specific configurations: NTRIP server, data streaming and use of an external transmitter. These submenus can advantageously be used instead of the **Full Setup** submenu to speed up the configuration phase.

On all four submenus, the first three frames (Base, Antenna, Satellites) allow you to set the general parameters. But note that only the **Full Setup** submenu allows you to define a moving base.

Through network connections, using the integrated cellular modem or Ethernet port, the ProFlex 500 can deliver two distinct sources of corrections through two different channels, designated as "Network 1" and "Network 2" on the Base Setup-Full Setup page, and "NTRIP Server 1" and "NTRIP Server 2" on the Base Setup - NTRIP server page. Differential Streams 1 and 2 should be defined accordingly (port E, P or Q + message type), namely the Differential Stream 1 is necessarily associated with "Network 1" (or "NTRIP Server 1") and Differential Stream 2 with "Network 2" (or "NTRIP Server 2").


Whereas the modem can only serve the "Network 1" or "NTRIP Server 1" connection, the Ethernet port on the other hand can serve both network connections, namely port P for "Network 1"/"NTRIP Server 1" and port Q for "Network 2"/"NTRIP Server 2". Ports P and Q can not only route their respective corrections (data streams) to an external NTRIP caster, but also directly to the embedded NTRIP caster, through two distinct mount points managed by the caster.

- Programming the data generated by a base is addressed separately (see *Defining the Data Generated by a Base on page 70* and *Rover Operating in Flying RTK Mode on page 63*).
- Configuring a permanently operating reference station is addressed in separate manuals (*ProFlex 500 CORS Getting Started Guide* for the short version, and also the *CORS Station* Chapter in this manual).

General Parameters

- Click on the Base Setup menu.
- Set the receiver parameters:
 - Dynamic: Choose the type of motion that best suits the base (static, quasi-static, walking, ship, automobile,

- aircraft, unlimited, adaptive or user-defined). Typically, a base is static.
- Moving Position: Enable this option if the base may be moving while being operated. For all other cases where the base always stays static, keep this option disabled.
- Latitude, Longitude, Ellipsoid Height: Use these three fields only when the Moving Position option is disabled. Use them to enter the reference position of the base (three-dimensional geographical coordinates). The coordinates shown in these fields are irrelevant and not used when the Moving Position option is enabled. Clicking on the Get current position button assigns the last position computed by the receiver to the base as its reference position. It makes no sense to use this button when the Moving Position option is enabled.
- Set the GNSS antenna parameters:
 - Reference Position: Specify the physical point on the base system for which the receiver will generate corrections. The three possible choices are: Antenna L1 phase center, Antenna Reference Point (ARP) or Ground Mark.
 - Measurement Type: Specify the method that was used when setting up the base system to measure the height of the GNSS antenna (Vertical or Slant Height).
 - Antenna Height: Value of base antenna height, expressed in the selected distance unit, as measured according to the specified measurement method.
 - Receiver Antenna: Specify the model of GNSS antenna used by the receiver. Select "UNKNOWN" if you don't know which model is used.
 - Antenna Radius: In case of a "Slant Height" measurement, enter the antenna radius (this is a manufacturer specification), taking care to enter this parameter in the selected distance unit. See also the diagram below for more information.
 - SHMP Offset: In case of a "Slant Height" measurement, enter the SHMP offset (this is a manufacturer specification) taking care to enter this parameter in the selected distance unit. See also the diagram below for more information.

Antenna Model	P/N	Antenna Radius (m)	SHMP Offset (m)	
	802135	0.0953	0.0483	
ASH-660	802133	0.0953	0.0403	
MAG111406	111406	0.0921	0.0516	

NOTE: The **Antenna Radius** and **SHMP Offset** fields are automatically preset to the right values when you select an antenna type in the **Receiver Antenna** field.

Virtual Antenna: This option is used to emulate a GNSS antenna other than the one really used.

Choosing a virtual antenna different from the one really used affects the raw and differential data as if they had been collected by the virtual antenna, instead of the real one.

A virtual antenna is needed at a base when rovers from different GNSS manufacturers cannot operate from that base because of the unknown model of GNSS antenna used by the base. In that case, defining a virtual antenna at the base will solve the problem. One of the most frequently used virtual antennas is the universal ADVNULLANTENNA antenna.

- Set the parameters relevant to the GNSS constellations used by the receiver:
 - Recording and Output Elevation Mask: Choose the elevation angle above the horizon creating the desired mask. After setting this angle, any satellite seen from the base with an elevation angle less than the specified one will be rejected from the list of tracked satellites. The recording elevation mask affects the measurements recorded in G-files and the differential messages generated by the receiver. The default value is 5°.
 - GLONASS, SBAS: In addition to the GPS, you can ask the receiver to track the GLONASS and/or SBAS satellites as well. Enable the options corresponding to

the additional constellations you want the receiver to use.

 You may now click on the Configure button to save all the changes made but remember you will have to complete the content of this page to tell the receiver how to make the generated data available to users.

But before that, you need to define which data the receiver has to generate, which output rate and which port to use for each of the data messages. See *Defining the Data Generated by a Base on page 70*.

Then use one of the typical applications described below to make the data available to users:

- External Radio Transmitter on page 74
- Direct IP Via Modem on page 75
- Direct IP Via Ethernet on page 77
- NTRIP Server Via Modem on page 78
- NTRIP Server Via Ethernet on page 80
- RTK Corrections Delivered on Port A, B or F on page 82
- Modem in CSD (Point-to-Point) Mode on page 83
- Ethernet Data Streaming on page 84.

Defining the Data Generated by a Base

Depending on your application, you will have to define different types of data messages as well as the ports through which they will be delivered.

Three categories of output data are possible (NMEA, differential and raw data) but only the use of differential and raw data messages makes sense in a base.

To define differential data messages, click on **Data Output**, then on the **Differential Messages** submenu. Use the page that opens as explained below:

 All the message types pertaining to a given data format are listed vertically. These are the following:

Format	Message types
ATOM RNX	- Standard (4), Static Base - Compact (100), Static Base - Super-compact (101), Static Base - Standard (204), Moving Base - Compact (300), Moving Base
RTCM2.3	Message types: 1, 3, 9, 16, 18/19, 20/21, 22, 23, 24, 31, 32, 34, 36
RTCM 3.0 & 3.1	Message types: 1001-1013, 1019, 1020, 1029, 1033

Format	Message types		
CMR	Message types: 0, 1, 2, 3		
DBEN	Ashtech legacy message		

- To enable the output of a differential message, you just need to enter the desired refresh rate (in seconds) for this message in the corresponding field.
- Leaving a field blank means you don't want the message type to be output.
- For ATOM message types, you need to choose between the different formats available ("Standard", "Compact" or "Super Compact"). Basically, the difference between the three formats lies in the length (size) of the ATOM messages generated.

Compared to the "Standard" format, "Compact" and "Super Compact" will produce shorter messages for the same message content. "Super Compact" will deliver even shorter messages than "Compact".

Basically, data compacting is achieved by lowering the level of redundancy across messages. Through this process, some message data are sampled, which means that instead of being present in every single message generated by the base, they will in fact be provided every x occurrences of the message.

Reconstructing full messages on rover side will however not tolerate data loss in the transmission. The successful use of the "Compact" or "Super Compact" formats therefore demands a very robust data link. In that respect, a conventional serial line using a cable is more likely to meet this requirement rather than a radio used in difficult reception conditions. But on the other hand, using a compact format seems more especially appropriate to radio links, owing to their potentially limited data throughput. So there is some sort of compromise to find here.

So What Should I Choose? In practice, Ashtech recommends that you follow these rules:

- As long as you are not facing any data throughput issue in your application, using the "Standard" format will always be the best choice, whatever the data link media used.
- Data throughput issues may occur in applications requiring high output rates (e.g. 10 Hz in heading or relative positioning applications). In this case, provided a robust data link is used, you can select

"Compact", or even "Super Compact" depending on the data throughput requirement.

Choosing one of these formats when a radio link is used implies that you have full confidence in the performance of the radio (good reception conditions, data loss very unlikely).

- 3. Using the "Super Compact" format should always be ruled out for a moving base.
- 4. Using "Compact" or "Super Compact" to solve the throughput issues of a radio used in difficult reception conditions or at range limits, is clearly a bad idea as it is likely to result in a global misfunctioning of your application. Ashtech recommends you reconsider the implementation of the data link.

There is however a safe operating margin using radio links since there won't be any throughput issue working in "Standard" ATOM format with a radio operated at 7600 bps.

The table below gives average data throughput figures (in bytes/sec) for different GNSS signals and three message types (RTCM-3 given as reference).

Protocol/ Scenario	GPS+GLONASS L1/L2	GPS+GLONASS L1 (L1CA only)	GPS L1/L2
ATOM RNX (SCN,4)	317	205	193
ATOM RNX (SCN,100)	159*	140*	98*
ATOM RNX (SCN,101)	86*	75*	70*

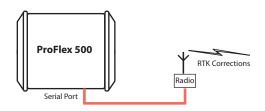
RTCM-3	338 (MT 1004,1012)	214 (MT 1002,1010)	202 (MT 1004)
--------	--------------------	--------------------	---------------

^{*} Worst-case estimates. Real throughputs are often shorter by 4 to 8 bytes.

NOTE: For more information on the size of ATOM messages, please refer to the *ATOM Reference Manual*.

 The ports used to make the differential messages available to users are defined on the Base Setup page.

To define raw data messages, click on **Data Output** and then on the **Raw Data** submenu. Use the page that opens as explained below:

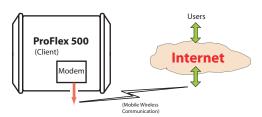

 All the raw data message types pertaining to a given data format are listed below:

Format	Message types		
ATOM	NAV, MES,PVT, ATR, DAT, EVT		
Ashtech ledacy	SNV, SNG, SNW, SAL, SAG, SAW, ION, SBD, MPC, PBN, DPC		

- Follow the instructions below to define the output of messages, whether in ATOM or Ashtech Legacy format:
 - Select the message type from the Message drop-down list, the output port from the Output drop-down list, then enter its output rate, in seconds, in the Rate field, and finally click on the Add button. The new message definition will then appear as a new row in the table on the right.
 - To change the definition of an existing message (port, rate), select the corresponding row in the table. This populates the three fields on the left with the definition of that message. Edit the port and/or rate and then click on the **Modify** button to save your changes. The table row is updated accordingly. Note that depending on the current selection on this page, the button located underneath the three fields on the left may be either grayed or with a different label (**Add** or **Modify**).
 - Deleting a message definition can be done by simply clicking on the corresponding "trash" sign in the Clear column on the far right. This deletes the table row.
 - There is also a Clear All button under the table that allows you to delete all message definitions from the table in one click.
- Click on the Configure button to save all the changes made and then go back to the Base Setup menu
- Use one of the typical applications described below to make the generated data available to users:
 - External Radio Transmitter on page 74
 - Direct IP Via Modem on page 75
 - Direct IP Via Ethernet on page 77
 - NTRIP Server Via Modem on page 78
 - NTRIP Server Via Ethernet on page 80
 - RTK Corrections Delivered on Port A, B or F on page 82
 - Modem in CSD (Point-to-Point) Mode on page 83

Ethernet Data Streaming on page 84.

External Radio Transmitter


- Click on Base Setup > Transmitter and define the general parameters of the base, as explained in section General Parameters on page 67. Then proceed with the steps below.
- Scroll down the page to display the Transmitter frame. In the Message field, select the type of differential data the base will generate and the radio will transmit (ATOM, RTCM, CMR, CMR+ or DBEN). Following your selection, you will see the detail of the selected data on the right of this field, as defined in Data Output > Differential Messages.
- In the Serial Port pane, select the port ID corresponding to the port to which the radio transmitter is currently connected.
- Complete the other fields to fully define the settings of the serial port used (Baud Rate, Mode, RTS/CTS). By doing this now, you will save time as you won't need to go through the Connections>Serial Ports submenu to make these settings.
- In the **Device** field, select the type of the radio transmitter the base is using. Depending on the type of radio used, you will have to provide the following parameters to complete the configuration of the radio.

Radio Type	Protocol	Channel	Airlink Speed	"Load Transmitter Settings" button
U-Link TRx	•	•	•	•
Magellan UHF		•		
Pacific Crest	•	•	•	•
ARF7474B EU		•		
ARF7474A NA				

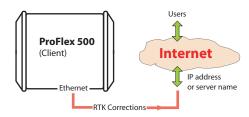
Note that the **Load Transmitter Settings** button is used to read the current setting of the radio. The changes you make to these settings will be effective in the radio only after running the last step below.

 Click on the Configure button to let the Web Server load all your new parameters to the receiver and the radio. You have now reached the end of the configuration phase.

Direct IP Via Modem

The internal modem should be configured first:

- Click on the Connections menu and then on the Bluetooth/ Modem sub-menu.
- Set the following parameters in the Internal Modem/Device Settings pane:
 - Power: Select "On". Then choose whether the modem should be turned on automatically or manually:


Automatic: The modem will be switched on or off automatically when the base is respectively turned on or off.

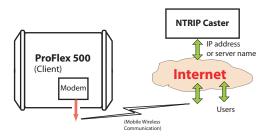
Manual: The modem will be powered up only by going through the **Connections** > **Bluetooth/Modem** page and setting the modem to "Power On" (or using the \$PASHS,MDM,ON command).

- Automatic Connection: Check this option.
- Band: Frequency band used by the modem, depending on the country where the receiver is operated.
- Pin: 4- to 8-character pin code of the SIM card used in the modem for GPRS operation.
- Ignore the content of the Internal Modem/CSD Mode Settings pane.
- Set the following parameters in the Internal Modem/GPRS
 Mode Settings pane (the mobile communication provider
 you are using should be able to give you all this
 information):

- Internet Protocol: Choose the Internet protocol (TCP or UDP) allowing the modem to perform an Internet connection.
- Access Point: Enter the URL of the mobile communication provider.
- Access Point Login: Enter the login of the mobile communication provider.
- Password: Enter the password of the mobile communication provider.
- Click on the Configure button.
- Now please follow all the steps described in section General Parameters on page 67 and then proceed with the steps below.
- Still on the Base Setup page, make sure the Connection fields in the Serial Port x panes are all set to "None/Cable"
- In the Network 1 pane, choose "Modem Direct IP Port E" in the Connection field.
- The base being necessarily a client, enter the information (Connect Now, Address, Port) allowing it to connect to the rover (the server) to which it is supposed to deliver corrections. No Login or Password is needed in this case.
 Enable Connect Now to allow the receiver to establish the connection right after you have clicked on Configure.
- In the Differential Stream 1 pane, choose Port= "E Modem" as the output port delivering the generated differential data. In the Message field, choose the type of differential message provided through this port (ATOM, RTCM, CMR, CMR+ or DBEN).
 - NOTE: The receiver has been designed to offer two separate and independent differential data outputs. Each one can output a specific type of differential message. If only one output is used, select **Port**="None" for the other output.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver. You have now reached the end of the configuration phase.

Direct IP Via Ethernet

- First, click on the **Connections**> **Ethernet** submenu.
- Set the following Ethernet parameters to allow the receiver to access the network through its Ethernet port:
 - DHCP: Enabling this option means the local network to which the receiver is connected will automatically allocate a dynamic IP address to the receiver. If this option is disabled, you need to define the receiver's static IP address, and give information about the local network (Subnetwork Mask and Gateway). You may need to be assisted by a network expert -or IT Manager- to define these parameters (as well as the three parameters below).


If you activate the **DHCP** option, then it's a good idea to define a hostname for your receiver and declare it to DynDNS (see **DynDNS** frame at the bottom of the page). DynDNS is a free service that will make sure the dynamic IP address allotted to the receiver by your ISP is always attached to your receiver's hostname. This requires that you open an account on DynDNS. For more information on this service, see *Creating an Account on DynDNS.com on page 86*.

- DNS 1 IP Address: Enter the IP address of the primary DNS providing the correspondence between the receiver server name and its IP address.
- DNS 2 IP Address: Enter the IP address of the secondary DNS providing the correspondence between the receiver server name and its IP address
- (MAC Address is a read-only field showing the hardware identification of the receiver's Ethernet port.)
- Ignore the **Port I settings** frame on the right.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver.
- Unless already done, please follow all the steps described in section *General Parameters on page 67* before proceeding with the steps below.

- Still on the Base Setup page, make sure the Connection fields in the Serial Port x panes are all set to "None/Cable"
- In the Network x pane, choose "Ethernet Direct IP Port P" in the Connection field.
- Because the base is necessarily a client, enter the information (Connect Now, Address, Port) allowing it to connect to the rover (the server) to which it is supposed to deliver its corrections. No Login or Password is needed in this case.
 - Enable **Connect Now** to allow the receiver to establish the connection right after you have clicked on **Configure**.
- In the corresponding Differential Stream x pane, choose
 Port= "P Ethernet" as the output port delivering the
 generated differential data. In the Message field, choose
 the type of differential message provided through this port
 (ATOM, RTCM, CMR, CMR+ or DBEN).
 - NOTE: The receiver has been designed to offer two separate and independent differential data outputs. Each one can output a specific type of differential message. If only one output is used, select **Port**="None" for the other output.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver. You have now reached the end of the configuration phase.

NTRIP Server Via Modem

CAREFUL: In the RTCM sense, an "NTRIP server" is a source of corrections feeding an NTRIP caster (see *RTCM paper 200-2004/SC104-ST*). But from the point of view of the network terminology, an "NTRIP server" is a client, not a server.

The internal modem should be configured first:

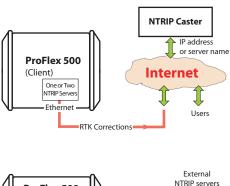
 Click on the Connections menu and then on the Bluetooth/ Modem sub-menu.

- Set the following parameters in the Internal Modem/Device Settings pane:
 - Power: Select "On". Then choose whether the modem should be turned on automatically or manually:

Automatic: The modem will be switched on or off automatically when the rover is respectively turned on or off.

Manual: The modem will be powered up only by going through the **Connections** > **Bluetooth/Modem** page and setting the modem to "Power On" (or using the \$PASHS,MDM,ON command).

- Automatic Connection: Check this option.
- Band: Frequency band used by the modem, depending on the country where the receiver is operated.
- Pin: 4- to 8-character pin code of the SIM card used in the modem for GPRS operation.
- Ignore the content of the Internal Modem/CSD Mode Settings pane.
- Set the following parameters in the Internal Modem/GPRS
 Mode Settings pane (the mobile communication provider
 you are using should be able to give you all this
 information):
 - Internet Protocol: Choose the Internet protocol (TCP or UDP) allowing the modem to perform an Internet connection.
 - Access Point: Enter the URL of the mobile communication provider.
 - Access Point Login: Enter the login of the mobile communication provider.
 - Password: Enter the password of the mobile communication provider.
- Click on the Configure button.
- Click on Base Setup > NTRIP Server and define the general parameters of the base, as explained in section General Parameters on page 67. Then proceed with the steps below.
- Scroll down the page to display the NTRIP Server 1 frame.
 In the Connection field, select "External NTRIP Caster via Modem".
- Enter the information (Connect Now, Address, Port, Password, Mount Point) allowing the base to connect to the NTRIP caster (the server) to which it is supposed to deliver its corrections.


Enable **Connect Now** to allow the receiver to establish the connection right after you have clicked on **Configure**.

- In the Message field, select the type of differential data the
 base will deliver (ATOM, RTCM, CMR, CMR+ or DBEN).
 Following your selection, through a click on the "I"
 symbol, you will see the detail of the selected data on the
 right of this field, as defined in Data Output > Differential
 Messages.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver. You have now reached the end of the configuration phase.

NTRIP Server Via Ethernet

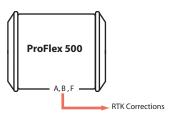
CAREFUL: In the RTCM sense, an "NTRIP server" is a source of corrections feeding an NTRIP caster (see *RTCM paper 200-2004/SC104-ST*). But from the point of view of the network terminology, an "NTRIP server" is a client, not a server.

As explained earlier (see *How to Start on page 66*), in that configuration you can define one or two NTRIP servers sending their data streams either to an external NTRIP caster (see first figure below) or to the embedded NTRIP caster (see second figure below). All combinations are possible. Choose the ones that meet your requirements.

• First, click on the **Connections**> **Ethernet** submenu.

- Set the following Ethernet parameters to allow the receiver to access the network through its Ethernet port:
 - DHCP: Enabling this option means the local network to which the receiver is connected will automatically allocate a dynamic IP address to the receiver. If this option is disabled, you need to define the receiver's static IP address, and give information about the local network (Subnetwork Mask and Gateway). You may need to be assisted by a network expert -or IT Manager- to define these parameters (as well as the three parameters below).

If you activate the **DHCP** option, then it's a good idea to define a hostname for your receiver and declare it to DynDNS (see **DynDNS** frame at the bottom of the page). DynDNS is a free service that will make sure the dynamic IP address allotted to the receiver by your ISP is always attached to your receiver's hostname. This requires that you open an account on DynDNS. For more information on this service, see *Creating an Account on DynDNS.com on page 86*.

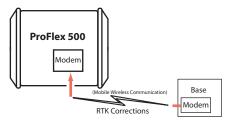

- DNS 1 IP Address: Enter the IP address of the primary DNS providing the correspondence between the receiver server name and its IP address.
- DNS 2 IP Address: Enter the IP address of the secondary DNS providing the correspondence between the receiver server name and its IP address
- (MAC Address is a read-only field showing the hardware identification of the receiver's Ethernet port.)
- Ignore the **Port I settings** frame on the right.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver.
- Click on Base Setup > NTRIP Server and define the general parameters of the base, as explained in section General Parameters on page 67. Then proceed with the steps below.
- Scroll down the page to display the NTRIP Server 1/2 frames. In the Connection field, select "External NTRIP Caster via Ethernet" or "Embedded NTRIP Caster".
- Enter the information (Connect Now, Address, Port, Password, Mount Point) allowing the base to connect to the NTRIP caster (the server) to which it is supposed to deliver its corrections. If you choose "Embedded NTRIP Caster", the Address is automatically set to "localhost" and you

should choose a mount point from the list of mount points managed by the embedded NTRIP caster.

Enable **Connect Now** to allow the receiver to establish the connection right after you have clicked on **Configure**.

- In the Message field, select the type of differential data the base will deliver (ATOM, RTCM, CMR, CMR+ or DBEN).
 Following your selection, you will see the detail of the selected data on the right of this field, as defined in Data Output > Differential Messages.
- Resume the above settings for the second NTRIP server if you need one.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver. You have now reached the end of the configuration phase.

RTK Corrections Delivered on Port A, B or F


- Unless already done, please follow all the steps described in section *General Parameters on page 67* before proceeding with the steps below.
- If you intend to use port B or F for the connection to the external radio, click on the Connections - Serial Ports submenu, enable the Power ON option for serial ports B &F (bottom of the page) and click on the Configure button. If port A will be used, skip this step.
- Come back to the Base Setup page. In the Serial Port x pane corresponding to the port you want the receiver to use (A, B or F), set the following parameters:
 - Connection: Choose the name of the corrections transmitter device connected to the port. As a general rule, choose "None/Cable" for any external corrections transmitter connected to that port. But if the device used is a license-free radio, type ARF7474B EU or ARF7474A NA, choose specifically this type of radio.
 - Port settings (Baud Rate, Mode, RTS/CTS): Set the serial port to match the external device connected to it.
 Setting these fields will update the corresponding fields on the Serial Ports sub-menu page.

- Make sure the Connection fields in the Network x panes are all set to "None".
- In the Differential Stream x pane, in the Port field, choose
 the port to which the external device is connected. In the
 Message field, choose the type of differential message
 provided through this port (ATOM, RTCM, CMR, CMR+ or
 DBEN).

NOTE: The receiver has been designed to offer two separate and independent differential data outputs. Each one can output a specific type of differential message. If only one output is used, select **Port**="None" for the other output.

- Click on the Configure button to let the Web Server load all your new parameters to the receiver.
- If the external radio used is a standalone, radio transmitter, skip this step. But if an ARF7474x license-free radio is used, click on the Connections Radio submenu and from the Type field located in the External Radio pane, select the type of license free radio used. Then click on the Configure button. You have now reached the end of the configuration phase.

Modem in CSD (Point-to-Point) Mode

The internal modem should be configured first:

- Click on the Connections menu and then on the Bluetooth/ Modem sub-menu.
- Set the following parameters in the Internal Modem/Device Settings pane:
 - Power: Select "On". Then choose whether the modem should be turned on automatically or manually:

Automatic: The modem will be switched on or off automatically when the rover is respectively turned on or off.

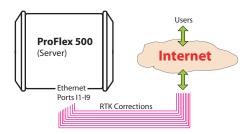
Manual: The modem will be powered up only by going through the Connections - Bluetooth/Modem page and

- setting the modem to "Power On" (or using the \$PASHS,MDM,ON command).
- Automatic Connection: Check this option (mandatory).
- Band: Frequency band used by the modem, depending on the country where the receiver is operated.
- Pin: 4- to 8-character pin code of the SIM card used in the modem for GPRS operation.
- Set the following parameters in the Internal Modem/CSD Mode Settings pane:
 - CSD Mode: Enter the CSD mode standard used by your modem. Ask your mobile communication provider if you don't know. "V.32 9600 Bd" is the most widely used standard.
 - Phone Number, Maximum Redials: Leave these two fields blank.
- Ignore the content of the Internal Modem/GPRS Mode Settings pane.
- Click on the Configure button.
- Now please follow all the steps described in section General Parameters on page 67 and then proceed with the steps below.
- Still on the Base Setup page, in the Network pane, set the following parameter:
 - Connection: Choose "Modem CSD Port E".
- In the Differential Stream x pane, choose Port= "E Modem" as the output port delivering the generated differential data. In the Message field, choose the type of differential message provided through this port (ATOM, RTCM, CMR, CMR+ or DBEN).

NOTE: The receiver has been designed to offer two separate and independent differential data outputs. Each one can output a specific type of differential message. If only one output is used, select **Port**="None" for the other output.

 Click on the Configure button to let the Web Server load all your new parameters to the receiver. You have now reached the end of the configuration phase.

Ethernet Data Streaming


Typically a base can be configured to deliver real-time corrections to whoever asks for them through an IP connection. This is achieved through the receiver's Ethernet port Ix.

The receiver is fitted with nine independent data outputs, with the possibility for the administrator to define a specific data format for each output.

In addition, for each data output, the administrator can choose whether the base will be the server or the client in the IP connection.

As a server (typical application), it will deliver its data to any client asking for it and authorized to do so. Up to 5 different users can be connected on the same port.

As a client (more specific), the base will start delivering its data after it has been able to establish a communication with the specified IP address.

Follow the instructions below:

- Click on Base Setup > Data Streaming on IP and define the general parameters of the base, as explained in section General Parameters on page 67. Then proceed with the steps below.
- Scroll down the page to display the Ethernet Streaming frame.
- For each data stream the base should generate, enable the Port Ix option corresponding to the port you want to use.
 Then in the same line, set the following fields:
- Mode: Specify the role played by the base in the IP connection (server or client).
- **Protocol**: Select the protocol that will be used in the IP connection ("TCP" or "UDP"). "TCP" should be chosen preferably. In cases where you need to output data at a very high update rate, UDP may be used instead.
- IP Address: (A valid field only if the base is used as the client) Enter the IP address of the system (rover) that will acquire the data stream.
- IP Port: Specify the IP port of this system.
- Message Type: Specify the type of data message the receiver will deliver on this port (ATOM, RTCM, CMR,

- CMR+ or DBEN). Click on the "I" symbol to the right of this field to read the details of the selected message type.
- After you have defined all the ports used, click on the Configure button to let the Web Server load all your new parameters to the receiver. You have now reached the end of the configuration phase.

Creating an Account on DynDNS.com

DynDNS is a free update mechanism, offered by *Dynamic Network Services Inc.*, through which you can make sure the hostname of your ProFlex 500 will always match the dynamic IP address assigned to it by your Internet provider. This however requires that you create a DynDNS account and choose the function you want to use.

Do the following to create a DynDNS account:

- Open a new tab in your web browser.
- Type http://www.dyndns.com and press ENTER.
- Type on the **Sign In** button in the upper-right corner.
- Type on the "Create an account" link.
- Enter your credentials (username, password and email) and other information needed (safety number, registration, policy agreement).
- Click on **Create Account**. You will then receive an email containing a link allowing you to activate your account.
- Click on this link. This will open the DynDNS web site on which you will be logged in after you have re-entered your password. This confirms the creation of your account.
- · Click on "Create Free Hostname".
- Choose a name for your ProFlex500 (hostname), keep "Host with IP address" selected, and enter the current IP address of your ProFlex 500: This is the public IP address of the ProFlex 500, and not necessarily the one displayed on the ProFlex 500 screen (see your IT manager for more information). If the receiver is connected to a local network (LAN), then a direct link must exist between the declared public IP address and the receiver's personal IP address within the LAN.
- Choose the services you want to use (typically "VPN", "remote desktop" and "web server").
- Click Add to Cart.
- Click on "Proceed to checkout".
- Click on "Activate Services".

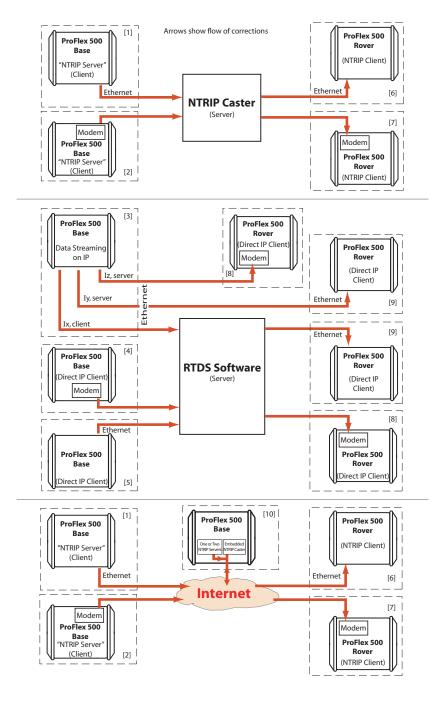
You can now activate the update mechanism through the Web Server. On the Web Server's Configuration tab, select **Connections** then **Ethernet**. In the **DynDNS** frame, do the following:

- Check on the **Activation** button
- Keep the default address shown in the System field
- Enter the Hostname of your receiver, as declared when you opened your DynDNS account.
- Enter the credentials (**Username**, **Password**) you specified when creating your DynDNS account. These will authorize the receiver to access and use the DynDNS service.
- Specify the rate (Period), in seconds, at which the receiver should regularly access the DynDNS service to provide its current IP address. Through these regular connections, the receiver will allow the DynDNS service to update the association made between the declared hostname for the receiver and its currently valid IP address.

The **Update Now** button can be used at this stage to force the receiver to send right away its IP address to the DynDNS service.

• Click on the **Configure** button to let the Web Server load all your new parameters to the receiver.

Configuration Memo

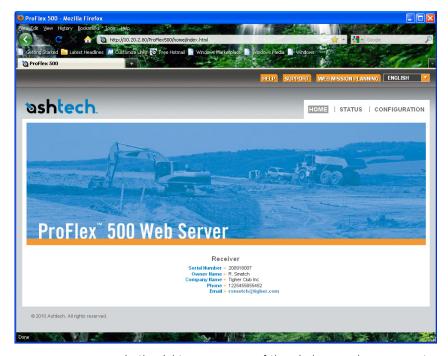

Entering the settings of a base/rover system is quite straightforward when a radio or a phone line via GSM modem is used to transmit corrections from the base to the rover.

When an IP connection is used, understanding the possible base/rover associations is not so clear because in addition, you have to take account of the server-client requirement inherent in any IP connection.

The diagrams below should help you keep in mind which associations are possible when using an IP connection (through GPRS modem or Ethernet port).

- [1]: Base, "NTRIP server" via Ethernet
- [2]: Base, "NTRIP server" via modem
- [3]: Base, Ethernet data streaming
- [4]: Base, Direct IP client via modem
- [5]:Base, Direct IP client via Ethernet
- [6]: Rover, NTRIP client via Ethernet
- [7]: Rover, NTRIP client via modem
- [8]: Rover, Direct IP client via modem

- [9]: Rover, Direct IP client via Ethernet
- [10]: Base, 2 NTRIP servers + embedded NTRIP caster



Home Tab

The ProFlex 500 Web Server Home tab appears after you have typed the correct IP address in the Address box of your web browser and pressed the Enter key.

In the right-upper corner of the window, you have access to the on-line help (**HELP** link) and to technical support (**SUPPORT** link).

You can also change the language of the Web Server interface. This will simultaneously change the language of the Help files accessible through the HELP link.

Still from the right-upper corner of this window, you can run Ashtech's Web Mission Planning, a web-based application allowing you to get information on the GNSS constellations visible from a given point on the Earth surface, and for future or past periods of time.

In its lower part, the Home tab lists the parameters that clearly identify the remote receiver. The table below lists all these parameters. For your information, the third column indicates the relevant \$PASH commands.

Parameter	Designation	\$PASH
Receiver serial number	Hardware-coded receiver serial number	\$PASHQ,RID
Owner name	Owner name	\$PASHS,WEB,OWN
Company name	Name of the company operating the receiver	\$PASHS,WEB,OWN
Phone	Contact phone number	\$PASHS,WEB,OWN
Email	Contact email	\$PASHS,WEB,OWN

(The last four parameters can be changed from the Administrator menu on the Configuration tab.)

Depending on what you want to do with the receiver, click on one of the other two available tabs. Prior authentication as the "Administrator" or a "User" is required before you are allowed to access one of these tabs:

- Status: This tab provides detailed information about the current status of the receiver. This is a read-only function. You first need to log in as a "User" or as the "Administrator" before you are given the right to access this tab. When you click on this tab, the Web Server will remember which page was last opened on this tab, and so will display it by default. You can then choose the one you would like to display by clicking in the menu on the left.
- Configuration: This tab allows you to make changes to the current configuration of the receiver. You first need to log in as the "Administrator" before you are given the right to access this tab. When you click on this tab, the Web Server will remember which page was last opened on this tab, and so will display it by default. You can then choose the one you would like to display by clicking in the menu on the left.

Status Bar and Units Used

The status bar is permanently displayed in the upper part of the **Status** or **Configuration** tab, giving the current operating status of the receiver. The content of the status bar is refreshed every one to two seconds.

By column from left to right:

Column #1	
Mode	Receiver operating mode ("Base", "Rover" or "Hot Standby RTK")
Position	Type of position solution currently available from the receiver ("No position", "Autonomous", "DGPS", "S-DGPS", "RTK Fixed" or "RTK Float")
Station ID	If a base: • 0 to 4095 for a station transmitting ATOM or RTCM3.x corrections • 0 to 1023 for a station transmitting RTCM2.3 corrections • 0 to 31 for a station transmitting CMR/CMR+ corrections If a rover: • Shows the ID of the base station received. • In S-DGPS, shows the ID of the SBAS satellite used.
Age	Age of corrections, in seconds (0 to 999 seconds)
Column #2	<u></u>
Lat	Latitude of position currently computed by the receiver
Long	Longitude of position currently computed by the receiver
Height	Height of position currently computed by the receiver
Column #3	
HRMS	Horizontal Root Mean Square
VRMS	Vertical Root Mean Square
HDOP	Horizontal Dilution of Precision (0 to 9.9)
VDOP	Vertical Dilution of Precision (0 to 9.9)
Column #4	
GPS	Number of GPS satellites used vs. number of tracked GPS satellites
GLONASS	Number of GLONASS satellites used vs. number of tracked GLONASS satellites
SBAS	Number of SBAS satellites used vs. number of tracked SBAS satellites
Column #5	
Battery	Percentage of remaining charge in the installed battery
Modem	Modem power status ("Off", "On", "Ready", "Dialing", "Online" or "None")
Level	Input signal level (0 to 100, or blank when Modem Status= Online)

NTRIP Caster	"off" or, if "On", number of sources available (S:xx) and number of connected cli-
TTTTT Cactor	ents (,C:xxx)
Column #6	
Recording	Raw data recording status ("On" or "Off")
Site Name	Site name (4 characters) attached to logged data
Memory	Identification of memory used ("M" for internal, "U" for USB key)+ Number of free Megabytes on this memory.
Column #7	
Sessions	Session status ("ON" "OFF", "RECORDING")
Site Name	Site name (4 characters) attached to data logged through sessions
Memory	Identification of memory used ("M" for internal, "U" for USB key)+ Number of free
Wellioly	Megabytes on this memory.
FTP Push	Indicates whether the recorded raw data files are uploaded to an external FTP
i ii i usii	server ("On") or not ("Off").
Column #8	
Date	Current date (YYYY-MM-DD)
Time	Current local or UTC time (hh:mm:ss) according to the setting below.
	Blank area if no alarm has been detected.
	"Alarms" displayed if an alarm has been detected in the receiver, followed by the
Alarm report	number of raised alarms, between brackets (x).
	A click on "Alarms" will open the Status-Alarms web page to list this or these
	alarms.

To change the units, select your preference from the **Units** pane on the left-hand side of the Web Server window. This pane is visible in both the **Status** and **Configuration** tabs.

Distance Units

- Meters
- US Survey Feet
- International Feet

Angle Units

The possible formats for angles, including latitudes and longitudes, are the following:

- Degrees (Deg.)
- Degrees, minutes (Deg. Min.)
- Degrees, minutes, seconds (Deg. Min. Sec.)

The format of latitude and longitude depends on the chosen angle unit. The corresponding formats are described in the table below.

Angle Unit Used	Latitude Format	Longitude Format
Deg.	DD.DDDDDDDD° N or	DDD.DDDDDDDD° E or
Dog.	DD.DDDDDDDD° S	DDD.DDDDDDDD° W
Deg. Min.	DD°MM.MMMMMM' N or	DDD°MM.MMMMMM' E or
Dog. Wiiii.	DD°MM.MMMMMM'S	DDD°MM.MMMMMM' W
Deg. Min.	DD°MM' SS.SSSSS" N or	DDD°MM' SS.SSSSS" E or
Sec.	DD°MM' SS.SSSSS" S	DDD°MM' SS.SSSSS" W

Where:

- N for North, S for South; E for East, W for West
- "D.." for degree digits, "M.." for minute digits, "S.." for second digits

When typing in a latitude or longitude, leading and trailing zeroes can be omitted. Degree (°), minute (') and second (") symbols can be omitted as well.

For example, typing 5 6.45 N is a valid entry for 5° 06.450000' N.

If you use the "Deg." angle unit, you can use signs for directions:

- "-" sign for South (S) or West (W)
- No sign or "+" sign for North (N) or East (E)

Time Units

Time is always expressed in 24-hour format. You can choose between the following two options:

- UTC: UTC time provided by the receiver.
- Local: Local time derived from the UTC time provided by the receiver, taking into account the time zone read from the computer's regional settings.

Status Tab

Reading the Status Pages

Please read below the general instructions and notes about the **Status** tab:

- Clicking on the **Status** tab causes the connected receiver to return its current status parameters.
- You may have to wait a few seconds before the receiver can respond.
- Most of the pages on the Status tab are refreshed at least every 10 seconds. On the Receiver Status & Settings page, the data are refreshed every second.
- In each of the tables presented hereafter to describe the ProFlex 500 status parameters, the third column provides for reference the relevant \$PASHQ commands, that is the query commands you could use alternatively to read the current values of the described parameters.

Receiver Status & Settings

The Receiver Status & Settings page provides five different groups of information:

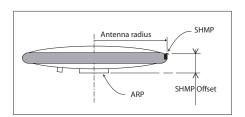
- Settings
- Antenna
- Computed Position
- Reference Position
- Differential Messages

```
Receiver Status and Settings

Receiver Mode - Sase
Moving Base - No
Fast RTK - On
Ambiguity Explanation - 99 %
Receiver Dynamics - Adaptive
Position Evention Mask - 5 -
Recording and Output Elevation Mask - 5 -
Recording Status - Output - Outp
```

These five groups are detailed below.

Settings


See the description of each parameter in the table below.

Parameter	Designation	\$PASHQ
Receiver Mode	Tells whether the receiver is a base or a rover.	CPD,MOD
Moving Base	"Yes" if the base is moving "No" if it is static.	CPD,MOD
Fast RTK	Fast RTK output mode ("On" or "Off")	CPD,FST
Ambiguity Fixing Parameter	"0", "95.0", "99.0" or "99.9". "0" means the receiver stays in float mode (Flying RTK) once achieved.	CPD,AFP
Receiver Dynamics	"Static", "Quasi-static", "Walking", "Ship", "Automobile", "Aircraft", "Unlimited", "Adaptive" or "User- defined".	DYN
Position Elevation Mask	Angle value in degrees (0-90). Relevant to the position processing in a rover.	PEM

Parameter	Designation	\$PASHQ
Recording and Output	Angle value in degrees (0-90). Rele-	ELM
Elevation Mask	vant to raw data recording and output.	LLIVI

Antenna

Parameter	Designation	\$PASHQ
Receiver Antenna	Name of the GNSS antenna connected to the receiver, a case-sensitive parameter (31 characters max.)	ANP
Reference Position	Refers to the antenna reduction mode. Indicates the physical location for which the receiver computes a position. This can be the antenna phase center, the ARP (Antenna Reference Point) or the ground mark.	ANR
Antenna Height	Height above the ground, in meters.	ANH
Measurement Type	"Vertical" or "Slant". "Vertical" is the general case, "Slant" is used when the GNSS antenna is mounted on a tripod.	ANH
Antenna Radius	Horizontal distance, in meters, from the geometrical center to the edge of the antenna used.	ANT
SHMP Offset	Antenna parameter describing the vertical offset of the Slant Height Measurement Point, measured from the ARP, in meters.	ANT
Virtual Antenna	Name of the virtual antenna used, if any. "OFF" if no virtual antenna is used.	ANP

Computed Position

This group returns information if the receiver is a rover. See the description of each parameter in the table below.

Parameter	Designation	\$PASHQ
Position Type	"Autonomous", "S-DGPS", "DGPS", "RTK-Float" or "RTK Fixed".	POS
Age of Corrections	Age of differential corrections, in seconds. Blank for a receiver not receiving corrections. Always blank for a base.	POS
Coordinate System Name	Coordinate system in which the receiver delivers its position solutions. Either "WGS 84" or as read from last RTCM-3 1021-1023 message received.	see LCS
Latitude Longitude Ellipsoid Height	Latitude of computed position. Longitude of computed position. Height of computed position above ellipsoid.	POS
Distance to Reference Station	Baseline length. In a base, is representative of the deviation between the entered reference position and the computed position for the base (should be a few meters max.).	VEC
RMS Latitude RMS Longitude RMS Height	Standard deviation of latitude error. Standard deviation of longitude error. Standard deviation of height error.	GST

Reference Position

This group returns information on the base (or the base used if the receiver is a rover). See the description of each parameter in the table below.

Parameter	Designation	\$PASHQ
Station ID	Station ID, as transmitted to the rover: • 0-1023 (RTCM 2.3) • 0-4095 (RTCM 3.x and ATOM) • 0-31 (CMR & CMR+)	STI
Latitude Longitude Ellipsoid Height	Latitude of reference position. Longitude of reference position. Height of reference position above ellipsoid.	CPD,POS
Antenna Name	Name of the GNSS antenna connected to the receiver, a case-sensitive parameter (31 characters max.)	ANP
Antenna Height	Antenna height above reference point	CPD,ANT

Differential Messages

This group returns information about the differential messages processed by the receiver.

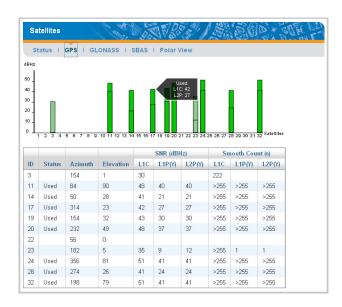
In a base, several differential messages may be made available, on different ports and with different content.

In a rover, up to two different differential messages can be received.

In either case, the following information is provided for each type of differential message.

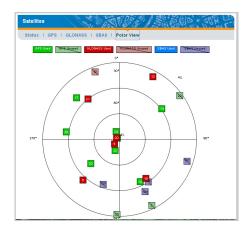
Parameter	Designation	\$PASHQ
Port	Type and number of the port used to route the differential message.	BAS CPD,REM
Status	Port status, depends on the port type: Always "On" for ports A to D. If for some reason, the port assigned to a differential message is off, then no information at all would be reported for this message. For ports E, P and Q, there are three possible statuses: "Connected" means the connection is active, "Dialing" means the connection to the socket is in progress, "Automatic dial programmed (x s)" means the connection is not active but attempts to connect are run every x seconds (x=10 s for ports P and Q and x=50 s for port E). For ports Ix, when used in connections where the ProFlex 500 is the server, the Status field provides the number (n) of current connections to the server: "n connection(s)". For ports Ix, when used in connections where the ProFlex 500 is the client, there are several possible statuses: "Connected", "Init in progress" or "Dialing".	-
Communication Type	For a base, identifies the destination of the differential message. For a rover, identifies the source of the differential message.	-
Messages	Detail of the differential message generated by the base, or received by the rover, on this port.	-

Satellites

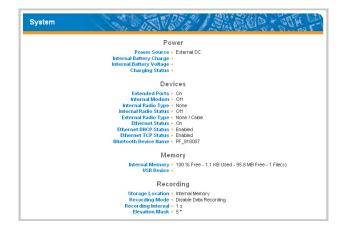

The Satellites page details the data received from the different constellations. The information provided is split into five tabs: Status, GPS, GLONASS, SBAS and Polar View.

Status:

Parameter	Designation	\$PASHQ
GPS	Indicates that the receiver has the GPS reception capability (always On).	-
GLONASS	Indicates whether the receiver has the GLONASS reception capability (On) or not (Off).	GLO
SBAS	Indicates whether the receiver has the SBAS reception capability (On) or not (Off).	SBA
Recording and Output Elevation Mask	Gives the current value of elevation angle used in the data recording and output process.	ELM
Position Elevation Mask	Gives the current value of elevation angle used in the position computation process.	PEM


For each visible satellite of each constellation received (GPS, GLONASS and SBAS):

Parameter	Designation	\$PASHQ
ID	Satellite ID number.	SAT
Status	Gives status information for each satellite: Used: Satellite received and used Blank: Satellite received but not used No ephemeris: Satellite does not provide ephemeris data Unhealthy: Satellite declared unhealthy Bad URA: Bad user range accuracy.	SAT
Azimuth	Azimuth angle, in degrees, of the satellite.	SAT
Elevation	Elevation angle, in degrees, of the satellite.	SAT
SNR (dB.Hz)	Signal-noise ratios, in dB.Hz: - For L1C, L1P(Y) and LP2(Y) signals (GPS) - For L1C and L2C signals (GLONASS) - For L1C signal (SBAS)	SAT
Smooth Count (s)	Smooth counts, in seconds: - For L1C, L1P(Y) and LP2(Y) signals (GPS) - For L1C and L2C signals (GLONASS) - For L1C signal (SBAS). Smooth count refers to that period of time during which the signal phase is tracked smoothly without disruption (no cycle slip).	


The Polar View shows the location in the sky of each of the visible satellites from the three different constellations. Different colors are used to display the numbers of the visible satellites:

- Green: GPS (dark green; satellite used; pale green: satellite not used)
- Red: GLONASS (dark red: satellite used; pale red; satellite not used)
- Blue: SBAS (dark blue: satellite used; purple: satellite not used)

System

This page gives a global view of the receiver operation. The information returned by the receiver is split into four sections: Power, Devices, Memory and Recording.

Power:

Parameter	Designation	\$PASHQ
Power Source	Indicates the current power source (internal or external).	PWR
Internal Battery Charge	Indicates the percentage of remaining power in the internal battery.	PWR
Internal Battery Voltage	Indicates the current output voltage of the internal battery.	PWR

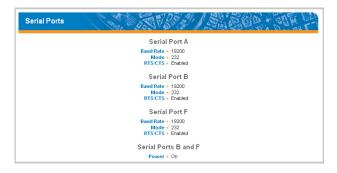
Parameter	Designation	\$PASHQ
Charging Status	Indicates whether the internal battery is currently being charged or not.	PWR

Devices:

Parameter	Designation	\$PASHQ
Extended Ports	Indicates the current status of the extended ports B and F (on or off)	ECP
Internal Modem	Gives the current status of the internal modem (Off, On, Ready, Dialing, Online or None)	MDM
Internal Radio Type	Indicates the type of internal radio used.	RDP,TYP
Internal Radio Status	Indicates whether the internal radio is currently on or off.	RDP,PAR
External Radio Type	Indicates the type of external radio used.	RDP,TYP
Ethernet Status	Gives the current status of the Ethernet port (On or Off).	ETH
Ethernet DHCP Status	Indicates whether the DHCP mode is used (Enabled) or not (Disabled).	ETH
Ethernet TCP Status	Indicates the type of TCP/IP connection used ("Disabled", "Secured" or "Enabled").	TCP
Bluetooth Device Name	Gives the name of the built-in Bluetooth device.	BTH

Memory:

Parameter	Designation	\$PASHQ
Internal Memory	Percentage of used/free space in the internal memory and number of files stored in that memory.	FLS
USB Device	With a USB device connected to the receiver, percentage of used/free space on that key and number of files stored on that device.	FLS


Recording:

Parameter	Designation	\$PASHQ
Storage Location	Indicates the medium where data are recorded (Internal Memory or USB key).	FIL,LST
Recording Mode	Describes how the receiver is set up at power up regarding raw data recording and if it is currently recording data or not.	REC
Recording Interval	Indicates the current rate, in seconds, of data recording.	DRI

Parameter	Designation	\$PASHQ
Elevation Mask	Gives the current value, in degrees, of the elevation mask used in data recording and data output.	ELM

Serial Ports

The Serial Ports page provides the current configuration of each of the receiver serial ports.

For each port, the following parameters are returned.

Parameter	Designation	\$PASHQ
Baud Rate	Current value of baud rate used on the port	PRT
Mode	Indicates whether the port is currently an RS232 (232) or RS422 (422) serial port. Only port A can be RS422 or RS232. All the others are necessarily RS232.	MDP
RTS/CTS	Indicates whether the handshaking protocol is used (Enabled) or not (Disabled).	CTS
Power	(Relevant to ports B and F only) indi- cates whether the ports are currently powered on (On) or not (Off). Ports B and F are usable and recognized only when power is applied to them.	ECP

Bluetooth & Modem

The Bluetooth & Modem page provides the current configuration of Bluetooth and the internal modem. The modem cannot be used in CSD and GPRS mode at the same time, however the page shows the current settings for the two operating modes.

Bluetooth:

Parameter	Designation	\$PASHQ
Address	Bluetooth address (17 characters)	BTH
Device Name	Bluetooth name (64 characters max.)	BTH

Internal Modem - Device Settings:

Parameter	Designation	\$PASHQ
Power	Tells whether the modem is currently on or off	MDM
Automatic Power	Tells whether the modem is powered automatically when the receiver is powered on (Yes) or if it's powered on manually (No).	MDM
Automatic Connection	Tells if the modem is allowed (Yes) or not allowed (No) to establish a CSD (or GPRS) connection after it has been powered up or after recovering from a power shutdown.	MDM
Band	Indicates the current frequency band setting (850/1900, 900/1800 or 900/1900 MHz)	MDM

Internal Modem - CSD Mode Settings:

Parameter	Designation	\$PASHQ
CSD Mode	The current setting may be "V.32 9600 bauds" or "V.110 9600 bauds (ISDN)"	MDM
Phone Number	Phone number the modem will dial	MDM
Maximum Redials	Indicates the maximum number of permitted re-dials in the event of a connection failure	MDM

Internal Modem - GPRS Mode Settings:

Parameter	Designation	\$PASHQ
Internet Protocol	Internet protocol used in the IP connection (TCP or UDP)	MDM
Access Point	Access point name allowing the modem to establish a connection to the mobile communication provider	MDM
Access Point Login	Login required for a successful connection	MDM

Radio

The Radio page provides the current configuration of the internal or external radio used by the receiver. Typically, the receiver will use either an internal or external radio.

Internal Radio:

Parameter	Designation	\$PASHQ
Туре	Indicates the model of radio used by the receiver.	RDP,TYP
Power	Tells you if the radio is currently on or off.	RDP,PAR
Automatic Power	Indicates whether the radio is powered in automatic (Yes) or Manual mode (No).	RDP,PAR
Channel	Gives the channel number corresponding to the carrier frequency the radio is currently receiving.	RDP,PAR
Protocol	Indicates the protocol used to demodulate the received data.	RDP,PAR
Airlink Speed	Indicates the speed at which the received data are modulated by the base transmitter. This allows the radio to properly demodulate the received signal.	RDP,PAR
Sensitivity	Current sensitivity setting for the radio (Low, Medium, High).	RDP,PAR

Parameter	Designation	\$PASHQ
Scrambler	Current Scrambler setting (On or Off) (for PDL radio only)	RDP,PAR
FEC	Current FEC setting (On or Off) (for PDL radio only)	RDP,PAR

External Radio:

Parameter	Designation	\$PASHQ
Туре	Indicates the model of radio used by the receiver through one of its external ports.	RDP,PAR
Channel	Gives the channel number corresponding to the carrier frequency the radio is currently transmitting or receiving.	RDP,PAR
Protocol	Indicates the protocol used to demodulate the received data or modulate the transmitted data.	RDP,PAR
Airlink Speed	Indicates the speed at which the data are modulated or demodulated by the radio.	RDP,PAR
Serial Port	Indicates the serial port to which the external radio is connected.	RDP,PAR
Serial Baud Rate	Baud rate used on the port.	PRT
Serial Mode	Type of serial link used on the port (RS232 or RS422).	MDP
Serial RTS/CTS	Indicates whether the handshaking protocol is enabled (On) or disabled (Off) on the port.	CTS

Ethernet

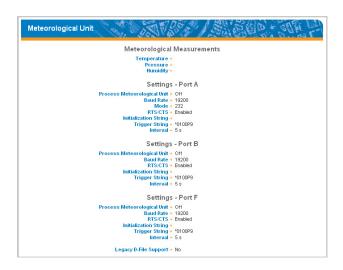
The Ethernet page provides the current configuration of the Ethernet port in the receiver.

Ethernet:

Parameter	Designation	\$PASHQ
MAC Address	Hardware identification of the Ethernet device.	ETH

Parameter	Designation	\$PASHQ
DHCP	Indicates whether the DHCP mode is currently enabled (Yes) or disabled (No).	ETH
IP Address	(If DHCP=No) Current IP address of the receiver	ETH
Subnetwork Mask	(If DHCP=No) Subnetwork mask	ETH
Gateway	(If DHCP=No) Gateway IP address	ETH
DNS1 IP Address	(If DHCP=No) IP address of first Domain Name System	ETH
DNS2 IP Address	(If DHCP=No) IP address of second Domain Name System	ETH

Port I Settings:


Parameter	Designation	\$PASHQ
Mode	Indicates the current status of the TCP/IP server, which can be one of the following: Disabled Secured (Enabled with authentication) Enabled (Enabled without authentication)	TCP
Protocol	IP protocol used (TCP or UDP)	DST
Port	IP port number	TCP
Login	TCP/IP server connection login	TCP

DynDNS

Parameter	Designation	\$PASHQ
Activation	Indicates whether the process forcing the receiver to send its IP address to the DynDNS server every x seconds is enabled (Yes) or disabled (No)	DDN
System	DynDNS address	DDN
Hostname	The hostname you chose for your ProFlex 500 receiver.	DDN
Username	Username used to log in on the DynDNS web site.	DDN
Period	Rate in seconds at which the receiver must send its IP address to the DynDNS server.	DDN

Meteorological Unit

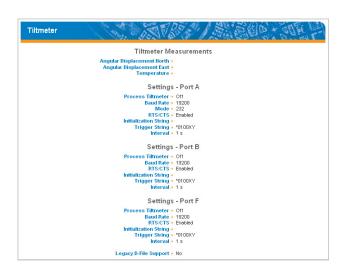
The Meteorological Unit page provides the current values of meteo data sent by the meteorological unit, as well as the configuration of each of the receiver serial ports to which the meteorological unit may be connected. This page also indicates the file format used to record meteo data.

Current values of meteorological data:

Parameter	Designation	\$PASHQ
Temperature	Current value of temperature delivered by the meteorological unit.	XDR
Pressure	Current value of pressure delivered by the meteorological unit.	XDR
Humidity	Current value of humidity delivered by the meteorological unit.	XDR

For each serial port (A, B, F), the following parameters are returned:

Parameter	Designation	\$PASHQ
Process Meteorological Unit	Tells whether the receiver is allowed to query the meteorological unit, if connected to this port.	MET
Baud Rate	Current value of baud rate used on the port	PRT
Mode	Indicates whether the port is currently an RS232 (232) or RS422 (422) serial port. Only port A can be RS422 or RS232. All the others are necessarily RS232.	MDP
RTS/CTS	Indicates whether the handshaking protocol is used (Enabled) or not (Disabled) on this port.	CTS


Parameter	Designation	\$PASHQ
Initialization String	String used by the receiver to initialize the meteorological unit, if connected to this port.	MET
Trigger String	String used by the receiver to query the meteorological unit, if connected to this port.	MET
Interval	Current value of time interval, in seconds, used by the receiver to query the meteorological unit, if connected to this port.	MET

Legacy D-File Support:

Parameter	Designation	\$PASHQ
Legacy D-File Support	Indicates whether the legacy D-file is supported (Yes) or not (No). In the latter case, only the G-file is supported.	RFT

Tiltmeter

The Tiltmeter page provides the current values of data sent by the tiltmeter, as well as the configuration of each of the receiver serial ports to which the tiltmeter may be connected. This page also indicates the file format used to record tiltmeter data.

Current values of tiltmeter data:

Parameter	Designation	\$PASHQ
Angular Displacement North	Current value of angular displacement (North), as delivered by the tiltmeter.	XDR
Angular displacement East	Current value of angular displacement (East) as delivered by the tiltmeter.	XDR
Temperature	Current value of temperature, as delivered by the tiltmeter.	XDR

For each serial port (A, B, F), the following parameters are returned:

Parameter	Designation	\$PASHQ
Process tiltmeter	Tells whether the receiver is allowed to query the tiltmeter, if connected to this port.	TLT
Baud Rate	Current value of baud rate used on the port	PRT
Mode	Indicates whether the port is currently an RS232 (232) or RS422 (422) serial port. Only port A can be RS422 or RS232. All the others are necessarily RS232.	MDP
RTS/CTS	Indicates whether the handshaking protocol is used (Enabled) or not (Disabled) on this port.	CTS
Initialization String	String used by the receiver to initialize the tiltmeter, if connected to this port.	TLT
Trigger String	String used by the receiver to query the tiltmeter, if connected to this port.	TLT
Interval	Current value of time interval, in seconds, used by the receiver to query the tiltmeter, if connected to this port.	TLT

Legacy D-File Support:

Parameter	Designation	\$PASHQ
Legacy D-File Support	Indicates whether the legacy D-file is supported (Yes) or not (No). In the latter case, only the G-file is supported.	RFT

Data Output

This section consists of three pages, each of them listing a category of output data delivered by the receiver.

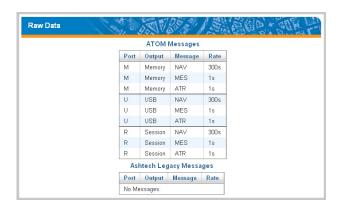
Differential Messages:

```
ATOM Refresh Rates (seconds)

RIM Scenario + 4: Standard (Static Base)
Measurement - 1:s
Positions - 12:2
Attributes - 31:s

RTCM 3.0 and 3.1 Refresh Rates (seconds)

RTCM Type 1004 - 1:s
RTCM Type 1004 - 1:s
RTCM Type 1007 - 31:s
RTCM Type 207 - 31:s
RTCM Type 307 - 31:s
```


Each currently active message type is listed per category of available data format (ATOM, RTCM, CMR), together with its individual refresh rate, in seconds.

NMEA Messages:

Each currently active message type is listed together with the identification of the port delivering the message as well as its individual refresh rate, in seconds.

Raw Data:

Each currently active message type is listed per category of available data format (ATOM, Ashtech), with the identification of the port delivering the message as well as its individual refresh rate, in seconds.

The meaning of ports A, B, etc. are reminded in the table below.

Port Designation	Physical Identification
A, B, F	Serial ports
С	Bluetooth
E	Modem
I	Ethernet
P, Q	Ethernet
M	Internal memory
U	USB Device
R	Sessions

Embedded NTRIP

Current

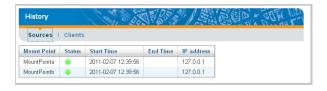
Caster

This web page gives access to two different tabs:

 Sources tab: This tab lists the mount points currently seen by the NTRIP caster. For each mount point, the table provides the mount point name, the time when the data source started to be available through that mount point, and the IP address of that source. The Status column (second column) indicates the following:

Status	Meaning
(iroon light	Mount point declared in the NTRIP caster source table and
	data are currently available through this mount point.

Status	Meaning
Red light Mount point declared in the NTRIP caster source table b data are currently available through this mount point.	
Orange light	Mount point not declared in the NTRIP caster source table. Data currently available from this mount point. A receiver alarm is also triggered in that case.


• Clients tab: This tab lists all the users currently connected to the NTRIP caster. For each user, the table provides the user name, the mount point to which the user is connected, the time when the connection to the mount point started and the user IP address.

History

The History web page is an interpretation of the log file presented below. This page gives access to two different tabs:

- Sources tab: This tab lists all the available sources of corrections since the log file was started. For each source, the table provides the mount point name, the current status of the source (green: available; red: unavailable), the times when the source started and stopped to be available, as well as its IP address.
- Clients tab: This tab lists all the users that have been or were connected to the NTRIP caster since the log file was created. For each user, the table provides the user name, the mount point to which the user is, or was connected, the times when the connection to the mount point started and stopped, as well as the user IP address.

Log

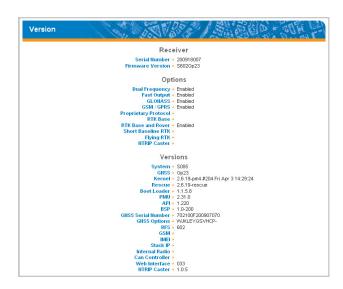
This web page provides a view of the log file, which is a viewable text file listing all the events detected since the log file was created.

When the log file reaches 1Mbyte in size, it is closed and saved, becoming the "old" log file. A new log file is then created.

Later when the new log file reaches 1 Mbyte in size, it is closed and saved, becoming in turn the "old" log file. Data logging is then resumed in the first log file, etc.

Alarms

This page allows you to list all the alarms triggered in the receiver since it was last powered on. The table is cleared every time the receiver is powered on. When an alarm is set, go to **Terminal Window** to acknowledge it.


The following information is provided for each alarm.

Parameter	Designation
Date	Date when the alarm was triggered.
Code	Alarm code, as reported on the receiver display screen.
Sub Code	Alarm sub-code, as reported on the receiver display screen.
Message	Brief identification of the alarm.

Version

The Version page provides three different groups of information:

- Receiver
- Options
- Versions

These three groups are detailed below.

Receiver

See the description of each parameter in the table below.

Parameter	Designation	\$PASHQ
Serial Number	Receiver Serial Number	RID
Firmware Version	An 8-character string in the form "SxxxGxxx". The first four characters stand for the System firmware ver- sion, and the last four for the GNSS firmware version.	RID

Options

See the description of each parameter in the table below. For each possible firmware option, "Enabled" means the option has been installed. A blank field means the opposite ("Disabled").

Parameter	Designation	\$PASHQ
Dual Frequency	GNSSL2 option ("P" option)	RID
Fast Output	FASTOUTPUT option ("F" option)	RID
GLONASS	GLONASS option ("S" option)	RID
GSM / GPRS	MODEM option ("Z" option)	RID
Proprietary Protocol	RTK with proprietary formats only ("M" option)	RID
RTK Base	RTK base option ("N" option)	RID
RTK Base & Rover	Unlimited RTK ("K" option)	RID
Short Baseline RTK	Limited RTK range ("L" option)	RID
Flying RTK	Flying RTK mode only ("R" option)	RID
NTRIP Caster	Embedded NTRIP Caster ("C" option)	RID

Versions

See the description of each parameter in the table below.

Parameter	Designation	\$PASHQ
System	System firmware version	VERSION
GNSS	GNSS firmware version	VERSION
Kernel	Kernel firmware version	VERSION
Rescue	Rescue firmware version	VERSION
Boot Loader	Boot Loader firmware version	VERSION
PMU	PMU firmware version	VERSION
API	API firmware version	VERSION
BSP	BSP firmware version	VERSION
GNSS Serial Number	GNSS Serial Number (a 16-character string)	VERSION

Parameter	Designation	\$PASHQ
GNSS Options	A string of letters. Each letter represents an installed option.	VERSION
RFS	Root File System firmware version	VERSION
GSM	Modem firmware version	VERSION
IMEI	Modem hardware ID	VERSION
Stack IP	Modem Stack IP firmware version	VERSION
Internal Radio	Internal radio firmware version	VERSION
Can Controller	Can Controller firmware version	VERSION
Web Interface	Web Interface firmware version	VERSION
NTRIP Caster	NTRIP caster firmware version	VERSION

Configuration Tab

Making Changes to a Receiver Configuration

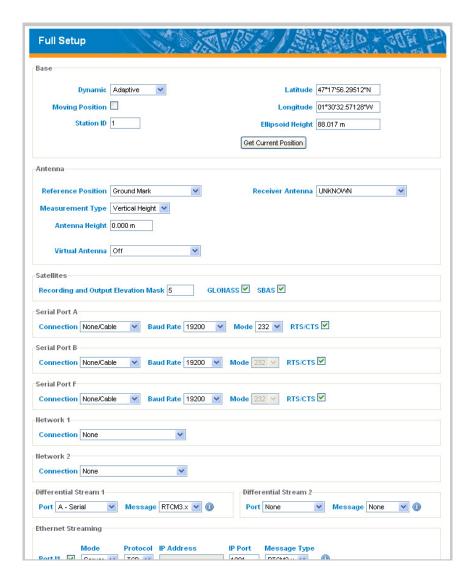
Please read below the general instructions and notes about the **Configuration** tab:

- Clicking on the Configuration tab causes the connected receiver to display its current settings.
- You may have to wait a few seconds before the receiver can respond.
- The content of the Configuration tab is read once on opening each page.
- Whenever you change one or more receiver parameters in a page, you need to click on the **Configure** button located at the bottom of the screen to let the Web Server upload the new parameters to the receiver.

When you click on the **Configure** button, a routine is run to check the validity of the new parameters and a new page opens in the Web Server. If the new parameters are valid, the message **Successful** is displayed after all the new parameters have effectively been uploaded to the receiver.

If some of them are not valid, the message **Failed** is displayed, followed by the list of invalid parameters. You then need to return to the relevant Configuration page, correct the erroneous parameters and resume the Configuration operation.

Note that in the receiver, any attempt to replace a parameter (hence a valid one) with a new parameter that is invalid will always abort (i.e. the receiver will keep the valid parameter in its memory).


 In each of the tables presented hereafter to describe the ProFlex 500 configuration parameters, the third column provides for reference the relevant \$PASHS command, that is the set command you could alternatively use to set or change the described parameters.

Base Full Setup

If the receiver you are communicating with is a base or if you want to change it into a base, click on **Base Setup**. The following groups of parameters need to be defined:

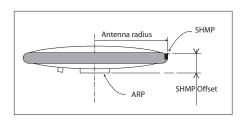
- Base
- Antenna
- Satellites
- Serial Ports (A, B, F)
- Network 1, Network 2

- Differential Streams (1 and 2)
- Ethernet Streaming

These groups of parameters are detailed below.

Base

Use this area to enter the operating mode for the base, as well as its position (if appropriate). See the description of each parameter in the table below.


Parameter	Designation	\$PASHS
Dynamic	Choose the dynamic model that best suits the base motion. For a static base, the good choice is obviously "Statio". For a moving base, choose the best option describing the motion of the base receiver.	DYN
Moving Posi- tion	Enable this button if the base you are defining is a moving base.	CPD,MOD
Station ID	Choose and enter a station Id for your reference station, according to the type of differential messages it will generate: • 0-1023 (RTCM 2.3) • 0-4095 (RTCM 3.x and ATOM) • 0-31 (CMR & CMR+)	STI
"Get current position" button	Click on this button if you want to allocate the last position computed by the receiver as the reference position for the base. As a result, the Lat/Lon/ Height fields below are updated with the coordinates of this last computed position.	CPD,MOD
Latitude Longitude Ellipsoid Height	Latitude, longitude and ellipsoidal height defining the reference position of the base.	POS

Antenna

Use this area to define the parameters of the antenna used physically at the base, as well as a virtual antenna if necessary. A virtual antenna may be defined to allow the base to deliver raw data as if it were collected with this antenna. See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Reference Position	Select one of the options below to define the physical location of the base: L1 phase center Antenna Reference Point (ARP) Ground mark	ANR
Measurement Type	Specify the type of measurement ("Slant" or "Vertical") through which the above antenna height was measured.	ANH
Antenna Height	Enter the measured antenna height according to the measurement type used and the selected distance unit.	ANT or ANH

Parameter	Designation	\$PASHS
Receiver antenna	Select the name of the antenna used at the base. This antenna name can only be chosen from a list of antenna names stored in the receiver. UNKNOWN, NULLANTENNA, ADVNULLANTENNA are special definitions of antennas typically used as virtual antennas.	ANP,OWN
Antenna Radius	(Only if "Slant Height" measurement type selected). Enter the antenna radius according to the selected distance unit.	ANT
SHMP Offset	(Only if "Slant Height" measurement type selected). Enter the vertical offset of the Slant Height Measurement Point for the antenna used by the rover. Take care to enter this parameter in the selected distance unit. See also the Note below.	ANT
Virtual Antenna	This parameter allows you to define a virtual antenna: • Select "Off" if you do not want to define one • If you want one, select the virtual antenna name for which you would like the receiver to deliver raw data, i.e. as if the raw data had been collected using this antenna. This antenna name can only be chosen from a list of antenna names stored in the receiver. NULLANTENNA, ADVNULLANTENNA, etc. are the most commonly used virtual antennas.	ANP,OUT

Satellites

Use this area to define the constellations tracked by the base as well as the elevation mask applied to all constellations. See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Recording and Output Eleva- tion Mask	Enter the elevation mask, in degrees, used by the receiver to determine which raw/differential data from each visible satellite should be recorded or output, depending on the elevation of the satellite. No data from any visible satellite located below this elevation angle will be recorded or output.	ELM
GLONASS	Check this button to enable GLONASS tracking (requires installed S option). Clear it otherwise.	GLO
SBAS	Check this button to enable SBAS tracking. Clear it otherwise.	SBA

Serial Ports

Use this area to set the receiver ports and declare the different external devices connected to them. For each port (ports A, B, F), set their parameters as explained in the table below.

Parameter	Designation	\$PASHS
Connection	Choose the device to which the port is connected. The possible choices are: None/Cable: The port is not used or is connected to an external device via a cable. U-Link TRx (on port A only): The port is connected to a U-Link TRx. Magellan UHF (on port A only): The port is connected to transmitter P/N 800986-x0. Pacific Crest: The port is connected to a PDL transmitter. ARF7474B EU: The port is connected to a license-free radio for use in European countries. ARF7474A NA: The port is connected to a license-free radio for use on the North American continent.	RDP,TYP (+ ECP)
Baud Rate	Choose a baud rate from the list. The selected rate will be used by the port.	PRT
Mode	Port A only. Specify the type of serial link ("RS232 or "RS422") for Port A.	MDP
RTS/CTS	Check this button to enable the RTS/CTS handshaking protocol on the port (if 232). Clear it otherwise.	CTS

Network 1

Use this area to declare the type of connection used by the base to distribute its data through a mobile communication network or through the Internet (network 1). See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Connection	 Choose the type of network connection used in the receiver: None: No network connection used. Modem CSD - port E: The base can be called by a rover through its internal modem for a point-to-point phone connection (CSD mode). Modem Direct IP - Port E: The base is connected to a remote server (possibly RTDS) via Internet using its internal modem and a Direct IP connection. Modem NTRIP Server - port E: The base is connected to the Internet via its internal modem using an IP connection for sending its data to an NTRIP caster. (The base is then a "client".) Ethernet Direct IP - port P: The base is connected to the Internet through its Ethernet port. Ethernet NTRIP Server - port P: The base is connected to the Internet through its Ethernet port using an IP connection to send its data to an NTRIP caster. (The base is then a "client".) Embedded NTRIP Caster - Port P: (Available only if the NTRIP caster option is installed): The base delivers its data to the embedded NTRIP caster via port P. 	MDM, NTR,PAR DIP

Direct IP via port E (Modem) or port P (Ethernet)

Parameter	Designation	\$PASHS
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	-
Address	IP address of the remote server	DIP,PAR
Port	IP port number of the remote server	DIP,PAR
Login	(Optional, depending on the remote server) Login required to connect to the remote server	DIP,PAR
Password	(Optional, depending on the remote server used) Password required to connect to the remote server. If a login and password are needed for the connection to the server, then the receiver will send the \$GPUID command to the server after you have entered these two parameters and clicked on the Configure button.	DIP,PAR

NTRIP Server via port E (Modem) or port P (Ethernet)

Parameter	Designation	\$PASHS
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	-
Address	IP address of the NTRIP caster	NTR,PAR
Port	IP port number of the NTRIP caster	NTR,PAR
Mount Point	Mount point used to connect to the NTRIP caster	NTR,MTP
Password	Password required to send data to the NTRIP caster	NTR,PAR

Embedded NTRIP Caster via port P (Ethernet)

Parameter	Designation	\$PASHS
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	-
Address	A read-only field reading "localhost", invoking the IP address of the receiver itself.	-
Port	A read-only field indicating the IP port of the NTRIP caster, as defined on the NTRIP caster settings page.	-
Mount Point	Choose one of the mount points declared in the embedded NTRIP caster through which the data will be made available to caster users.	NTR,MTP
Password	A read-only field indicating the password of the NTRIP caster, as defined on the NTRIP caster settings page.	

Network 2

Use this area to declare the type of connection used by the base to distribute its data through the Internet (network 2). See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Connection	Choose the type of network connection used in the receiver: None: No network connection used. Ethernet Direct IP - port Q: The base is connected to the Internet through its Ethernet port. Ethernet NTRIP Server - port Q: The base is connected to the Internet through its Ethernet port using an IP connection to send its data to an NTRIP caster. (The base is then a "client".) Embedded NTRIP Caster - Port Q: (Available only if the NTRIP caster option is installed): The base delivers its data to the embedded NTRIP caster via port Q.	MDM, NTR,PAR DIP

Direct IP via port Q (Ethernet)

Parameter	Designation	\$PASHS
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	-
Address	IP address of the remote server	DIP,PAR
Port	IP port number of the remote server	DIP,PAR
Login	(Optional, depending on the remote server) Login required to connect to the remote server	DIP,PAR
Password	(Optional, depending on the remote server used) Password required to connect to the remote server. If a login and password are needed for the connection to the server, then the receiver will send the \$GPUID command to the server after you have entered these two parameters and clicked on the Configure button.	DIP,PAR

NTRIP Server via port Q (Ethernet)

Parameter	Designation	\$PASHS
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	-
Address	IP address of the NTRIP caster	NTR,PAR
Port	IP port number of the NTRIP caster	NTR,PAR
Mount Point	Mount point used to connect to the NTRIP caster	NTR,MTP
Password	Password required to send data to the NTRIP caster	NTR,PAR

Embedded NTRIP Caster via port Q (Ethernet)

Parameter	Designation	\$PASHS
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	-
Address	A read-only field reading "localhost", meaning that this parameter is managed by the receiver itself.	-
Port	A read-only field indicating the IP port of the NTRIP caster, as defined on the NTRIP caster settings page.	-
Mount Point	Choose one of the mount points declared in the embedded NTRIP caster through which the data will be made available to caster users.	NTR,MTP
Password	A read-only field indicating the password of the NTRIP caster, as defined on the NTRIP caster settings page.	

Differential Streams

A receiver configured as a base can generate two independent, differential data streams (1 and 2). This area allows you to define these two streams. For each differential stream, define the following parameters.

Parameter	Designation	\$PASHS
Port	 Choose the port delivering the differential stream. The possible choices are: A - Serial: Stream available on port A. B - Serial: Stream available on port B. F - Serial: Stream available on port F. C - Bluetooth: Stream sent to external device through Bluetooth. E - Modem: Stream forwarded to internal modem I - Ethernet: Stream available on the Ethernet port through Direct IP connection (the base is a server) P - Ethernet: Stream available on the Ethernet port through Direct IP or NTRIP connection. The base is a client. Q - Ethernet: Stream available on the Ethernet port through Direct IP or NTRIP connection. The base is a client. M - Memory: Stream saved to internal memory. U - USB Device: Stream sent to external device via the USB port. 	BAS

Parameter	Designation	\$PASHS
Message	Choose the type of differential data delivered by the port: None ATOM RTCM3.x RTCM2.3 CMR CMR+ DBEN Place the mouse cursor over the "I" sign (to the right of the Message drop-down list) to read the details of the currently set messages.	BAS

Ethernet Streaming

Use this area to configure the I1 to I9 ports of the receiver as well as the type of data delivered through these ports. Each port can support up to ten connections simultaneously. Define the following parameters for each port:

Parameter	Designation	\$PASHS
Port lx	Click this option if the port is to be used. If the port is to be idle, keep the option cleared.	DST
Mode	Specify whether the port will be used in Server or Client mode: In Client mode, you will choose the remote server with which the base will communicate through an IP connection. In Server mode, the base will make its output data available for any remote client allowed to communicate with it through an IP connection.	DST
Protocol	Specify whether the IP connection will be using the TCP or UDP protocol.	DST
IP Address	If the port is used in Client mode, enter the IP address of the remote server with which the port will communicate. This field is irrelevant if you select the Server mode.	DST
IP Port	If the port is used in Client mode, enter the port num- ber of the remote server with which the port will com- municate. If it's used in Server mode, enter the port number of the port you are currently setting.	DST

Parameter	Designation	\$PASHS
Message Type	Choose from the list below the type of message routed through the port: None: no data delivered through the port. ATOM RTCM3.x RTCM2.3 CMR CMR+ DBEN Place the mouse cursor over the "I" sign (to the right of the Message Type drop-down list) to read the details of the currently set messages.	BDS

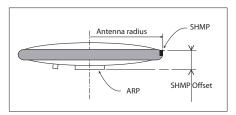
Setting the Base as an NTRIP Server

This page is an abridged version of the Base Setup-Full Setup page in which only the settings required to configure a base as an NTRIP server are presented. The base can serve as an NTRIP server for two external NTRIP casters, possibly delivering different data to each of the NTRIP casters, or for the embedded NTRIP caster.

NTRIP Server			CONTRACTOR OF THE PARTY OF THE
Base			
Dynamic	Static 💌	Latitude	47°17'56.29512"N
Station ID	1	Longitude	01°30'32.57128"VV
		Ellipsoid Height	88.017 m
		Get Current Position	
Antenna			
Reference Position	Ground Mark	Receiver Antenna	UNKNOWN
Measurement Type	Vertical Height		
Antenna Height	0.000 m		
Virtual Antenna	Off		
Satellites Recording and Outpu	rt Elevation Mask 5	GLONASS ♥ SBAS ♥	
NTRIP Server 1 Connection External	NTRIP Caster via Modem	Connect How 🗹	
Address	0.0.0.0	Password	
Port Mount Point	2100		
	RTCM3.x 🕶 🕕		
NTRIP Server 2			
Connection None	~		
		Configure	

BaseUse this area to enter the position of the base.

Parameter	Designation	\$PASHS
Dynamic	Necessarily static.	DYN
Station ID	Choose and enter a station ID for your reference station, according to the type of differential messages it will generate: • 0-1023 (RTCM 2.3) • 0-4095 (RTCM 3.x and ATOM) • 0-31 (CMR & CMR+)	STI
"Get current position" button	Click on this button if you want to allocate the last position computed by the receiver as the reference position for the base. As a result, the Lat/Lon/ Height fields below are updated with the coordinates of this last computed position.	CPD,MOD


Parameter	Designation	\$PASHS
Latitude Longitude Ellipsoid Height	Latitude, longitude and ellipsoidal height defining the reference position of the base. May be entered manually or using the "Get Current position" button.	POS

Antenna

Use this area to define the parameters of the antenna used physically at the base, as well as a virtual antenna if necessary. A virtual antenna may be defined to allow the base to deliver raw data as if it were collected with this antenna. See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Reference Position	Select one of the options below to define the physical location of the base: L1 phase center Antenna Reference Point (ARP) Ground mark	ANR
Measurement Type	Specify the type of measurement ("Slant" or "Vertical") through which the above antenna height was measured.	ANH
Antenna Height	Enter the measured antenna height according to the measurement type used and the selected distance unit.	ANT or ANH
Receiver Antenna	Select the name of the antenna used at the base. This antenna name can only be chosen from a list of antenna names stored in the receiver. UNKNOWN, NULLANTENNA, ADVNULLANTENNA are special definitions of antennas typically used as virtual antennas.	ANP,OWN
Antenna Radius	(Only if "Slant Height" measurement type selected). Enter the antenna radius according to the selected distance unit.	ANT
SHMP Offset	(Only if "Slant Height" measurement type selected). Enter the vertical offset of the Slant Height Measurement Point for the antenna used by the rover. Take care to enter this parameter in the selected distance unit. See also the Note below.	ANT

Parameter	Designation	\$PASHS
Virtual Antenna	This parameter allows you to define a virtual antenna: • Select "Off" if you do not want to define one • If you want one, select the virtual antenna name for which you would like the receiver to deliver raw data, i.e. as if the raw data had been collected using this antenna. This antenna name can only be chosen from a list of antenna names stored in the receiver. This antenna name can only be chosen from a list of antenna names stored in the receiver. NULLANTENNA, ADVNULLANTENNA, etc. are the most commonly used virtual antennas.	ANP,OUT

Satellites

Use this area to define the constellations tracked by the base as well as the elevation mask applied to all constellations. See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Recording and Output Eleva- tion Mask	Enter the elevation mask, in degrees, used by the receiver to determine which raw/differential data from each visible satellite should be recorded or output, depending on the elevation of the satellite. No data from any visible satellite located below this elevation angle will be recorded or output.	ELM
GLONASS	Check this button to enable GLONASS tracking (requires installed S option). Clear it otherwise.	GLO
SBAS	Check this button to enable SBAS tracking. Clear it otherwise.	SBA

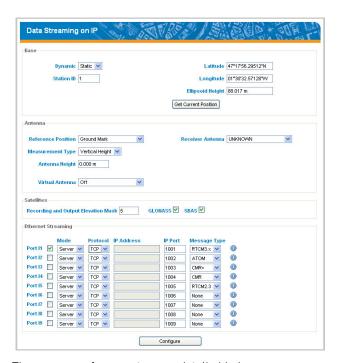
NTRIP Server 1

Use this area to declare the type of connection used by the base to deliver its data to an NTRIP caster via a mobile communication network (port E) or directly through the

Internet (port P). See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Connection	Choose the type of network connection used in the receiver to connect to the NTRIP caster: External NTRIP Caster via Modem: The base is connected to the Internet via its internal modem used in GPRS mode (port E used). External NTRIP Caster via Ethernet: The base is directly connected to the Internet through its Ethernet port (port P used). Embedded NTRIP Caster: (Available only if the NTRIP caster option is installed): The base delivers its data to the embedded NTRIP caster.	MDM, NTR,PAR
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	
Address, Port, Mount Point, Pass- word	Enter the network information relevant to the NTRIP caster to which the base is expected to deliver its data. When the base delivers its data to the embedded NTRIP caster, there is no password or IP address needed. You only have to choose the mount point through which the data from the base will be made available to users through the NTRIP caster.	
Message	Choose the type of message generated by the base. Then place the mouse cursor over the "I" sign (to the right of the Message drop-down list) to read the details of the currently set messages.	-

NTRIP Server 2


Use this area to declare the type of connection used by the base to deliver its data to a second NTRIP caster, directly through the Internet (port Q). See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Connection	Choose the type of network connection used in the receiver to connect to the NTRIP caster: None: No connection to an NTRIP caster required External NTRIP Caster via Ethernet: The base is directly connected to the Internet through its Ethernet port (port Q used). Embedded NTRIP Caster: (Available only if the NTRIP caster option is installed): The base delivers its data to the embedded NTRIP caster.	MDM, NTR,PAR

Parameter	Designation	\$PASHS
Connect Now	Check this button to let the receiver perform the requested network connection after you have clicked on the Configure button.	
Address, Port, Mount Point, Pass- word	Enter the network information relevant to the NTRIP caster to which the base is expected to deliver its data. When the base delivers its data to the embedded NTRIP caster, there is no password or IP address needed. You only have to choose the mount point through which the data from the base will be made available to users through the NTRIP caster.	
Message	Choose the type of message generated by the base. Then place the mouse cursor over the "I" sign (to the right of the Message drop-down list) to read the details of the currently set messages.	-

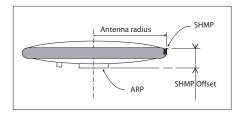
Setting a Base to Generate Data Streams on its Ethernet Port

This page is an abridged version of the Base Setup-Full Setup page only showing the settings required to configure a base for generating data streams on its Ethernet port (ports I1 to I9).

These groups of parameters are detailed below.

Base

Use this area to enter the position of the base.


Parameter	Designation	\$PASHS
Dynamic	Necessarily static.	DYN
Station ID	Choose and enter a station ID for your reference station, according to the type of differential messages it will generate: • 0-1023 (RTCM 2.3) • 0-4095 (RTCM 3.x and ATOM) • 0-31 (CMR & CMR+)	STI
"Get current position" button	Click on this button if you want to allocate the last position computed by the receiver as the reference position for the base. As a result, the Lat/Lon/ Height fields below are updated with the coordinates of this last computed position.	CPD,MOD
Latitude Longitude Ellipsoid Height	Latitude, longitude and ellipsoidal height defining the reference position of the base. May be entered manually or using the "Get Current position" button.	POS

Antenna

Use this area to define the parameters of the antenna used physically at the base, as well as a virtual antenna if necessary. A virtual antenna may be defined to allow the base to deliver raw data as if it were collected with this antenna. See the description of each parameter in the table below.

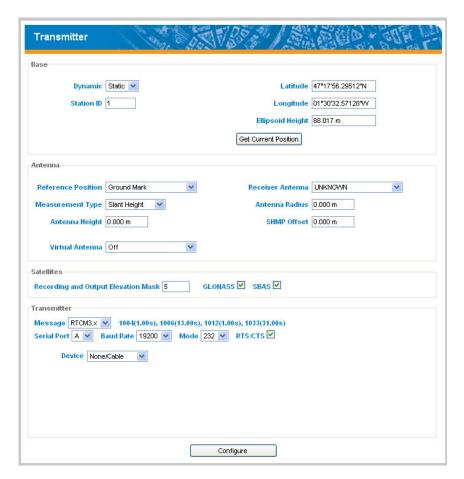
Parameter	Designation	\$PASHS
Reference Position	Select one of the options below to define the physical location of the base: L1 phase center Antenna Reference Point (ARP) Ground mark	ANR
Measurement Type	Specify the type of measurement ("Slant" or "Vertical") through which the above antenna height was measured.	ANH
Antenna Height	Enter the measured antenna height according to the measurement type used and the selected distance unit.	ANT or ANH
Receiver antenna	Select the name of the antenna used at the base. This antenna name can only be chosen from a list of antenna names stored in the receiver. UNKNOWN, NULLANTENNA, ADVNULLANTENNA are special definitions of antennas typically used as virtual antennas.	ANP,OWN

Parameter	Designation	\$PASHS
Antenna Radius	(Only if "Slant Height" measurement type selected). Enter the antenna radius according to the selected distance unit.	ANT
SHMP Offset	(Only if "Slant Height" measurement type selected). Enter the vertical offset of the Slant Height Measurement Point for the antenna used by the rover. Take care to enter this parameter in the selected distance unit. See also the Note below.	ANT
Virtual Antenna	This parameter allows you to define a virtual antenna: Select "Off" if you do not want to define one If you want one, select the virtual antenna name for which you would like the receiver to deliver raw data, i.e. as if the raw data had been collected using this antenna. This antenna name can only be chosen from a list of antenna names stored in the receiver. NULLANTENNA, ADVNULLANTENNA, etc. are the most commonly used virtual antennas.	ANP,OUT

Satellites

Use this area to define the constellations tracked by the base as well as the elevation mask applied to all constellations. See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Recording and Output Eleva- tion Mask	Enter the elevation mask, in degrees, used by the receiver to determine which raw/differential data from each visible satellite should be recorded or output, depending on the elevation of the satellite. No data from any visible satellite located below this elevation angle will be recorded or output.	ELM
GLONASS	Check this button to enable GLONASS tracking (requires installed S option). Clear it otherwise.	GLO
SBAS	Check this button to enable SBAS tracking.Clear it otherwise.	SBA


Ethernet Streaming

Use this area to configure the I1 to I9 ports of the receiver as well as the type of data delivered through these ports. Each port can support up to ten connections simultaneously. Define the following parameters for each port:

Parameter	Designation	\$PASHS
Port Ix	Click this option if the port is to be used. If the port is to be idle, keep the option cleared.	DST
Mode	Specify whether the port will be used in Server or Client mode: In Client mode, you will choose the remote server with which the base will communicate through an IP connection. In Server mode, the base will make its output data available for any remote client allowed to communicate with it through an IP connection.	DST
Protocol	Specify whether the IP connection will be using the TCP or UDP protocol.	DST
IP Address	If the port is used in Client mode, enter the IP address of the remote server with which the port will communicate. This field is irrelevant if you select the Server mode.	DST
IP Port	If the port is used in Client mode, enter the port num- ber of the remote server with which the port will com- municate. If it's used in Server mode, enter the port number of the port you are currently setting.	DST
Message Type	Choose from the list below the type of message routed through the port: None: no data delivered through the port. ATOM RTCM3.x RTCM2.3 CMR CMR+ Place the mouse cursor over the "I" sign (to the right of the Message Type drop-down list) to read the details of the currently set messages.	BDS

Setting a Base With a Radio Transmitter

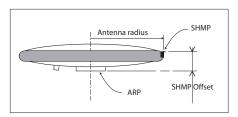
This page is an abridged version of the Base Setup-Full Setup page only showing the settings required to configure a base with an external radio transmitter.

These groups of parameters are detailed below.

Base

Use this area to enter the position of the base.

Parameter	Designation	\$PASHS
Dynamic	Necessarily static.	DYN
Station ID	Choose and enter a station ID for your reference station, according to the type of differential messages it will generate: • 0-1023 (RTCM 2.3) • 0-4095 (RTCM 3.x and ATOM) • 0-31 (CMR & CMR+)	STI


Parameter	Designation	\$PASHS
"Get current position" button	Click on this button if you want to allocate the last position computed by the receiver as the reference position for the base. As a result, the Lat/Lon/ Height fields below are updated with the coordinates of this last computed position.	CPD,MOD
Latitude Longitude Ellipsoid Height	Latitude, longitude and ellipsoidal height defining the reference position of the base. May be entered manually or using the "Get Current position" button.	POS

Antenna

Use this area to define the parameters of the antenna used physically at the base, as well as a virtual antenna if necessary. A virtual antenna may be defined to allow the base to deliver raw data as if it were collected with this antenna. See the description of each parameter in the table below.

Parameter	Designation	\$PASHS
Reference Position	Select one of the options below to define the physical location of the base: L1 phase center Antenna Reference Point (ARP) Ground mark	ANR
Measurement Type	Specify the type of measurement ("Slant" or "Vertical") through which the above antenna height was measured.	ANH
Antenna Height	Enter the measured antenna height according to the measurement type used and the selected distance unit.	ANT or ANH
Receiver antenna	Select the name of the antenna used at the base. This antenna name can only be chosen from a list of antenna names stored in the receiver. UNKNOWN, NULLANTENNA, ADVNULLANTENNA are special definitions of antennas typically used as virtual antennas.	ANP,OWN
Antenna Radius	(Only if "Slant Height" measurement type selected). Enter the antenna radius according to the selected distance unit.	ANT
SHMP Offset	(Only if "Slant Height" measurement type selected). Enter the vertical offset of the Slant Height Measurement Point for the antenna used by the rover. Take care to enter this parameter in the selected distance unit. See also the Note below.	ANT

Parameter	Designation	\$PASHS
Virtual Antenna	This parameter allows you to define a virtual antenna: • Select "Off" if you do not want to define one • If you want one, select the virtual antenna name for which you would like the receiver to deliver raw data, i.e. as if the raw data had been collected using this antenna. This antenna name can only be chosen from a list of antenna names stored in the receiver. NULLANTENNA, ADVNULLANTENNA, etc. are the most commonly used virtual antennas.	ANP,OUT

Satellites

Use this area to define the constellations tracked by the base as well as the elevation mask applied to all constellations. See the description of each parameter in the table below.

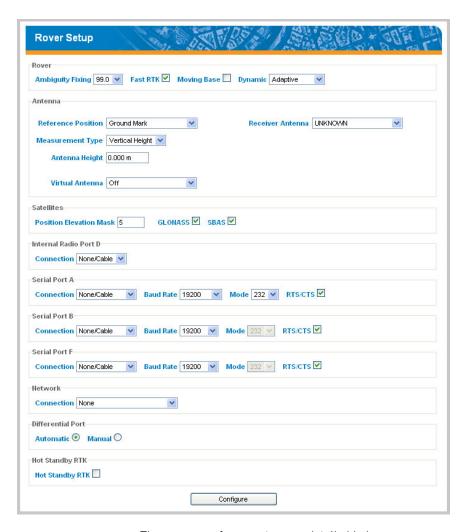
Parameter	Designation	\$PASHS
Recording and Output Eleva- tion Mask	Enter the elevation mask, in degrees, used by the receiver to determine which raw/differential data from each visible satellite should be recorded or output, depending on the elevation of the satellite. No data from any visible satellite located below this elevation angle will be recorded or output.	ELM
GLONASS	Check this button to enable GLONASS tracking (requires installed S option). Clear it otherwise.	GLO
SBAS	Check this button to enable SBAS tracking. Clear it otherwise.	SBA

Transmitter

Use this area to set the receiver port to which the external radio transmitter is connected, declare the type of radio used and enter its settings.

Parameter	Designation	\$PASHS
Message	Choose the type of differential message that will be broadcast by the transmitter. The detail of the selected message appears next to the field.	
Serial Port	Specify the serial port to which the transmitter is connected.	
Baud Rate	Choose the baud rate used on that port.	PRT
Mode	Only port A can be RS232 or RS422. All the others are necessarily RS232.	
RTS/CTS	Check this button to enable the RTS/CTS handshaking protocol on the port (if RS232). Clear it otherwise.	CTS
Device	Select the model of the external radio connected to the base: None/Cable U-Link TRx Magellan UHF: Radio transmitter P/N 800986 Pacific Crest ARF7474B EU: License-free radio for use in Europe ARF7474A NA: License-free radio for use in North America	RDP,TYP

Following the selection of a radio type, new fields appear just underneath the **Device** field showing the current settings of the transmitter. Set the radio parameters as follows:


Parameter	Designation	\$PASHS
Load trans- mitter settings button	(All radios except ARF7474A NA) First click on this button to load the current settings of the chosen radio type ("Loading" is displayed in the Channel field while these settings are being loaded). As a result, the Channel, Protocol and Airlink Speed fields are refreshed to view the current radio settings.	\$PASHQ, RDP,PAR
Channel	(All radios except ARP7474A NA) Choose one of the available channels for this radio.	RDP,PAR
Protocol	(For U-Link TRx and Pacific Crest radios only) Choose one of the protocols below: DSNP (U-Link TRx only) Transparent TrimTalk (Pacific Crest only)	RDP,PAR

Parameter	Designation	\$PASHS
Airlink Speed	(For U-Link TRx and Pacific Crest radios only) Choose one of the baud rates below: 4800 7600 (U-Link TRx only) 9600 19200 (Pacific Crest only)	RDP,PAR
Forward Error Correction	 (For Pacific Crest radio only) Choose whether this option must be enabled or not in the Pacific Crest transmitter:. Button on: Enabled Button off: Disabled 	RDP,PAR
Scrambler	(For Pacific Crest radio only) Choose whether this option must be enabled or not in the Pacific Crest transmitter:. Button on: Enabled Button off: Disabled	RDP,PAR

Rover Setup

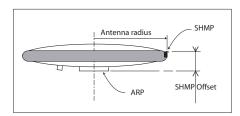
If the receiver you are communicating with is a rover or if you want to change it into a rover, click on **Rover Setup**. Seven groups of parameters need to be defined:

- Rover
- Antenna
- Satellites
- Internal Radio Port (D)
- Serial Ports (A, B, F)
- Network
- Differential Port
- Hot Standby RTK

These groups of parameters are detailed below.

Rover

Use this area to specify the position computation mode used as well as the type of base the rover will be working from.


Parameter	Designation	\$PASHS
Ambiguity Fixing	Define the confidence level required of every RTK solution to be valid. The possible choices are: 0: The rover will stay in "Flying RTK" mode (float mode) once this type of solution is obtained (RTK solution never delivered). 95.0: 95% of the measurements need to pass the internal quality tests. 99.0: 99% of the measurements need to pass the internal quality tests. 99.9: 99.9% of the measurements need to pass the internal quality tests.	CPD,AFP
Fast RTK	Set this option as follows: Check it to enable Fast RTK. Clear it to disable Fast RTK.	CPD,FST
Moving Base	Keep this box cleared for a rover using a static base, check it if the rover will be working from a moving base. Enabling the Moving Base option will clear the Fast RTK option if it was enabled previously.	CPD,MOD
Dynamic	Choose the dynamic model that best suits the rover motion.	DYN

Antenna

Use this area to define the parameters of the antenna used physically at the rover, as well as a virtual antenna if necessary. A virtual antenna may be defined to allow the rover to deliver raw data as if those were collected with this antenna.

Parameter	Designation	\$PASHS
Reference Position	Select one of the options below to define the reference location of the antenna: L1 phase center Antenna Reference Point (ARP) Ground mark	ANR
Measurement Type	Specify the type of measurement ("Slant" or "Vertical") through which the above antenna height was measured.	ANH
Antenna Height	Enter the measured antenna height according to the measurement type used and the selected distance unit.	ANT or ANH

Parameter	Designation	\$PASHS
Receiver antenna	Select the name of the antenna used by the rover. This antenna name can only be chosen from a list of antenna names stored in the receiver. UNKNOWN, NULLANTENNA, ADVNULLANTENNA are special definitions of antennas typically used as virtual antennas.	ANP,OWN
Antenna Radius	(Only if "Slant Height" measurement type selected). Enter the antenna radius according to the selected distance unit.	ANT
SHMP Offset	(Only if "Slant Height" measurement type selected). Enter the vertical offset of the Slant Height Measurement Point for the antenna used by the rover. Take care to enter this parameter in the selected distance unit. See also the Note below.	ANT
Virtual Antenna	This parameter allows you to define a virtual antenna: • Select "Off" if you do not want to define one • If you want one, select the virtual antenna name for which you would like the receiver to deliver raw data, i.e. as if the raw data had been collected using this antenna. This antenna name can only be chosen from a list of antenna names stored in the receiver. NULLANTENNA, ADVNLLANTENNA, etc. are the most commonly used virtual antennas.	ANP,OUT

Satellites

Use this area to define the constellations received by the rover as well as the elevation mask applied for all constellations.

Parameter	Designation	\$PASHS
	Enter the elevation mask, in degrees, used by the receiver to compute the position. No data from any visible satellite located below this elevation angle will be used in the position processing.	ELM

Parameter	Designation	\$PASHS
GLONASS	Check this button to enable GLONASS tracking (requires installed S option). Clear it otherwise.	GLO
SBAS	Check this button to enable SBAS tracking.Clear it otherwise.	SBA

Internal Radio Port

Use this area to turn on or off the internal radio connected to port D.

Parameter	Designation	\$PASHS
Connection	This combo box is in fact a status (read-only) field indicating the type of internal radio currently connected to port D (U-Link RX, PacCrest or None).	RDP,TYP
Power	Use these buttons to control power on the internal radio. Selecting "On" will power up the internal radio when later you click on the Configure button at the bottom of the page. Likewise, selecting "Off" will turn off the radio.	RDP,ON or OFF

Serial Ports

Use this area to set the receiver ports and declare the different external devices connected to them. For each port (ports A, B, F), set their parameters as explained in the table below.

Parameter	Designation	\$PASHS
Connection	Choose the device to which the port is connected. The possible choices are: None/Cable: The port is not connected to any radio. ARF7474B EU: The port is connected to an external license-free radio receiver (for use in Europe). ARF7474A NA: The port is connected to an external license-free radio receiver (for use in North America).	RDP,TYP (+ ECP)
Baud Rate	Choose a baud rate from the list. The selected rate will be used by the port.	PRT
Mode	Port A only. Specify the type of serial link ("RS232 or "RS422") for Port A.	MDP
RTS/CTS	Check this button to enable the RTS/CTS handshaking protocol on the port. Clear it otherwise.	CTS

Network

Use this area to declare the type of connection used by the rover to acquire base data through a mobile communication

network or through the Internet. The content of this area changes depending on your choice in the **Connection** field.

Parameter	Designation	\$PASHS
Connection	 Choose the type of network connection used in the receiver: None: No network connection used. Modem CSD - Port E: The rover can call a base through its internal modem for a point-to-point phone connection (CSD mode). Modem Direct IP - Port E: The rover is connected to the Internet via its internal modem using a Direct IP connection. Modem NTRIP Client - Port E: The rover is connected to the Internet via its internal modem as a client for an NTRIP connection. Ethernet Direct IP - Port P: The rover is connected to the Internet through its Ethernet port using a Direct IP connection. Ethernet NTRIP Client - Port P: The rover is connected to the Internet through its Ethernet port as a client for an NTRIP connection. 	MDM, NTR,PAR

Parameter	Designation	\$PASHS
Connect Now	Check this option if you want the rover to establish a phone communication through the phone number below immediately after you type the Configure button.	MDM,DAL
Phone Num- ber	Enter the phone number of the base (20 digits max.) the rover will communicate with to receive base data.	MDM,PAR

If "Modem Direct IP - Port E" or "Ethernet Direct IP - Port P" is selected, enter the following parameters:

Parameter	Designation	\$PASHS
Connect Now	Check this option if you want the connection to take place just after you click on the Configure button.	MDM,DAL
Address	Enter the IP address or hostname (32 characters max.) of the system the rover has to connect to.	DIP
Port	Enter the IP port number (0-65535) of the system the rover has to connect to.	DIP
Login	If required, enter the login (20 characters max.) through which the connection is allowed.	DIP
Password	If required, enter the password (20 characters max.) through which the connection is allowed.	DIP

If "Modem NTRIP Client - Port E" or "Ethernet NTRIP Client - Port P" is selected, enter the following parameters:

Parameter	Designation	\$PASHS
Connect Now	Check this option if you want the connection to take place just after you click on the Configure button.	NTR,MTP
Address	Enter the IP address of the NTRIP caster	NTR,PAR
Port	Enter the IP port number of the NTRIP caster	NTR,PAR
Mount Point	This field is automatically completed when selecting a row in the open source table (see below).	
Login	Enter the login allowing the receiver to establish the connection with the NTRIP caster.	NTR,PAR
Password	Enter the password allowing the receiver to establish the connection with the NTRIP caster.	NTR,PAR
Load Source Table	Once the IP address and IP port number of the NTRIP server have been entered (see above), click on the Load Source Table button to list the data stream names available from the NTRIP caster. Select one from the table. This will complete the Mount field above automatically.	NTR,LOD
Send NMEA	If the rover operates in a VRS network, check this button so the rover can return its position to the network through an NMEA message. Keep it cleared in all other cases.	NME,GGA

Differential Port

Use this area to indicate the way the rover should detect the incoming differential data stream or streams. In Manual mode, you will need to indicate the port(s) used.

Parameter	Designation	\$PASHS
Automatic	Check this option if you want the rover to detect the incoming differential data stream(s) by itself.	CPD,REM
Manual	Check this option if you want to indicate the port(s) on which the incoming differential data stream(s) is (are) received.	CPD,REM

Parameter	Designation	\$PASHS
Stream 1, Stream 2	This field is displayed only when "Manual" is chosen. Choose the port on which each of the differential data streams #1 and #2 is received. The possible choices are: None: No incoming differential data stream A - Serial: Port A B - Serial: Port B F - Serial: Port F C - Bluetooth D - Internal Radio E - Modem I - Ethernet: Serial-like connection in server mode P - Ethernet: NTRIP or Direct IP in client mode	CPD,REM

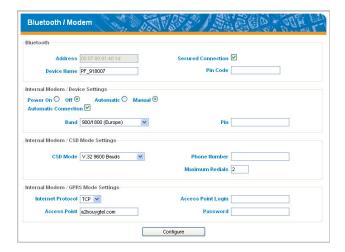
Hot Standby RTK

Hot Standby RTK is the process of making available a second RTK position solution in the background. Should the primary RTK solution stop being delivered by the receiver for some reason, then the second RTK solution would be provided instead, until the primary RTK solution is back again and valid.

Parameter	Designation	\$PASHS
Hot Standby RTK	Check this option if you want the rover to operate in Hot Standby RTK.	CPD,MOD
Stream	This field is visible only after the above option has been activated. Choose the port routing the differential data stream feeding the second RTK engine. This may be A, B, C, D, E, F, I or P.	CPD,MOD

Serial Ports

This page is used to set the receiver serial ports (A, B and F).


For each port, set the parameters below.

Parameter	Designation	\$PASHS
Baud Rate	Choose an option from the drop-down list.	PRT
Mode	(Port A only) Choose an option from the drop-down list (RS232 or RS 422).	MDP
RTS/CTS	Enable or disable the handshaking protocol.	CTS
Power ON	(Ports B & F only) Use this option to turn on or off ports B and F.	ECP,ON or OFF

Bluetooth/Modem Connections

This page is used to define the properties of the receiver's Bluetooth and internal modem devices. The following groups of parameters need to be defined:

- Bluetooth
- Internal Modem Device Settings
- Internal Modem CSD Mode Settings
- Internal Modem GPRS Mode Settings

These groups of parameters are detailed below.

Bluetooth

Use this area to enter the Bluetooth parameters of the receiver.

Parameter	Designation	\$PASHS
Address	(A Read-Only parameter). This field provides the MAC address of the Bluetooth device in the receiver (hardware identification of the device).	(\$PASHQ,BTH)
Device Name	Freely choose a label (64 characters max.) to designate the Bluetooth device in the receiver.	BTH,NAME
Secured Connection	Enable this option if you want to secure the connection of the receiver with any remote Bluetooth device. With a secured connection, any Bluetooth client will be asked to enter a pin code before it is allowed to communicate with your receiver. If this option is disabled, no pin code will be required and the connection will be established directly.	втн,рім
Pin Code	This field is displayed only after you have enabled the Secured Connection option. Enter a pin code (any number between 0 and 99999999). This pin code will be requested every time an external Bluetooth device will attempt to connect to your receiver.	BTH, PIN

Internal Modem - Device Settings

Use this area to enter the parameters of the internal modem.

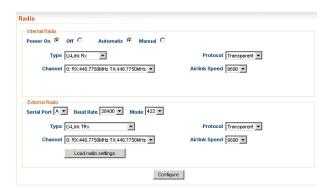
Parameter	Designation	\$PASHS
Power On/Off	Select "On" to power on the modem, or "Off" to power it off.	MDM,OFF or ON
Automatic/Manual Power	Choose one of the options below: Automatic: The modem will be powered on automatically when the receiver is powered on. Manual: The modem will be powered on only on request from the receiver.	MDM,PAR
Automatic Con- nection	Enable this option for a rover using the internal modem in CSD or GPRS mode.	MDM,PAR
Band	Choose the frequency band used by the modem from the list below: • 850/1900 (North America) • 900/1800 (Europe) • 900/1900	MDM,PAR
Pin	Pin code (4 to 8 digits) of the SIM card used by the modem.	MDM,PAR

Internal Modem - CSD Mode Settings

Use this area to set the internal modem when used in CSD mode (Circuit-Switched Data mode).

Parameter	Designation	\$PASHS
CSD Mode	Select one of the following operating standards for the modem used in CSD mode: V.32 9600 baud V.110 9600 baud ISDN	MDM,PAR
Phone Number	Enter the phone number to call in CSD mode.	MDM,PAR
Maximum Redials	Enter the number of authorized attempts to establish the connection. If all the attempts fail, the modem will hang up.	MDM,PAR

Internal Modem - GPRS Mode Settings


Use this area to set the internal modem when used in GPRS mode (General Packet Radio Service mode).

Parameter	Designation	\$PASHS
Internet Protocol	Select one of the following Internet protocols to be used by the modem in GPRS mode: TCP UDP	MDM,PAR
Access Point	Enter the URL of the mobile communication provider.	MDM,PAR
Access Point Login	Enter the login of the mobile communication provider.	MDM,PAR
Password	Enter the password of the mobile communication provider.	MDM,PAR

Radio Connections

This page is used to define the properties of the internal or external radio used by the receiver. The following groups of parameters need to be defined:

- Internal Radio, if the receiver is a rover, or is being changed into a rover.
- External Radio, if the receiver is a base, or is being changed into a base.

These groups of parameters are detailed below.

Internal Radio

Use this area to set the internal radio used in a rover.

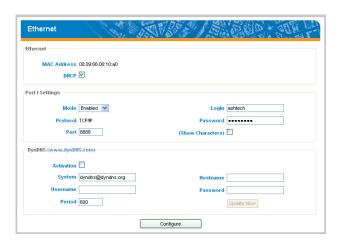
Parameter	Designation	\$PASHS
Power On/Off	Enable this option to turn on the internal radio receiver right after you have clicked on the Configure button.	RDP,ON or OFF
Automatic/ Manual	Enable this option if you want the internal radio to be powered on automatically when the receiver is powered on. If this option is disabled, the internal radio will be powered on only on request from the receiver.	RDP,PAR
Туре	This field reports the type of internal radio currently used (a read-only field): No radio Auto-detecting: The receiver is currently trying to identify the type of radio used. You need to refresh the whole screen (F5 key) to see if it has been able to come up with an answer. U-Link Rx: The internal radio was detected as a U-Link Rx radio. Pacific Crest: The internal radio was detected as a Pacific Crest radio.	-
Channel	Choose one of the available channels for this radio. (The channels are read from the radio when opening the Web Server Configuration tab.)	RDP,PAR
Protocol	Choose one of the protocols below, depending on the type of radio transmitter used at the base: DSNP (for radio transmitter P/N 800986, i.e. the old U-Link model first introduced in 1996) Transparent (for all other radio transmitters) Trimtalk for PacCrest	RDP,PAR

Parameter	Designation	\$PASHS
Airlink Speed	Choose one of the baud rates below: 4800 (mandatory to receive base data from radio transmitter P/N 800986) 7600 9600 (base data from Pacific Crest radio transmitter) 19200 Bd for PacCrest	RDP,PAR
Sensitivity	Set the reception sensitivity of the internal radio used (High, Medium, Low).	RDP,PAR
Scrambler	Set the scrambler setting (on or off), for PDL only	RDP,PAR
FEC	Set the FEC setting (on or off), for PDL only	RDP,PAR

External Radio

Use this area to set the external radio used by a base. After you select a radio type from the **Type** field, new fields will appear in the External radio pane for you to set additional radio-related parameters.

Parameter	Designation	\$PASHS
Туре	Select the model of the external radio connected to the base: No radio U-Link TRx Magellan UHF: Radio transmitter P/N 800986 Pacific Crest ARF7474B EU: License-free radio for use in Europe ARF7474A NA: License-free radio for use in North America	RDP,TYP


Following the selection of a radio type, new fields appear just above the **Type** field showing the current settings of the receiver serial port to which the external radio is supposed to be connected. Check/modify these settings.

Parameter	Designation	\$PASHS
Serial Port	Specify the receiver serial port to which the external radio is connected. This field is set to A and grayed for U-Link and Magellan UHF.	RDP,PAR
Baud Rate	(Pacific Crest only) Choose the baud rate to be used on this port to communicate with the external radio.	RDP,PAR
Mode	Specify the type of this serial port (RS232 or RS422), if relevant (only port A may be RS422).	MDP
RTS/CTS	(For license-free radios only) Enable or disable the handshaking protocol on this port.	CTS

Then set the radio parameters:

Parameter	Designation	\$PASHS
Load radio settings but- ton	(All radios except ARF7474A NA) First click on this button to load the current settings of the chosen radio type ("Loading" is displayed in the Channel field while these settings are being loaded). As a result, the Channel, Protocol and Airlink Speed fields are refreshed to view the current radio settings.	\$PASHQ, RDP,PAR
Channel	(All radios except ARP7474A NA) Choose one of the available channels for this radio.	RDP,PAR
Protocol	(For U-Link TRx and Pacific Crest radios only) Choose one of the protocols below: DSNP (U-Link TRx only) Transparent TrimTalk (Pacific Crest only)	RDP,PAR
Airlink Speed	(For U-Link TRx and Pacific Crest radios only) Choose one of the baud rates below: 4800 7600 (U-Link TRx only) 9600 19200 (Pacific Crest only)	RSP,PAR
Forward Error Correction	 (For Pacific Crest radio only) Choose whether this option must be enabled or not in the Pacific Crest transmitter:. Button on: Enabled Button off: Disabled 	RDP,PAR
Scrambler	 (For Pacific Crest radio only) Choose whether this option must be enabled or not in the Pacific Crest transmitter:. Button on: Enabled Button off: Disabled 	RDP,PAR

Ethernet Port This page is used to set the receiver's Ethernet port.

Ethernet:

Parameter	Designation	\$PASHS
MAC Address	A read-only parameter providing the hardware identification of the Ethernet port.	-
DHCP	Enable this option to let the local network allocate a dynamic IP address to the receiver. If disabled, a static IP address needs to be allotted to the receiver.	ETH,PAR
IP Address	(If DHCP option cleared) Static IP address assigned to the receiver.	ETH,PAR
Subnetwork Mask	(If DHCP option cleared) Subnetwork mask associated to the static IP address.	ETH,PAR
Gateway	(If DHCP option cleared) Gateway associated to the static IP address.	ETH,PAR
DNS 1 IP Address	Enter the first IP address of the DNS providing the correspondence between the receiver server name and its IP address.	ETH,PAR
DNS 2 IP Address	Enter the second IP address of the DNS providing the correspondence between the receiver server name and its IP address.	ETH,PAR

Port I Settings:

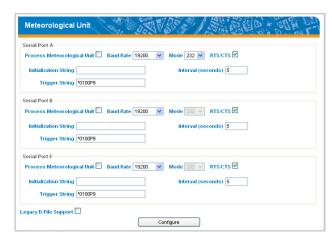
Parameter	Designation	\$PASHS
Mode	Choose the type of protection required to control receiver access from the Internet through its Ethernet port I. Choose one of the options below: Disabled: No communication with the receiver is possible. Enabled: Communication is allowed without restriction. Secured: Communication with the receiver is enabled only after a login and password have been provided (the receiver can however output data through the Ethernet port even if no login and password have not been provided yet).	TCP,PAR
Protocol	A read-only field showing the currently selected IP protocol (TCP or UDP) on port I.	\$PASHQ,DST
Port	Enter the IP port number (100-65535) through which a connection with the receiver is possible (default: 8888).	TCP,PAR
Login	Enter the login (32 characters max.) required of users in the case of a secured connection.	TCP,PAR
Password	Enter the password (32 characters max.) required of users in the case of a secured connection.	TCP,PAR
(Show characters)	Use this option to show or hide the above password. When hidden, the password is replaced with "*" characters.	-

DynDNS:

Parameter	Designation	\$PASHS
Activation	Use this button to activate or deactivate the use of the DynDNS server.	DDN,PAR
System	Name of the DynDNS server.	DDN,PAR
Hostname	The hostname you chose for your ProFlex 500 receiver (see section below).	DDN,PAR
Username, pass- word	Username and password of your DynDNS account (see below how to create an account and choose the type of service you are expecting from the DynDNS server). The DynDNS server will accept the receiver's new IP address only if it is provided by an authorized user.	DDN,PAR

Parameter	Designation	\$PASHS
Period	Choose the rate at which the receiver should regularly inform the DynDNS server of its own IP address.	DDN,PAR
"Update Now" but- ton	Use this button to force the receiver to send its IP address right away to the DynDNS server.	DDN,SET

Creating an account on DynDNS.com. DynDNS is a free update mechanism, offered by *Dynamic Network Services Inc.*, through which you can make sure the hostname of your ProFlex 500 will always match the dynamic IP address assigned to it by your Internet provider. This however requires that you create a DynDNS account and choose the function you want to use.


Do the following to create a DynDNS account:

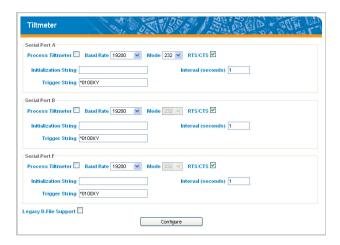
- Open a new tab in your web browser.
- Type http://www.dyndns.com and press ENTER.
- Type on the **Sign In** button in the upper-right corner.
- Type on the "Create an account" link.
- Enter your credentials (username, password and email) and other information needed (safety number, registration, policy agreement).
- Click on Create Account. You will then receive an email containing a link allowing you to activate your account.
- Click on this link. This will open the DynDNS web site on which you will be logged in after you have re-entered your password. This confirms the creation of your account.
- Click on "Create Free Hostname".
- Choose a name for your ProFlex500 (hostname), keep "Host with IP address" selected, and enter the current IP address of your ProFlex 500 (this is the public IP address of the ProFlex 500, and not necessarily the one displayed on the ProFlex 500 screen; see your IT manager for more information).
- Choose the services you want to use (typically "VPN", "remote desktop" and "web server").
- Click Add to Cart.
- Click on "Proceed to checkout".
- Click on "Activate Services".

You can now activate the update mechanism by providing the ProFlex 500 with all the parameters listed in the above table.

Meteorological Unit

The Meteorological Unit page is used to set the conditions in which the receiver will communicate with and get information from the meteorological unit.

For each serial port (A, B, F), the following parameters can be set to allow a connection to the meteorological unit:


Parameter	Designation	\$PASHS
Process meteorological unit	Enable this option to allow the receiver to query the meteorological unit, if connected to this port.	MET
Baud Rate	Set the port baud rate	PRT
Mode	Set the port mode (RS232 or RS422). Only port A can be RS422 or RS232. All the others are necessarily RS232.	MDP
RTS/CTS	Enable or disable the handshaking protocol on this port.	CTS
Initialization string	Define the string used by the receiver to initialize the meteorological unit, if connected to this port.	MET
Trigger string	Define the string used by the receiver to query the meteorological unit, if connected to this port.	MET
Interval	Set the time interval, in seconds, used by the receiver to query the meteoro- logical unit, if connected to this port.	MET

Data format:

Parameter	Designation	\$PASHS
0 ,	Meteo data are part of the data saved in G-files.	
Support" check	If you check this option, they will also be saved	RFT
box	as separate D files (Ashtech legacy format).	

Tiltmeter

The Tiltmeter page is used to set the conditions in which the receiver will communicate with and get information from the tiltmeter.

For each serial port (A, B, F), the following parameters can be set to allow a connection to the tiltmeter:

Parameter	Designation	\$PASHS
Process tiltmeter	Enable this option to allow the receiver to query the tiltmeter, if connected to this port.	TLT
Baud Rate	Set the port baud rate	PRT
Mode	Set the port mode (RS232 or RS422). Only port A can be RS422 or RS232. All the others are necessarily RS232.	MDP
RTS/CTS	Enable or disable the handshaking protocol on this port.	CTS
Initialization string	Define the string used by the receiver to initialize the tiltmeter, if connected to this port.	TLT
Trigger string	Define the string used by the receiver to query the tiltmeter, if connected to this port.	TLT

Parameter	Designation	\$PASHS
	Set the time interval, in seconds, used by the receiver to query the tiltmeter, if connected to this port.	TLT

Data format:

Parameter	Designation	\$PASHS
"Legacy D-File Support" check box	Tiltmeter data are part of the data saved in G- files. If you check this option, they will also be saved as separate D files (Ashtech legacy for- mat).	RFT

Data Output

This page is used to define the data messages delivered by the receiver on its various ports. The following groups of parameters need to be defined:

- Differential messages
- NMEA messages
- · Raw data

These groups of parameters are detailed below.

Differential Messages

Use this page to define the differential messages generated by a base. The following data formats are possible:

- ATOM
- CMR
- RTCM 2.3
- RTCM 3.0 & 3.1
- DBEN

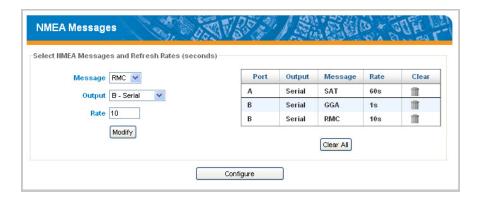
Differential Messages	SPA / STEEL STEEL	
ATOM Refresh Rates (seconds)	CMR Refresh Rates (seconds)	
RHX Scenario 4: Standard (Static Base)	CMR Type 0 1	
Measurements 1	CMR Type 1 30	
Positions 12	CMR Type 2 30	
Attributes 31	CMR Type 3 1	
RTCM 2.3 Refresh Rates (seconds)	RTCM 3.0 and 3.1 Refresh Rates (seconds)	
RTCM Type 1	RTCM Type 1001	
RTCM Type 3	RTCM Type 1002	
RTCM Type 9	RTCM Type 1003	
RTCM Type 16	RTCM Type 1004 1	
RTCM Type 18/19 1	RTCM Type 1005	
RTCM Type 20/21	RTCM Type 1006 13	
RTCM Type 22	RTCM Type 1007	
RTCM Type 23 31	RTCM Type 1008	
RTCM Type 24 13	RTCM Type 1009	
RTCM Type 31	RTCM Type 1010	
RTCM Type 32	RTCM Type 1011	
RTCM Type 34	RTCM Type 1012 1	
RTCM Type 36	RTCM Type 1013	
	RTCM Type 1019	
	RTCM Type 1020	
	RTCM Type 1029	
	RTCM Type 1033 31	
DBEN Refresh Rates (seconds)		
Measurements 1		
Positions 30		
Co	onfigure	

All the message types pertaining to a given data format are listed vertically.

To enable the output of a differential message, you just need to enter the desired refresh rate (in seconds) for this message in the corresponding field.

Leaving a field blank means you don't want the message type to be output.

For all ATOM message types, you also need to choose between the different formats available:


- 4: Standard (Static Base)
- 100: Compact (Static Base)
- 101: Super Compact (Static Base)
- 204: Standard (Moving Base)
- 300: Compact (Moving Base)

For each of the listed CMR and RTCM message types, you can place the mouse cursor over the "1" sign adjacent to the Refresh Rate field and read the full definition of the message.

The ports used to output the differential messages are defined on the **Base Setup** page. *A priori*, it does not make sense to output differential messages in a rover.

NMEA Messages

Use this page to define the NMEA messages generated by a receiver, whether a base or a rover.

To define the output of an NMEA message on a given port, you just need to select the message type from the **Message** drop-down list, the output port from the **Output** drop-down list, then enter its output rate, in seconds, in the **Rate** field, and click on the **Add** button. All the messages you add or modify on this page will be definitively saved in the receiver after you click on the **Configure** button located at the bottom of the page.

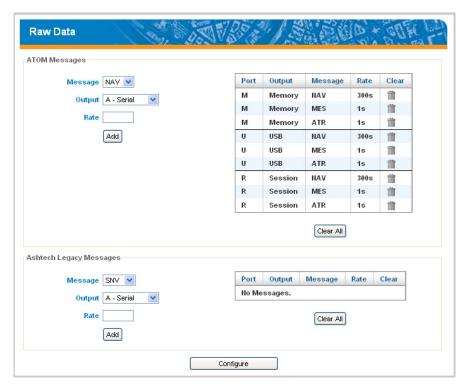
The new message definition will then appear as a new row in the table on the right.

Before you select a message type from the drop-down list, you can hold the mouse cursor over this message name in the drop-down list. After about one second, a tip box will appear providing the full definition of this message.

Note that for messages PTT, TTT and XDR, you don't have to define an output rate, due to the very nature of these messages.

To change the settings of an existing message (port, rate), select the corresponding row in the table. This populates the three fields on the left with the settings of that message. Edit the port and/or rate and then click on the **Modify** button. The table row is updated accordingly. Remember you must always click on the **Configure** button to save the changes in the receiver.

Note that depending on the current selection on this page, the button located underneath the three fields on the left may be either grayed or with a different label (Add or Modify).


Deleting a message definition can be done by simply clicking on the corresponding "trash" sign in the **Clear** column on the far right. This deletes the table row.

There is also a **Clear All** button underneath the table that allows you to delete all the message definitions from the table in one click.

Raw Data

Two data formats are possible:

- ATOM (navigation data and other data)
- Ashtech Legacy (navigation data and other data)

Follow the instructions below to define the output of messages, whether in ATOM or Ashtech Legacy format:

- Select the message type from the Message drop-down list, the output port from the Output drop-down list, then enter its output rate, in seconds, in the Rate field, and click on the Add button. The new message definition will then appear as a new row in the table on the right.
 Before you select a message type from the drop-down list, you can hold the mouse cursor over this message name in the drop-down list. After about one second, a tip box will appear providing the full definition of this message.
- To change the settings of an existing message (port, rate), select the corresponding row in the table. This populates the three fields on the left with the settings of that message. Edit the port and/or rate and then click on the Modify button. The table row is updated accordingly. All the messages you add or modify on this page will be definitively saved in the receiver after you click on the Configure button located at the bottom of the page.

Note that depending on the current selection on this page, the button located underneath the three fields on the left may be either grayed or with a different label (**Add** or **Modify**).

- Deleting a message definition can be done by simply clicking on the corresponding "trash" sign in the Clear column on the far right. This deletes the table row.
- There is also a Clear All button under the table that allows you to delete all message definitions from the table in one click.

Recording

Use this page to control raw data recording in the receiver outside of any programmed sessions.

The parameters are the following.

Parameter	Designation	\$PASHS
Site Name	Enter a 4-character string identifying the site where data recording will take place. The following characters are not allowed in the site name: $/*$ \	SIT
Storage	Tell the receiver where to store the recorded raw data. On selecting a memory device (Internal Memory or USB Device), you can read, underneath the field, the amount of free memory currently available on the selected device. Selecting the USB device implies that you know there is one currently connected to the receiver.	MEM
Recording and Output Eleva- tion Mask	Enter the elevation mask angle in degrees (0-90°). The data from all the satellites located in the elevation mask, seen from the recording site, will not be recorded.	ELM
Data Type	A read-only field listing the type of raw data messages currently set to be recorded by the receiver.	-

Parameter	Designation	\$PASHS
Data Recording	Set this option to enable raw data recording in the receiver right after you have clicked on the Configure button at the bottom of this page. You can also keep this option cleared and later start data recording by pressing the Log button on the receiver front panel.	REC
Recording Interval	Enter the raw data recording rate, in seconds. Depending on the installed firmware option, this value can range from 0.05 s, 0.1 s or 0.5 s to 999 s.	DRI
Ring File Buf- fer Mode	This option is used to allow the receiver to deliver only the last x minutes of raw data decoded by the receiver (the "x" minutes are defined in the File Duration parameter below). Older raw data will not be kept in receiver memory. With this option used, raw data are temporarily stored in the so-called "ring file" buffer before they are saved as a file. This will happen every time the end of the x minutes of data buffering is reached.	RFB
File Duration	(This field is visible only after Ring File Buffer Mode has been enabled). Indicate the time span, in minutes, that the ring file buffer should cover. For example setting this field to "15" means that at all times, the receiver will be able to provide a record file containing the last 15 minutes of raw data decoded by the receiver.	RFB

Session Settings

The Session Settings page is used for various purposes. These are listed below:

- Enable or disable the execution of programmed sessions
- Define the day when programmed sessions will start
- Define the conditions in which data will be collected during programmed sessions (site name, storage media used, masks, ring file memory)
- Manage record files (file conversion, file transfer, file deletion). Files can be transferred to an external FTP server or to the selected receiver memory (internal or USB) for further access through the embedded FTP server.
- Defining optional parameters the receiver will insert into the header of all RINEX files it will generate from G-files.

Settings	STATE OF SUB-
Parameters	
Run Sessions 🗌	Reference Day 1 Offset per Day (mm:ss) 00 00
Site Hame 0000 Storage Internal Memory Ring File Memory	Recording and Output 5 Elevation Mask Data Type ATM:NAV(214.00s),MES(1.00s),ATR(1.00s)
	, , , , , , , , , , , , , , , , , , , ,
G-File Conversion Rinex 2.11 ☑ Hatanaka ☑ Tar.Z ☑ Dele	te Original G-File ☑
File Move	
Move Converted Files Move G-files	Destination Location Internal Memory Sub-Directory Hame Y/D
Transfer to External FTP Server Automatic Transfer Delete Files After To FTP Server Port 21 Login Password	Path Sub-Directory Hame Format
Back-up FTP Server Used When Primary FTP Server Not Accessil	ble ☐ Always Used ☐
FTP Server	Path
Port 21	
Login Password	
DIMEN EST. Ind.	
RINEX File Info	Marker Hame

General Settings

Parameter	Designation	\$PASHS
Run Sessions	Use this button to enable or disable the execution	SES,ON
Ruii Sessions	of the programmed sessions.	SES,OFF

Parameter	Designation	\$PASHS
Reference Day	Enter the day of year (1-366) when the first programmed session will start. Should be greater than or equal to the current day of year for a postponed start, otherwise "1" for immediate start.	SES,PAR
Offset per Day	Use this field if you wish to introduce minutes and seconds of time shift so that every day, the same GPS constellation is visible from the same site during the same session (typical value: 4 minutes).	SES,PAR
Site Name	Give a name to the site where data are recorded. G-file names will be derived from this name.	SES,PAR
Storage	Choose the storage media where record files will be stored.	SES,PAR
Ring File Memory	Enabling this option will allow the receiver to delete the oldest record file when the memory used is almost full (less than 20 Mbytes still free). This will allow the receiver to constantly log data without external intervention.	SES,PAR
Recording and Output Eleva- tion Mask	Set the recording elevation mask, in degrees (default: 5°). Data from masked satellites will not be recorded.	SES,PAR
Data Type	A read-only field identifying the type of raw data recorded.	

G-File Conversion

Parameter	Designation	\$PASHS
Rinex 2.11	Use this option to convert G-files to Rinex 2.11 format.	SES,PAR
Hatanaka	This option can be used in conjunction with the previous one to convert G-files to Rinex 2.11, Hatanaka format.	SES,PAR
Tar.Z	Use this option to compress G-files in Tar.Z format. Can be used together with option Rinex 2.11.	SES,PAR
Delete Origi- nal G-File	Use this option to remove original G-files after they have been converted and compressed.	SES,PAR

File Move

Set this pane when you wish to store record files locally so that users can download these files through an IP connection using the ProFlex 500 embedded FTP server.

Parameter	Designation	\$PASHS
Move Converted Files	Use this option to ask the receiver to move the record files to the specified location (see below) once they have been converted to the specified format (see table above)	SES,PAR
Move G-Files	Use this option to ask the receiver to move the original record files (G-files) to the specified location (see below) once they have been created.	SES,PAR
Destination Location	Tell the receiver where to store record files (in its internal memory or to some connected USB device)	SES,PAR
Sub-directory name format	Tell the receiver how to name the subdirectories it will create to store record files. Use the case-sensitive syntax presented in the table below to name these subdirectories (default: Y/D).	SES,PAR

Subdirectory naming conventions:

Character	Description
s or S	4-character sitename
Υ	4-digit year (2010= 2010)
у	2-digit year (10= 2010)
m	2-digit month (01= January)
M	3-character month (Jan= January)
d	2-digit day in month (1-31)
D	3-digit day in year (1-365)

Example: Using "Y/M/d/s" would create the following three subdirectories for files recorded in Lisbon on February 21, 2010:

• /2010/Feb/21/LISB/

Transfer to External FTP Server

Parameter	Designation	\$PASHS
Transfer	Enable this option if you want the receiver to transfer automatically record files to the specified external FTP server.	SES,PAR

Parameter	Designation	\$PASHS
Delete Files After Transfer	Enable this option if you want the receiver to delete record files from its memory once they have been transferred to the external FTP server.	SES,PAR
FTP Server	External FTP server IP address or hostname (URL)	SES,FTP,PAR
Port	External FTP IP port (default is "21" according to convention)	SES,FTP,PAR
Login	External FTP server login	SES,FTP,PAR
Password	External FTP server password (always hidden; "*" characters appear instead)	SES,FTP,PAR
Path	Enter the path on the external FTP server where the receiver will be allowed to upload its record files as they are created.	SES,FTP,PAR
Sub-directory Name Format	Tell the receiver how to name the subdirectories it will create to store record files on the external FTP server. Use the case-sensitive syntax presented in the table below to name these directories.	SES,FTP,PAR

Subdirectory naming conventions:

Character	Description
s or S	4-character sitename
Υ	4-digit year (2010= 2010)
у	2-digit year (10= 2010)
m	2-digit month (01= January)
М	3-character month (Jan= January)
d	2-digit day in month (1-31)
D	3-digit day in year (1-365)

Example: Using "Y/M/d/s" would create the following three subdirectories for files recorded in Lisbon on February 21, 2010:

• /2010/Feb/21/LISB/

Back-up FTP Server

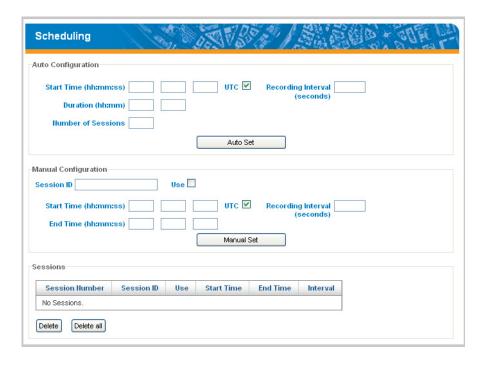
Parameter	Designation	\$PASHS
Used When Pri- mary FTP	Choose whether the back-up FTP server should always be used as a raw data file	
Server Not Accessible / Always Used	repository, or only when the external FTP server, defined as the primary FTP, has become inaccessible for some reason.	SES,FTP,PAR
FTP Server	Back-up FTP server IP address or hostname (URL)	SES,FTP,PAR
Port	Back-up FTP IP port (default is "21" according to convention)	SES,FTP,PAR
Login	Back-up FTP server login	SES,FTP,PAR
Password	Back-up FTP server password (always hidden; "*" characters appear instead)	SES,FTP,PAR
Path	Enter the path on the back-up FTP server where the receiver will be allowed to upload its record files as they are created. The same convention as in the primary FTP is used for naming subdirectories in the backup FTP (see "Sub-directory Name Format" field above).	SES,FTP,PAR

RINEX File Info

You can define the following additional and optional parameters for insertion into the header of every single RINEX file the receiver will generate:

- Agency
- Observer
- Marker Name
- Marker Number
- Observation Comment
- GPS Navigation Comment
- GLONASS Navigation Comment
- SBAS Navigation Comment
- Meteo Comment
- Meteo Sensor Manufacturer
- Meteo Sensor Type
- Temperature Accuracy
- Pressure Accuracy
- Humidity Accuracy

Session Scheduling


The Session Scheduling page is used to define sessions, either automatically or manually.

A "session" represents an interval of time during which you want the receiver to log raw data in a G-file at the requested recording interval. By default, sessions are repeated every day at the same time.

- Defining sessions automatically means creating a series of consecutive sessions "in one shot", from only the four parameters you specify. Data recording is allowed by default in all the sessions created through this method.
- Defining sessions manually means specifying the start and end times of each session. Each of the desired sessions should be defined that way, one after the other.

Whereas by default, sessions defined automatically are necessarily executed one after the other, with no idle time in between, sessions defined manually can from the start be separated by idle times, resulting from adequately chosen start and end times for sessions that are consecutive.

Caution! Enabling the execution of programmed sessions is controlled by the **Run Sessions** and **Reference Day** parameters (see *Session Settings on page 168*).

Auto Configuration

Using this pane, you can automatically define a series of sessions in one operation by entering the following parameters.

Parameter	Designation	\$PASHS
Start Time	Enter the start time of the first session (hh:mm:ss).	SES,AUT
UTC	Check this option if "Local" is chosen as the time unit (see Units pane on the left) and you wish to enter the Start Time above in UTC time.	-
Duration	Enter the duration of the session. This duration will be the same for all the sessions.	SES,AUT
Number of ses- sions	Enter the number of sessions that should take place every day (96 max.).	SES,AUT
Recording Interval	Enter the data recording rate, in seconds, that will be used during every session.	SES,AUT
Auto Set but- ton	Click on this button to create sessions according to your three choices above. Clicking on this button will overwrite the last session settings entirely.	SES,AUT

Example:

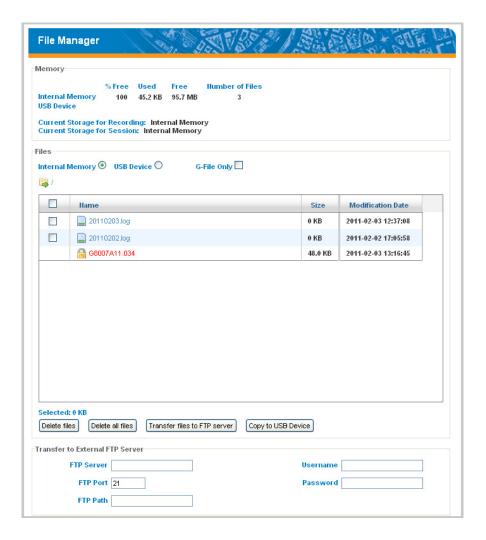
Choosing "Start Time=09:00:00", "Duration=01:00" and "Number of sessions=12" means that you are asking the receiver to perform 12 one-hour sessions, from 9:00 am to 9:00 pm. The series of sessions will be repeated every day.

Manual Configuration

Use this pane to create or modify each of the sessions you need, one after the other.

Parameter	Designation	\$PASHS
Session ID	Enter the identification string of the session (allowed values: A to X;AA to XA;AB to XB; AC to XC).	SES,SET
Use	Enable this option to allow data recording during the session.	SES,SET
Start Time	Enter the start time of the session (hh:mm:ss).	SES,SET
UTC	Check this option if "Local" is chosen as the time unit (see Units pane on the left) and you wish to enter the Start Time (above) and End Time (below) in UTC time.	-
End Time	Enter the end time of the session (hh:mm:ss).	SES,SET
Recording Interval	Give a name to the site where data are recorded. G-file names will be derived from this name.	SES,SET
Manual Set button	Click on this button to create a session according to your four choices above. Repeat the procedure as many times as there are sessions to define.	SES,SET

Sessions


This pane lists the sessions currently programmed in the receiver. You can do the following from this pane:

- Modify a session: Click in the corresponding row. As a result, all the fields in the Manual Configuration pane are filled accordingly so you can edit any of them. Click on the Manual Set button once you have made the desired changes (equivalent to running \$PASHS,SES,SET).
 Sessions generated through the automatic method can also be edited through this procedure.
- Delete one or all sessions: Select the row containing the session you want to delete and then click on the **Delete** button located at the foot of the page. To delete all the sessions, no prior selection is required: just click on the **Delete all** button, also located at the foot of the page (equivalent to running \$PASHS,SET,DEL).

NOTE: The session currently run by the receiver is shown in bold characters.

File Manager

This page is used to list the content of the receiver memory devices and to perform delete, transfer or copy operations on the listed files.

Memory

This is a read-only area. For each of the possible storage media (internal memory and USB device), the following information is provided:

- · Percentage of free memory
- · Number of kbytes used
- Total size of memory
- Number of files stored in memory

In the last two lines, the storage medium currently used to record raw data is provided:

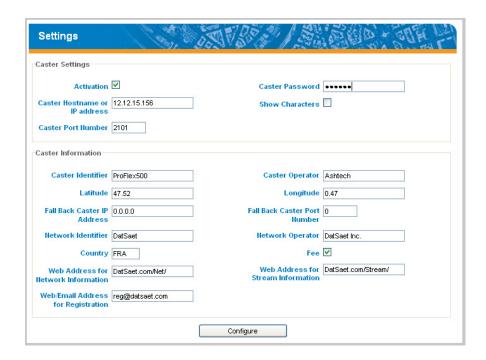
- The first line indicates which medium is used when data recording takes place outside of any sessions.
- The second line indicates which medium is used when data recording takes place through programmed sessions.

Files

Parameter	Designation	\$PASHS
Internal Memory / USB device	Check one of these buttons to select the memory on which to perform file management. Selecting "USB Device" implies that a USB device is currently connected to the remote receiver.	FIL,DEL
G-File only	Enable this option to apply a mask to the selected directory so that only the G-files present in this directory can be listed.	-
Directory table	This table lists the files and directories found in the selected memory according to the choices you have made above. The following is provided for each file: name, size, modification date. You can do the following from within the table: Click on each of the column headers to sort the list in direct or inverse alphabetical order. Click on the filename to open or save the file on your computer. Click on the button before the filename as a preselection before performing one of the actions described below. Click on a folder to open it.	-
"Delete files" but- ton	Click this button to delete all the files you have previously selected in the table.	FIL,DEL
"Delete all files" button	Click this button to delete all the files listed in the table. No file preselection is needed.	FIL,DEL

Parameter	Designation	\$PASHS
"Transfer files to FTP server" button	Click on this button to transfer the selected files to an external FTP server (see below how to define this external FTP server).	FTP,PUT
"Copy to USB Device" button	Click on this button to copy the selected files to the USB device connected to the receiver.	

Transfer to External FTP Server


File Manager can be used to upload files from the selected receiver memory to an FTP server of your choice. The network location and access permissions for this FTP server should be defined in this area according to the table below.

Parameter	Designation	\$PASHS
FTP Server	Enter the IP address or host name of the external FTP server	FTP,PAR
FTP Port	Enter the FTP server port number (default: 21)	FTP,PAR
FTP Path	Enter the path on the external FTP server where you want to upload files.	FTP,PAR
Username	Enter the FTP server login	FTP,PAR
Password	Enter the FTP server password (always hidden; "*" characters appear instead)	FTP,PAR

NTRIP Caster Settings

The NTRIP Caster Settings page provides two different groups of information:

- Caster Settings
- · Caster Information

Caster Settings

It is from the data you enter in this section that the ProFlex 500 will be able to run the NTRIP Caster and make it visible for users.

Parameter	Designation	\$PASHS
Activation	Allows you to start or stop the NTRIP	CST,ON
Activation	Caster function in the receiver.	CST,OFF
Caster Hostname or IP Address, Caster Port Number	Enter the hostname or public IP address of the NTRIP caster, as seen from users. Not necessarily the same IP address as the local IP address assigned to the ProFlex 500 (for more information, refer to your IT manager).	CST,PAR
Caster Password	Password to be used by NTRIP servers to be allowed to connect to the NTRIP caster (through mount points).	CST,PAR

Caster Information

All the data you provide in this section are for insertion in the source table. Being only informative and optional, they do not affect the way the NTRIP Caster works.

Parameter	Designation	\$PASHS
Caster Identifier	Enter the caster identifier, e.g. the name of the provider.	CST,PAR
Caster Operator	Enter the name of the institution, agency or company operating the caster	CST,PAR
Latitude, Longitude	Enter the approximate position of the NTRIP caster. Latitude, in degrees, two digits after decimal point (0 to ±90.00) Longitude, in degrees, two digits after decimal point (0 to 360.00)	CST,PAR
Fallback Caster IP Address, Fallback Caster Port Number	The source table may provide users with information allowing them to connect to another IP address and port in case the NTRIP caster is no longer accessible.	CST,PAR
Network Identifier	Enter the network identifier, e.g. the name of the network of GNSS permanent reference stations.	CST,PAR
Network Operator	Enter the name of the institution, agency or company operating the network.	CST,PAR
Country	Enter the three-letter standard abbreviation of the country (country code; see ISO 3166) where the NTRIP caster is operated.	CST,PAR
Fee	Indicate whether users are charged for using the corrections available through the NTRIP Caster. This is just a reminder for the administrator. Enabling or disabling this button has no impact on the way the caster works.	CST,PAR
Web Address for Network Informa- tion	Enter the address of the web site where users can get additional information about the NTRIP caster network.	CST,PAR
Web Address for Stream Information	Enter the address of the web site where users can get additional information about data streams available from the NTRIP caster.	CST,PAR
Web/Email Address for Registration	Enter the address of the web site where users can get additional registration information about the NTRIP caster.	CST,PAR

Mount Points

The Mount Points page allows you to declare all the data streams the NTRIP caster will be able to forward to users. Behind each mount point is a specific NTRIP server providing a specific format of data corrections from a given location.

The ProFlex 500 hosting the NTRIP caster can also be configured to operate one or even two independent NTRIP servers. Two of the possible mount points can therefore represent NTRIP servers operated at the same location as the NTRIP caster, but each delivering a specific data stream.

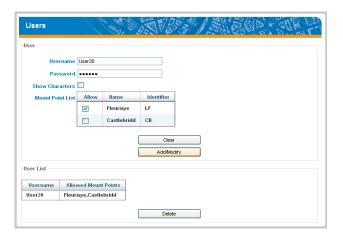
Mount Point:

For each new mount point, define the following parameters:

Parameter	Designation	\$PASHS
Name	Enter the mount point name. This is an important parameter because it is through that name that users choose the source of corrections they want and it is also through that name that the NTRIP caster can select the NTRIP server providing the corrections that users are requesting.	CST,MTP,ADD
Identifier	Enter the source identifier, e.g. the name of the city next to the source location.	CST,MTP,ADD
Format	Enter the format of the corrections provided by through the mount point.	CST,MTP,ADD
Format Details	Enter the details of the format used by the NTRIP server for providing corrections through this mount point.	CST,MTP,ADD
Latitude, lon- gitude	Enter the coordinates (in degrees, with two decimal places) of the approximate location of the NTRIP server providing data for this mount point.	CST,MTP,ADD
Country	Enter the three-letter standard abbreviation of the country (country code; see ISO 3166) where the NTRIP server is operated.	CST,MTP,ADD

Parameter	Designation	\$PASHS
Fee	For information, tell the NTRIP caster whether the data available through this mount point are free or not.	CST,MTP,ADD
"Clear" but- ton	While editing a new mount point, you can use this button to clear in one click the Name, Identifier, Format and Format Details fields.	-
"Add/Modify" button	Use this button to add the mount point currently described in the above fields to the Mount Point List table	CST,MTP,ADD

Mount Point List:


This table lists all the currently declared mount points (up to 10).

To modify the definition of a mount point, click in the corresponding row in this table. As a result, the current definition of the mount point appears in the fields above. Make the changes and then click on the **Add/Modify** button.

To delete a mount point, click in the corresponding row in the table, then click on the **Delete** button (corresponding to command \$PASHS,CST,MTP,DEL).

NTRIP Caster Users

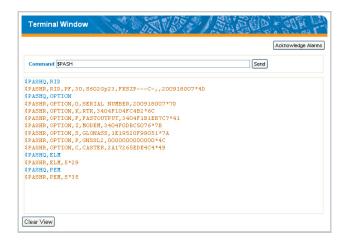
This web page is used to declare all the authorized users of the NTRIP caster (up to 100 different users). Users have each a name and password, as well as a list of mount points they are allowed to connect to.

User:

For each new user, define the following parameters:

Parameter	Designation	\$PASHS
Username	Enter the user name.	CST,USR,ADD
Password	Enter the user password.	CST,USR,ADD
(Show Characters)	Use this option to show or hide the above password. When hidden, the password is replaced with "*" characters.	-
Mount Point List	Select the mount points the user will be authorized to connect to.	CST,USR,ADD
"Clear" but- ton	While editing a new user, you can use this button to clear in one click the Username and Password fields as well as the Mount Point List table.	-
"Add/Modify" button	Use this button to add the user currently described in the above fields to the User List table	CST,USR,ADD

User List:


This table lists all the currently declared users (up to 100). To modify the definition of a user, click in the corresponding row in this table. As a result, the current definition of the user appears in the fields above. Make the changes and then click on the **Add/Modify** button.

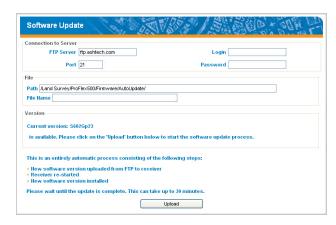
To delete a user, click in the corresponding row in the table, then click on the **Delete** button (corresponding to command \$PASHS,CST,USR,DEL).

Advanced Setup (Configuration Tab)

Terminal Window

This section is used to communicate with the receiver through \$PASH commands. The purpose and syntax of each available \$PASH command is described in detail elsewhere in this manual.

To send a command to the receiver, type your command in the **Command** field and then click on the **Send** button. In the pane underneath the **Command** field, you will see your command duplicated in blue characters followed by the response line, in orange characters, returned after a while by the receiver.


The commands you type and send are all stacked up into the **Command** field so it is easy for you to re-select and re-send one of those when needed.

Use the **Clear View** button to clear out the page.

If alarms have been set in the receiver, you may click on the **Acknowledge Alarms** button to acknowledge all these alarms. As a result, the \$PASHS,WAK command is issued to perform this operation in the receiver.

Software Update

This page allows you to upgrade the firmware of the receiver if a new version is available from the specified FTP server.

When opening the **Software Update** page with all the default settings preserved, the Web Server connects to the Ashtech public FTP server and searches for a possible upgrade in the dedicated folder.

The result of that search appears on the same page, in the **Version** pane. Either a new version is available, and in this case the new version is mentioned (and you can see the name of the upgrade file in the **File Name** field), or there is no upgrade available, in which case only the version of the firmware currently installed in the receiver is displayed in the **Version** pane (and the **File Name** field is blank).

If a new version is available, you can upgrade your receiver by simply clicking on the **Upload** button and waiting until you are informed of the end of the installation phase (this may take up to 30 minutes).

The different parameters shown on the **Software Update** page are described below.

Connection to Server:

Parameter	Designation
FTP Server	Address of the FTP server providing updates (default: ftp.ashtech.com).
Port	IP Port giving access to the FTP server (default: 21).
Login	Login required for connection to the FTP server (default: blank, i.e. no login required).
Password	Password required for connection to the FTP server (default: blank, i.e. no password required).

File:

Parameter	Designation
Path	Path to the folder on the FTP server where an upgrade may
	be posted.
File Name	With a connection to the default FTP server: A blank field means there is no upgrade available. The field automatically shows the name of the upgrade file if there is one posted on the FTP server (filename in the form "p_500_upgrade_Vxxxxxxx.tar.bz2"). With a connection to a different FTP server, this field will always be blank until you type the name of the upgrade file, which should be accessible through the specified path above. The upgrade file may not have the same name as the initial upgrade file released by Ashtech but should keep the same extension (".tar.bz2"). If these conditions are met, the upgrade is also possible through a click on the Upload button.

Command Script

The Command Script page is used to ask the receiver to run a list of \$PASH serial commands saved as an editable text file.

This file can be found either in the local USB device connected to the receiver, in which case it should be created with the "cmd" extension, or on the computer running the ProFlex 500 Web Server, in which case the selected file will first be uploaded to the receiver before it can execute the commands.

USB Device:

Parameter	Designation	\$PASHS
Command Files table	If there is no USB device connected to the receiver, "USB not connected" is reported in this pane. If a USB device is connected, this table lists all the *.cmd files found in the root directory.	-
Execute button	Click on this button after having selected a command file in the above table. As a result, the receiver will run the list of \$PASH commands read from the selected file. A report is then provided on the Result web page.	CMD,LOD

Upload File:

Parameter	Designation	\$PASHS
Command File	Use the Browse button attached to this field to browse your computer's hard disk for the desired command file (a text file).	-
Send and Execute button	Click on this button after having selected a command file in the above field. As a result, the computer will upload the file to the receiver which will in turn run the list of \$PASH commands read from this file. On completion of this sequence, a link to a log file will be provided on the Result web page so you can see by yourself how the receiver executed the list of commands.	CMD,LOD

Administrator

The Administrator page is used to change the name and password of the administrator as well as add miscellaneous information allowing Web Server users to easily identify the receiver on the Web Server home page.

Parameter	Designation	\$PASHS
Login	Administrator login	WEB,PAR
Password	Administrator password	WEB,PAR
(Show characters)	Use this option to show or hide the above password. When hidden, the password is replaced with "*" characters.	-
Name	Administrator name	WEB,OWN
E-mail	Administrator email	WEB,OWN
Phone number	Administrator phone number	WEB,OWN
Company	Name of the company owning the receiver.	WEB,OWN

Changing the administrator login and password should be a well-considered action, and more particularly when several people have been given the administrator rights for the same receiver.

Users

The Users page is used to manage the list of authorized users. From this page, the administrator can add, modify or delete user profiles. A user profile consists of a login and a password.

Parameter	Designation	\$PASHS
Username	User login	WEB,USR,ADD
Password	User password	WEB,USR,ADD
(Show characters)	Use this option to show or hide the above password. When hidden, the password is replaced with "*" characters.	-

Parameter	Designation	\$PASHS
Add/Modify button	To add a new user, enter her/his name and password in the corresponding fields and then click on the Add /Modify button. To modify the password of a user, first select this user from the users list (causing her/his name and password to appear in the Username and Password fields), change the password and then click on the Add/Modify button.	WEB,USR,ADD
Delete button	To delete a user, first select it from the users list (causing her/his name and password to appear in the Username and Password fields) and then click on the Delete button. The user disappears from the users list.	WEB,USR,DEL
Users list	Lists the names of the users currently allowed to access the Status tab of the Web Server.	

Changing a user password should be a well-considered action. Users should be informed in advance of the planned changes.

Email Notifications

The Email Notifications page is used to define the email parameters allowing a receiver to email notifications to the specified recipient.

Parameter	Designation	\$PASHS
SMTP Server	SMTP server address or hostname (depends on the network to which the receiver is connected)	EML,PAR
SMTP Port	SMTP port number	EML,PAR
Username	Email user name	EML,PAR
Password	Email user password (always hidden; "*" characters appear instead)	EML,PAR
Sender Email Address	Email address used to return messages to the receiver if the email address of the recipient is not found.	EML,PAR

Parameter	Designation	\$PASHS
Notification Email Address	Recipient email address to which the receiver sends messages.	EML,PAR
Verbose Level	 Email notification level: No Email Notification Standard Email Notification: The following events will generate an email: receiver startup, external power shutdown, all high-level alarms raised by the receiver. Full Email Notification: The following events will generate an email: receiver startup, external power shutdown, all high- and medium-level alarms raised by the receiver. 	EML,PAR

Embedded FTP Server

The Embedded FTP Server page is used to activate the ProFlex 500 embedded FTP server for further use by authorized users. Through this page, you can also define the FTP parameters and manage both the FTP administrator profile and user profiles.

Embedded FTP Server parameters:

Parameter	Designation	\$PASHS
Activation	Click on this button to activate the ProFlex 500 embedded FTP server.	EFT,ON EFT,OFF
FTP port	Enter the IP port of the embedded FTP server. Default is 21, according to conventions.	EFT,PAR
Memory location	Choose the memory attached to the embedded FTP server. This can be the receiver internal memory or a device connected to the receiver via the USB port (USB key or mass storage media).	EFT,PAR
FTP path	Enter the path giving access to the directory users will be authorized to download data from.	EFT,PAR

Parameter	Designation	\$PASHS
Administrator username	Keep or change the embedded FTP administrator username.	EFT,PAR
Administrator password	Keep or change the embedded FTP administrator password.	EFT,PAR
(Show characters)	Use this option to show or hide the above password. When hidden, the password is replaced with "*" characters.	-

NOTE: By default, and for convenience, the administrator profile of the embedded FTP server is the same as that of the ProFlex 500 Web Server. It is your responsibility to decide on whether these two profiles should remain the same or not.

Don't forget to click on the **Configure** button after setting this first set of parameters.

Managing the list of users:

Parameter	Designation	\$PASHS
Username	User login	EFT,USR,ADD
Password	User password	EFT,USR,ADD
(Show characters)	Use this option to show or hide the above password. When hidden, the password is replaced with "*" characters.	-
Add/Modify button	To add a new user, enter her/his name and password in the corresponding fields and then click on the Add /Modify button. To modify the password of a user, first select this user from the users list (causing her/his name and password to appear in the Username and Password fields), change the password and then click on the Add/Modify button.	EFT,USR,ADD
Delete button	To delete a user, first select it from the users list (causing her/his name and password to appear in the Username and Password fields) and then click on the Delete button. The user disappears from the users list.	EFT,USR,DEL
Users list	Lists the names of the users currently authorized to use the embedded FTP server.	

Changing a user password should be a well-considered action. Users should be informed in advance of the planned changes.

RTC Bridge

The RTC Bridge page is used to configure the RTC Bridge function in a rover. The RTC Bridge function uses an external radio transmitter connected to the rover via one of the receiver's serial port to transmit RTK corrections to other rovers operated on the same site.

RTC Bridge Control:

Parameter	Designation	\$PASHS
Mode	Use this field to enable or disable RTC Bridge.	BRD

Input Port:

Parameter	Designation	\$PASHS
Use Data for PVT Computation	Check this button to allow the receiver to use the RTK corrections received on the input port (see below) in its position computation.	BRD
Port	Specify the input port receiving RTK corrections: Ethernet (P) or modem (E).	BRD

Output Port:

Parameter	Designation	\$PASHS
Serial Port	Specify the port forwarding the RTK corrections to the external radio transmitter (A, B or F)	BRD
Connection	Specify the radio used ("cable", U-Link TRx, Magellan UHF, Pacific Crest, ARF7474 A or B) to transmit RTK corrections to the other rovers located nearby.	BRD
Baud Rate	Specify the baud rate to be used on the port.	PRT
Mode	(Only if port A is used) Choose between RS232 and RS422 for port A, depending on the device connected to it.	MDP
RTS/CTS	Specify the handshake setting for the port.	CTS

Chapter 4. ProFlex 500 CORS Station

What is ProFlex 500 CORS?

ProFlex 500 CORS is a rugged and high-performance CORS reference station. Designed as an extension of the ProFlex 500 receiver, ProFlex 500 CORS integrates the best of today's technologies, including the exclusive Ashtech's BLADE™ algorithms and multi-constellation (GPS+GLONASS+SBAS) capabilities.

The main features of ProFlex CORS are the following:

- Embedded and password-protected *ProFlex 500 Web Server* giving the owner full remote control of the reference station via an Internet connection. The Web Server returns web pages on the owner's computer that give the owner the capability to monitor the operation of the reference station, or change partially or completely its settings.
- Generation of raw data files entirely manageable through the ProFlex 500 Web Server. Data recording is organized as sessions, with preset duration, ensuring round-theclock data recording, day after day and year after year.
- Raw data files can be converted to Rinex 2.11, Rinex 2.11 Hatanaka or TarZ before being made available to users.
- Embedded Ring File memory function offering unlimited use of the storage medium. Enabling this function will allow the oldest files in memory to be automatically deleted if necessary to provide storage space for current files being recorded.
- Raw data files can be pushed automatically to an external FTP server. A backup FTP server can also be planned, either as a fallback FTP server in case the primary FTP fails, or as a second repository for data files.
- Embedded NTRIP caster (firmware option) offering the possibility of implementing a complete network service according to the NTRIP protocol. Using this protocol makes it possible to access various sources of data from

different base stations through a single Internet connection, as well as efficiently protect these sources of corrections from unauthorized users.

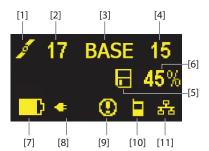
The embedded NTRIP caster allows you to organize a network of up to 10 different mount points (each of them receiving corrections from an NTRIP server) and up to 100 users given the ability to receiver corrections through these mount points.

- Smooth integration of meteorological and tilt data. Meteo and tiltmeter sensors fully controlled by the receiver.
- Embedded FTP server allowing the administrator to perform maintenance steps remotely or allow authorized users to download raw data files directly from the receiver.
- Automatic email notifications informing the administrator of possible malfunctions in real time.
- High degree of flexibility inherited from the ProFlex 500 receiver. In addition to delivering raw data files in ATOM or Rinex format, the ProFlex 500 CORS can deliver simultaneously real-time RTK corrections in ATOM (configurable), RTCM2.3, RTCM 3.0 & 3.1 or CMR format through various means:
 - As an IP server or client delivering different streams of raw data through up to nine virtual IP ports (Ethernet data streaming).
 - As an "NTRIP Server", delivering its corrections to the embedded NTRIP caster (firmware option) or to an external or third-party NTRIP caster. Up to two independent NTRIP servers can be set up in the ProFlex 500 CORS.
 - Through Direct IP
 - Through a UHF radio link
 - Through its built-in GSM modem.

Display Screens

If you press the Scroll button several times, you will see the following displays successively.

Power-On Screen


When you power on the receiver, the Ashtech logo appears on the screen. It is displayed until the receiver has completed its auto-test (this takes about 30 seconds).

Then the General Status screen is displayed.

General Status Screen

An example of General Status screen is shown below.

This screen displays the following information:

- Satellite icon [1] (always displayed).
- Number of satellites tracked [2].
- BASE [3]: A label indicating that the receiver is used as a base.
- Number of satellites used [4]: Number of satellites
 processed by the reference station and for which
 corrections are made available to users. These satellites
 are also used to compute an SDGPS solution of the base
 position. This solution is permanently available on the
 position computation screen (see *Position Computation*Screen on page 201).

Raw data logging icon [5]:

	Data recording through front panel Log button or using Recording submenu in the Web Server: - Blinking: Raw data logging in progress - Fixed: No raw data logging in progress.
	Data recording through sessions: - Blinking: Raw data logging in progress - Fixed: No raw data logging in progress.
\triangle	ATL data recording for advanced diagnosis.

- Percentage of free memory in the storage medium used
 [6].
- Battery icon [7] with visual indication of remaining charge. If an external power source is used (AC adapter or external battery), the battery icon will be animated to indicate battery charging in progress.
 - is displayed when there is no battery in the compartment and the receiver is operated from an external power source.
- Power status [8].

Icon	Definition
Percent value	Percentage of remaining battery. This indication will flash when the remaining energy drops below 5%. When an internal battery is used with external power applied, this icon alternates between the plug and the percentage of charge on the battery.
•	Replaces percentage when an external power source is used.

Alarm status [9].

Icon	Definition
(Alarm detected. Press the Scroll button to view the alarm type. Press it again to acknowledge the alarm, which then disappears from the list. Unless there is another alarm in the queue, in which case you will have to resume the acknowledge sequence, the screen then displays the memory screens.
None	No alarm detected

• GSM module (modem) status [10]. This may be one of the following icons:

lcon	Definition
Blank	Modem turned off.
ıl	Blinking icon: Modem turned on but not initialized yet. Indicates signal strength at modem antenna input. Fixed icon: Modem turned on and initialized (ready for a connection). Indicates signal strength received at modem antenna input.
λ 	The higher the number of bars, the better the signal. This icon will show four horizontal bars and an upside down antenna when the input signal is zero.
=	Modem on line.

• [11]: USB status and/or Bluetooth status and/or Ethernet port status.

Icon	Definition
e	USB port connected to active device
*	Bluetooth active
器	Ethernet port active
⇔ / ≯	These two icons will appear successively when both the USB port and Bluetooth are active.
Ҿ/∦/品	These three icons will appear successively when the USB port, the Ethernet port and Bluetooth are all active.
Blank	USB port unconnected and Bluetooth inactive.
Blank	USB port unconnected, Bluetooth and Ethernet inactive.

Memory Screens

From the General Status screen, press the Scroll button to access the Memory screens. Memory screens appear successively (see examples) at a display rate of about five seconds:

Left screen:

• First line: Percentage of free space in the internal memory.

- Second line: Number of files currently stored in the internal memory.
- Third line: Percentage of free space on the USB mass storage device.
- Fourth line: Number of files currently stored on the USB mass storage device.

Right screen:

- First line: Total space occupied by the files currently stored in the internal memory.
- Second line: Nominal size of the internal memory.
- Third line: Total space occupied by the files currently stored on the USB mass storage device.
- Fourth line: Nominal size of the USB mass storage device.

About the "*" symbol:

- It can only appear at the end of the first or third line.
- Where placed, it indicates that this storage medium is used for data logging.

What if there is no USB mass storage device connected to the receiver?

- Parameters relevant to the USB key size and space used and available are void (three dots displayed instead).
- Number of files is forced to "0".

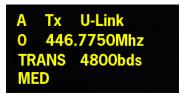
Receiver Identification Screen

From any of the two Memory screens, press the Scroll button to access the Receiver Identification screen. See example below.

SN: 200952006 FW: S518Gr22 BT: PF_0852006

IP: 10.20.2.42

- Receiver Serial Number
- Firmware Version
- Receiver Bluetooth Identifier
- IP Address


Position Computation Screen

From the Receiver Identification screen, press the Scroll button to access the Position Computation screen. This screen displays the latitude, longitude and ellipsoidal height of the reference position assigned to the base (not a computed position). See example below.

The upper line contains the same information as in the upper line of the General Status screen.

A new press on the Scroll button will take you back to the General Status screen. If however the receiver is connected to an external radio transmitter, an additional display screen will show up before pressing the Scroll button takes you back to the General Status screen.

This screen shows the current radio settings:

- First line: Serial port used, "Tx" for radio transmitter, radio type (U-Link, PDL)
- Second line: Channel number, carrier frequency
- Third line: Protocol used (Transparent, Trimtalk, DSNP), airlink speed
- Fourth line: Squelch setting (medium, low, high).

A new press on the Scroll button will take you back to the General Status screen.

Screen Backlight

The screen backlight is automatically turned off if no key is pressed for 1 minute. When the backlight is off, a short press on the Scroll button will turn it back on. The Scroll button will then recover its usual functions.

Data Transfer Screen

For more information on the screen displayed when downloading files, refer to *Downloading Raw Data on page 291*.

Introduction to ProFlex 500 CORS Configuration

Introductory Notes

This section more particularly focuses on how to successfully configure the ProFlex 500 CORS using the ProFlex 500 Web Server. A few status screens are also presented.

It is assumed that you have all the information needed¹ to perform an IP connection from your computer to the ProFlex 500 CORS. This also implies that the Ethernet port is used on the receiver side, and you can run the receiver's embedded *ProFlex 500 Web Server* from a web browser (Microsoft Internet Explorer, Mozilla FireFox, etc.) installed on your computer.

Note: If you need more information about how to make an IP connection to the receiver and run the ProFlex 500 Web Server from a local or remote computer, please refer to Getting the ProFlex 500 Ready for Running the Web Server on page 40.

The specific functions expected from a CORS station such as the ProFlex 500 CORS are to generate, convert, sort and distribute raw data files of preset duration (typically one hour). Raw data files may be delivered in native (ATOM) or Rinex format and also include meteo/tilt data from external sensors connected to the station.

Typically, raw data files are made available to users via an FTP server to which ProFlex 500 CORS automatically pushes the files as they are created. A second server can be set up as a backup FTP server.

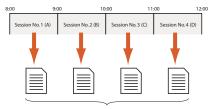
While ensuring these primary functions, and like any Ashtech ProFlex 500 base, the ProFlex 500 CORS station can also provide real-time RTK corrections in different formats (ATOM, RTCM, CMR, DBEN) and through different means (Internet, radio, GSM modem), including the embedded NTRIP caster (firmware option).

The different steps to learn how to configure a ProFlex 500 CORS station using the ProFlex 500 Web Server may therefore be summarized as follows:

^{1.}ProFlex 500 CORS IP address, administrator login and password.

- First steps with the ProFlex 500 Web Server: Opening the ProFlex 500 Web Server Home page to read the information identifying the receiver your computer is connected to. Then opening the Status tab to read receiver status information on the ever displayed Status bar.
- 2. Opening the **Configuration** tab to enter the general settings common to any base or reference station.
- 3. Still on the **Configuration** tab, entering the settings specific to the ProFlex 500 CORS. Before doing that, we encourage you to read the following topics:
 - Creating Sessions on page 203
 - Raw Data Types and Files Collected During Sessions on page 205
 - Storing G-Files Collected During Sessions on page 205
 - Converting/Deleting G-Files Collected During Sessions on page 206
 - Moving Files Originating from Sessions on page 206
 - Pushing Files Originating from Sessions to an External FTP Server - Backup FTP Server on page 207
 - Embedded NTRIP Caster on page 211
 - E-mail Notifications on page 215
 - Embedded FTP Server on page 216
 - External Sensors on page 217.
- Setting ProFlex 500 CORS to also deliver real-time RTK corrections.
- 5. Reading a few Status pages to check that the ProFlex 500 CORS is operating as expected.

The remainder of this chapter provides a detailed description of these five configuration steps.


Creating Sessions

Sessions are periods of time in a day during which you want automatic raw data recording to take place.

Up to 96 sessions can be created per day.

Sessions are repeated every day.

The duration of a session will determine the period of time covered by the raw data file recorded during that session. For example, a one-hour session will result in a one-hour raw data file.

Raw data files (G-files) covering one hour each

Sessions can be created either automatically (in this case they are all of the same duration), or created individually through a manual procedure.

The two methods can be combined. For example, sessions can first be created automatically and then adjusted manually and individually, if necessary. The following parameters can be edited for each session individually: session start and end times, recording interval and data recording control. No session overlapping is allowed. Doing so would trigger an alarm.

Creating sessions spanning over 24 hours gives a station operating round the clock.

Sessions are numbered from 1 to 96 max. Each session has a session ID. Session IDs are assigned as follows:

- Sessions No. 1 to No. 24: A-X
- Sessions No. 25 to No. 48: AA-XA
- Sessions No. 49 to No. 72: AB-XB
- Sessions No. 73 to No. 96: AC-XC

Note: Data recording can also take place out of any sessions through the ProFlex 500 Web Server's Recording function.

Two additional options are available that may affect the way the programmed sessions are executed:

• Reference Day (1-366): This is the day when the execution of the programmed sessions should start. This option should be used when you want your station to start executing its sessions only several days after having configured the station.

The principle is the following: If the current day is prior to the **Reference Day**, the station will wait until that day before starting executing the sessions. If it is after, the station will be allowed to start the sessions on the current day, according to the programmed sessions.

For example, with **Reference Day**=33 (Feb 2), if the current day is 30 (Jan 30), the station will start the first session only in three days, whereas if the current day is 51 (Feb 20), the station will start the programmed sessions on that day.

If you do not need to postpone the execution of the sessions, keep the default value (1) for this option.

• Offset per Day (in minutes and seconds): This option is specifically designed for users who wish to have the same sky view of the GPS constellation every day. As the time when the GPS constellation comes back to a given sky view happens 4 minutes earlier every day, setting this option to 04'00" will correct for this offset (i.e. this will allow the same GPS sky view to be observed every day through the same session).

With **Offset per Day**=4'00", a session initially set to start at 9:00 for example will start at 8:56 on the second day, at 8:52 on the third day, etc. The same rule applies to the session end time, and to all the other programmed sessions.

If you do not need to offset the sessions, keep the default value (0'00") for this option.

Raw Data Types and Files Collected During Sessions

The type of raw data collected during sessions are all those you have set on the **R port**. In addition, the amount of the raw data collected is tied to the elevation of the satellites tracked (**Recording Elevation Mask**).

Raw data are saved as *G-files*, using the same naming convention as the one used in manual recording. A specific **Site Name** can be defined for files recorded through sessions. The file naming convention used is recalled below:

G<SiteName><Index><Year>.<Day>

Example: GPT12C10.30 is the third G file generated on Jan 30, 2010 on a site named PT12.

Storing G-Files Collected During Sessions

G-files are saved either in the receiver's internal memory or on a USB device, i.e. on the mass storage device connected to the receiver via its USB port. With this last option used, a really huge amount of memory can be associated with the receiver. In both cases, G-files are all indistinctly saved in the root directory of the selected storage device.

At this stage, special mention should be made of the **Ring File Memory**. With this option activated, the reference station will be able to collect data for an unlimited period of time without external intervention. In practice, this option will allow the

receiver to automatically delete the oldest G-file when the amount of available free memory (in the selected storage device) falls below 20 Mbytes.

Note: The **Ring File Memory** option should not be confused with the **Ring File Buffer** option, although both have the same purpose, which is to preserve the memory space available. The **Ring File Buffer** option is used in "manual" data recording to make available at all times, and in the form of a single G-file, the last x minutes of raw data collected by the receiver. Older raw data will intentionally be lost.

Converting/ Deleting G-Files Collected During Sessions

G-files can be converted to Rinex 2.11, with or without the Hatanaka option. This will happen only if ATOM navigation data are included in the G-file (the conversion will otherwise fail).

The receiver can automatically complete the RINEX file header while converting G-files to RINEX files. The fixed additional information you would like the receiver to insert into that header can be entered using **Sessions > Settings** on the ProFlex 500 Web Server.

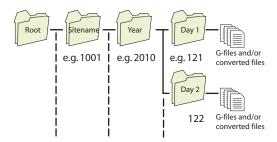
You should be aware of the limitation in asking for RINEX conversion. The receiver won't convert to RINEX in the following case:

Ratio "Fd / Ri" less than 2

Where:

- Fd is the G-file (session) duration, in hours
- Ri is the recording interval, in seconds

If G-files are converted to Rinex, the resulting files can in addition be zipped in TarZ format.


The file conversion/compression may be followed by the deletion of the original G-file, if desired.

Moving Files Originating from Sessions

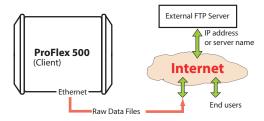
The collected G-files and converted files may be moved to another location on the receiver. The purpose is to be able to sort the files according to the date of creation and the site of data collection.

The storage medium used in the File Move function may be different from the one initially used to store G-files. For example, the receiver may be asked to store the original G-files in its internal memory and then you can ask that the G-files and converted files be moved to the USB device.

When doing that, the receiver will automatically create subdirectories according to the rules you will have specified earlier. Typically, the receiver may create this type of tree structure as new files are collected:

Organizing the storage of the files is simply obtained by typing the appropriate codification of the subdirectories in the field named **Sub-directory Name Format**. This field uses a specific syntax with case-sensitive characters. A typical syntax used is the following:

S/Y/D


Where each letter tells the receiver in which order to create the subdirectories and how to name them (see table below).

Character	Description
s or S	4-character sitename
Υ	4-digit year (2010= 2010)
у	2-digit year (10= 2010)
m	2-digit month (01= January)
М	3-character month (Jan= January)
d	2-digit day in month (1-31)
D	3-digit day in year (1-365)

Pushing Files
Originating from
Sessions to an
External FTP
Server - Backup
FTP Server

Parallel with the File Move function, the G-files and/or converted files –whatever remains after the G-file conversion process (if any)– can also be pushed automatically to an external FTP server through an IP connection, using the FTP communication protocol (activate the **Automatic Transfer** option).

End users will then be able to connect to that FTP server (primary FTP server) for downloading the data they need for their applications.

The reference station being the client for this transfer, you need to enter the IP address (or host name) and IP port of the remote FTP server, and also enter the login and password that will let the receiver upload its files to the server without any problem.

You can also sort the files while transferring them to the FTP server. This is done using the same method as in the Move File function (a dedicated **Sub-directory Name Format** field also exists in this case of use).

By default the created tree structure is attached to the root directory of the FTP server. Using the **Path** field, you can attach the tree structure to the subdirectory the FTP server owner will have assigned to you. For example, typing **Path**= CORS5212 or **Path**= /CORS5212/ (the first and last slashes are optional), means your subdirectories will be created in the CORS5212 subdirectory.

You can ask the receiver to delete the files from the receiver after it has pushed them to the external FTP server. This is achieved by enabling the **Delete Files After Transfer** option.

To make sure the files are always available to users, a backup FTP server can be made ready. The backup FTP server will use the same file organization as the one defined for the primary FTP server (through the above-mentioned **Sub-directory Name Format** field). The backup FTP server can be used in two different ways:

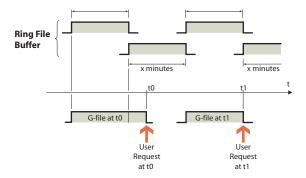
Temporarily, following a failure of the primary FTP server.
 The backup FTP server will then instantly take over the role of the primary FTP server.

At the beginning of each new session, the ProFlex 500 CORS checks to see if the primary FTP server is back to work and accessible. If that is the case, files will be pushed back to the primary FTP server (and the backup FTP server will stay idle in the background).

 Permanently, as a second repository for all the files collected by the CORS station.

Recording Raw Data Outside of Any Sessions

Raw data recording can also take place outside of any sessions. What's more, it can take place simultaneously with data recording performed through the programmed sessions. This alternate recording capability can be controlled through the **Configuration** - **Recording** submenu in the ProFlex 500 Web Server.


Like with sessions, this type of data recording produces a G-file but the recorded data are those set on the port corresponding to the storage medium used (and not on port R). If for example the internal memory is used to save the G-file, then the recorded data will be those set on port M.

The settings are very similar to, while independent of, those found for sessions (i.e. sitename, recording elevation mask, observation mask, recording interval). For example raw data can be collected at 1 Hz through sessions while those collected through the Recording function may be at 20 Hz. Also a different site name may be used so that you can easily identify those generated through the Recording function from those generated through sessions.

Among these settings, there is however a parameter that is specific to the Recording function. This parameter, named **Ring File Buffer**, impacts the duration and storage of the created G-file as follows:

- Ring File Buffer Off: A single G-file will be created, with unlimited duration, that is, the G-file will be closed only after you ask the receiver to stop data recording, or automatically when the memory used is full.
- Ring File Buffer On: You can set the duration, in minutes, of the G-file. As a result, the receiver will operate so as to make available, at all times, a single G-file that covers only the last x minutes of data collection, x representing the specified duration for the G-file. Older data will intentionally and definitively be lost.

The diagram below summarizes the mechanism used to produce this G-file.

The Ring File Buffer continuously memorizes in turn two potentially deliverable sets of data, the duration of which corresponds to that requested for the G-file.

When the user requests the G-file at time t0, the receiver will read the ring file buffer and concatenate the currently logged data with the "complete" set of data that precedes. The resulting data will be saved as a G-file and made available to the user.

In the general case, the duration of the delivered G-file will always be greater than the requested one (although always less than twice this duration). Only when the user request occurs at time t1 (see diagram) will the resulting duration of the G-file be equal to that requested.

The Ring File buffer should not be used simultaneously when G-files collected through sessions are converted to Rinex.

With the Ring File Buffer ON, the receiver will create a G-file according to the process above in the following cases:

1. The user stops data recording:

- Locally, by pressing the Log button on the receiver front panel.
- Or using the ProFlex 500 Web Server, by clearing the Data Recording option on the Recording submenu page and clicking on Configure.

In both cases, the G-file is created on the chosen storage medium and renamed according to the naming conventions for G-files.

2. File transfer to local USB key:

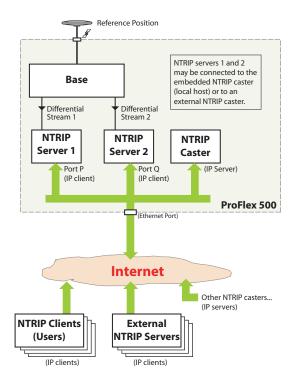
- Locally, the user connects a USB key to the receiver and then, as prompted on the receiver screen, presses the Log button to allow data transfer to the key. As a result, the G-file is created and saved on the USB key.
- Using the ProFlex 500 Web Server, the user opens the File Manager page, selects the "Ring_G-File" from the list and clicks on the Copy to USB Device button.

In both cases, the G-file is created on the USB key and renamed according to the naming conventions for G-files.

3. File Transfer to FTP server: Using the ProFlex 500 Web Server, the user opens the File Manager page, selects the "Ring_G-File" from the list and clicks on the Transfer files to FTP server button. As a result, the G-file is created and pushed to the FTP server where it is renamed according to the naming conventions for G-files.

Embedded NTRIP Caster

Introduction

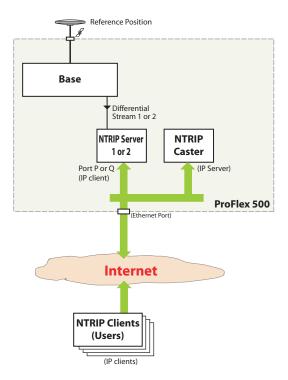

The *Embedded NTRIP Caster* is a ProFlex 500 firmware option allowing you to build your own NTRIP network solution around the ProFlex 500 CORS station.

The embedded NTRIP caster can handle a total of 100 users and 10 mount points. The number of 100 users should be understood at the total number of possible users, irrespective of the mount points they are using. For example, if 90 users are connected to mount point n, then only a total of 10 users can be connected to any of the other mount points.

One of the distinguishing features of ProFlex 500 CORS is its capacity to accommodate internally two NTRIP servers directly "feeding" the embedded NTRIP caster. The other NTRIP servers, if any (up to 8), will therefore be all external to the ProFlex 500 CORS.

- The two internal NTRIP servers will both provide correction data from the "base" section of the ProFlex 500 CORS (see figure below), typically in different formats.
- Internal NTRIP server 1 uses Ethernet port P to deliver its correction data to the caster. The correction data are internally routed from the base either through the internal modem or directly via Ethernet.
- Internal NTRIP server 2 uses Ethernet port Q to deliver its correction data to the caster. The correction data can only be routed internally from the base via Ethernet.

The figure below shows the internal architecture of the ProFlex 500 CORS when the *Embedded NTRIP Caster* firmware option is enabled and running and two internal NTRIP servers are also set up and running.



In its simplest configuration, the embedded NTRIP caster can be used to emulate the Direct IP mode (i.e. IP connection to a unique source of corrections), with the additional advantage that, contrary to conventional Direct IP, the embedded NTRIP caster can offer an effective protection of the source of corrections by restricting its use to the sole authorized users.

In this application, the ProFlex 500 CORS makes use of both its embedded NTRIP caster and an internal NTRIP server (see figure below):

- In the NTRIP caster, a single mount point is available and all declared users are allowed to use this mount point.
- The internal NTRIP server is connected to the NTRIP caster's unique mount point.

The result is that only the NTRIP caster users are allowed to use the source of corrections.

NTRIP Caster Control & Monitoring

The ProFlex 500 Web Server provides an easy way to remote control and monitor the Embedded NTRIP caster.

Once the Embedded NTRIP Caster firmware option has been activated in the receiver, the Web Server shows the **Embedded NTRIP Caster** option both in the Status and Configuration menus.

On the Configuration menu, the **Embedded NTRIP caster** option is split into three submenus:

The Settings submenu allows you to control the NTRIP caster function (ON/OFF), declare the public IP address of the caster, specify the unique password that all NTRIP servers will need to provide if they want to be authorized as a recognized source of corrections for the caster, and provide all the informative data usually found in an NTRIP source table (this information is forwarded to users when querying the NTRIP caster).

- The Mount Points submenu allows you to define each of the possible 10 mount points of the NTRIP caster. Choosing the name of a mount point is important:
 - it is through that name that NTRIP servers can connect to the NTRIP caster.
 - it is through that name that users can choose which base station they want to receive correction data from.

Informative data for each mount point can also be defined on this submenu, such as the approximate position of the base that will provide correction data through this mount point, the country where it's located, and whether using the data from this base is free or not.

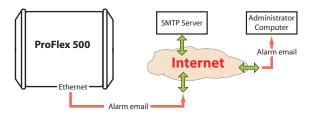
Each mount point definition appears in the table at the bottom of the page. You can easily modify each of them by selecting the corresponding row in the table.

The Users submenu allows you to define all the possible users of the NTRIP caster. Defining a new user includes specifying a user name and password, as well as the allowed mount points. Refer to Protecting Mount Points on page 214 for more information on the impact of explicitly assigning mount points to users.

Each user definition appears in the table at the bottom of the page. You can easily modify each of them by selecting the corresponding row in the table.

On the Status menu, the **Embedded NTRIP caster** option is split into three submenus:

- The Current submenu provides the list of mount points through which sources of correction data are currently available, as well as the list of currently connected users. Each user is clearly identified (name, mount point used, time when connection started, IP address).
- The **History** submenu provides the same type of information as the **Current** submenu, with in addition the list of past connections (start and end times, users, mount points, IP addresses) since the NTRIP caster was started. It is in fact a more friendly way of representing the content of the log file presented below.
- The Log submenu views the raw content of the log file gathering all the events in relation with the embedded NTRIP caster since it was started.


Protecting Mount Points

Protecting mount points may be done in an indirect way, as explained below:

- Not assigning a mount point to any of the declared users implies that this mount point is accessible to anyone who can make an Internet connection to the NTRIP caster.
 Besides, the NTRIP caster may list mount points that are not declared as managed by the NTRIP caster. If such mount points are available, anyone who can make an Internet connection to the NTRIP caster will be allowed to connect to these mount points.
- Conversely, from the moment a mount point is assigned to
 a declared user, this mount point is no longer accessible
 to all. Only declared users explicitly granted the right to
 connect to that mount point will be able to do so.
 As the administrator of the NTRIP caster, you can for
 example create a user for the sole purpose of protecting
 your mount points. Allowing this user to connect to all
 your mount points will amount to placing right away a
 protection on all these mount points, preventing anyone
 else to connect to them. Then you can gradually add new
 users allowed to connect to one or more of the protected
 mount points.
- Warning! Having declared users not assigned to a single mount point means they can access all the mount points managed by the caster!

E-mail Notifications

As the administrator of the CORS reference station, you may be informed via email of possible malfunctions detected by the receiver (see *List of Alarms on page 694*). This will allow you to quickly respond to the email alert by taking the appropriate maintenance steps.

You may choose between three different levels of notification:

- Full notification. Each of the following events will generate an email:
 - "High" and "medium" alarms
 - Receiver powered on

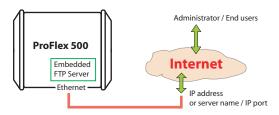
- Power shutdown causing the receiver to operate from its internal battery.
- Standard notification. Each of the following events will generate an email:
 - "High" alarms only
 - Receiver powered on
 - Power shutdown causing the receiver to operate from its internal battery.
- No notification at all.

Remember the receiver may report three categories of alarms:

- "High" alarms, indicative of serious problems
- "Medium" alarms
- "Low" alarms

The receiver is not designed to process incoming emails. It is therefore no use replying to an alarm email.

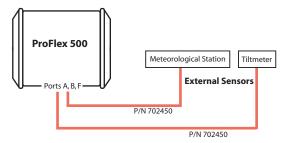
Example of email notification:



Embedded FTP Server

End users may download raw data files directly from the receiver memory. This can be done through the embedded FTP server, which gives remote access to the selected receiver memory and directory via an IP connection, using the FTP communication protocol.

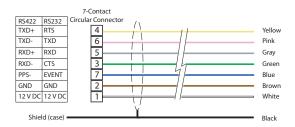
In this case, end users should be given read access (through a user profile) to the directory containing the raw data files collected by the receiver.


Alternatively, as the owner of the station, you may have to perform remote maintenance operations in the receiver memory. This connection gives you full read/write control on the specified directory and child directories.

Note that the embedded FTP server gives access only to the specified directory (and its child directories), whether you log in as the administrator or as a user.

External Sensors

The CORS reference station can also be interfaced with external sensors via its serial ports. Typically, this functionality is used to interface the receiver with a tiltmeter or a meteorological station.



As the administrator, you can ask the receiver to initiate the communication with the external sensors in order to acquire data from these sensors. Initialization and trigger strings may in advance be assigned to the concerned serial ports for this purpose.

The acquired sensor data are inserted into the raw data file (G-file) currently recorded. Optionally the sensor data can also be saved as a D-files, in which case the D-files are saved in the same subdirectory as the corresponding G-files. Sensor data can also be output through the NMEA XDR message type.

External sensors can be connected to the ProFlex 500 using multi-function serial cable P/N 702450 (3 meters in length).

This cable has bare wires at one end, and a circular, sevencontact connector at the other end. The pinout is as shown in the diagram below.

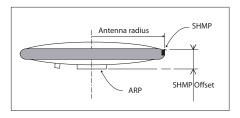
Setting a CORS Reference Station

How to Start

Open the Web Server's Configuration tab. The first time you
click on this tab, the Web Server will ask you to log in as
the administrator. Only the receiver administrator is
authorize d to access the Configuration tab.

You are allowed to change the destination of a receiver (e.g. it is currently a rover and you want to change it into a base). In this case, on opening the **Base Setup** tab, the Web Server will retain part of the rover settings that could be applied to the base (e.g. antenna type, etc.).

• Programming the data generated by the CORS station is addressed separately (see *Defining the Raw Data Generated by the CORS Station on page 220*).


General Parameters

- Click on the Base Setup menu. The Full Setup web page opens.
- Set the receiver parameters:
 - Dynamic: Choose "Static".
 - Moving Position: Keep this option disabled.
 - Latitude, Longitude, Ellipsoid Height: Enter the reference position of the CORS station (three-dimensional geographical coordinates).

(Clicking on the **Get current position** button assigns the last position computed by the receiver to the reference station as its reference position.)

- Set the GNSS antenna parameters:
 - Reference Position: Specify the physical point of the CORS station for which the receiver will collect data.
 The three possible choices are: Antenna L1 phase center, Antenna Reference Point (ARP) or Ground Mark (reference point).

- Measurement Type: Specify the method that was used when setting up the CORS station to measure the height of the GNSS antenna (typically "Vertical" is used, "Slant" being most of the time used for temporary base setups on tripods).
- Antenna Height: Value of base antenna height, expressed in the selected distance unit, as measured according to the specified measurement method.
- Receiver Antenna: Specify the model of GNSS antenna used by the receiver.
- Antenna Radius: In case of a "Slant Height" measurement, enter the antenna radius (this is a manufacturer specification), taking care to enter this parameter in the selected distance unit. See also the diagram below for more information.
- SHMP Offset: In case of a "Slant Height" measurement, enter the SHMP offset (this is a manufacturer specification) taking care to enter this parameter in the selected distance unit. See also the diagram below for more information.

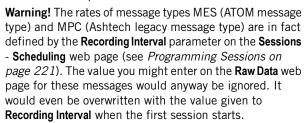
- Virtual Antenna: This option is used to emulate a GNSS antenna other than the one really used (typically ADVNULLANTENNA is used).
 - Choosing a virtual antenna different from the one really used affects the raw and differential data as if they had been collected by the virtual antenna, instead of the real one.
- Set the parameters relevant to the GNSS constellations used by the receiver:
 - Recording and Output Elevation Mask: Choose the
 elevation angle above the horizon creating the desired
 reception mask. After setting this angle, any satellite
 seen from the base with an elevation angle less than
 the specified one will be rejected from the list of
 usable satellites. The default value is 5°.

- GLONASS, SBAS: In addition to the GPS, you can ask the receiver to track the GLONASS and/or SBAS satellites as well. Enable the options corresponding to the additional constellations you want the receiver to use.
- Click on the Configure button to save all the changes made.

Defining the Raw Data Generated by the CORS Station

Click on **Data Output** and then on the **Raw Data** submenu. Use the page that opens as explained below:

 All ATOM and Ashtech legacy raw data message types are listed below.

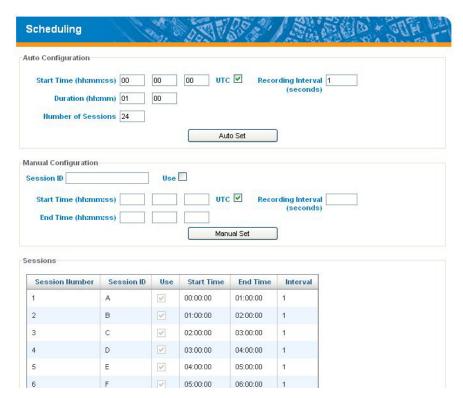

Format	Message types
ATOM	NAV, MES,PVT, ATR, DAT, EVT
Ashtech legacy	DPC, SAL, SAG, SAW, SNG, SNV, SNW, ION, SBD, MPC, PBN

(Typically, a G-file should contain NAV, MES and ATR data to guarantee successful conversion of the file into RINEX files. NAV provides navigation data, MES observations data, and ATR external sensor data.)

- Follow the instructions below to define the output of ATOM message types:
 - For each ATOM message type you need to define, select it from the Message drop-down list, then select the output port ("R Session" necessarily) from the Output drop-down list, then enter its output rate, in seconds, in the Rate field, and finally click on the Add button. The new message definition will then appear as a new row in the table on the right.
 - NOTE: You don't have to define an output rate for EVT and DAT.
 - Should you change the definition of an existing message, select the corresponding row in the table.
 This populates the fields on the left with the definition of that message. Edit the definition and then click on the **Modify** button to save your changes. The table row is updated accordingly.

Note that depending on the current selection on this page, the button located underneath the fields on the left may be either grayed or with a different label (**Add** or **Modify**).

- Deleting a message definition can be done by simply clicking on the corresponding "trash" sign in the Clear column on the far right. This deletes the table row.
 There is also a Clear All button under the table that allows you to delete all message definitions from the table in one click.
- Follow the same instructions as above to define the output of Ashtech legacy message types. Note that you don't have to define an output rate for SBD.


 Click on the Configure button to save all the changes made. The concatenation of the selected messages will constitute the G-files saved in the receiver (internal memory or USB device).

Programming Sessions

The typical use of sessions in a CORS station consists of defining 24 sessions representing each one-hour data recording at a 1-second recording interval. Follow the instructions below to create these sessions:

- · Click on Sessions Scheduling.
- Enter "00:00:00" as the Start Time, "1" as the Recording Interval, "01:00" as the Duration and "24" as the Number of Sessions.
- · Click on the Auto Set button.
- Click on Back after the "Successful" message has been returned by the Web Server. You can now see the list of sessions you have just created in the Sessions table:

Clicking in a row inside the table allows you to edit the session individually. The changes are then entered by clicking on the **Manual Set** button

Note that the **Use** button is checked by default, which means data recording is allowed during the session.

Starting Sessions & Managing Raw Data Files

To start the execution of the programmed sessions on the current day, do the following:

- Click on Sessions Settings
- Enable the Run Sessions check box.
- Keep default values for Reference Day ("1"), Offset Per Day ("00:00") and Recording and Output Elevation Mask (5°).
- Choose the storage medium. "Internal Memory" is about 95 Mbytes in size. Using an external device connected to the receiver's USB port ("USB Device") may allow the receiver to operate with an even larger memory.

- Check the Ring File Memory option. This will result in an unlimited operating time for the station while using a finite memory size.
- In the G-File Conversion pane, choose the desired file conversion scenario (Rinex or Rinex Hatanaka, followed or not by file compression and original file deletion).
- Using the different fields in the File Move pane, choose whether you want to move the raw data files (original and/ or converted files) to another location in the receiver (internal memory or USB device) so they can be at the same time sorted by sitename, year, month and day of creation.

If you wish to do so, you have to specify –in the **Sub-directory Name Format** field– the syntax through which the receiver will be able to create new subdirectories as new raw data files are made available. The syntax may typically be in the form:

S/Y/D

Where each letter tells the receiver in which order to create the subdirectories and how to name them (see table below).

Character	Description
s or S	4-character sitename
Υ	4-digit year (2010= 2010)
у	2-digit year (10= 2010)
m	2-digit month (01= January)
M	3-character month (Jan= January)
d	2-digit day in month (1-31)
D	3-digit day in year (1-365)

- Using the different fields in the Transfer to external FTP Server pane, choose whether you want the receiver to automatically transfer the collected raw data files (original and/or converted files) to an external FTP server.
 - If so, activate the **Automatic Transfer** option and enter the identification parameters of the FTP server:
 - FTP Server, Port: FTP server IP address/hostname and IP port
 - Login, Password: Connection profile that gives the receiver the rights to upload data to the FTP server.
 - Path: Location on the FTP server where the receiver is allowed to post the files (syntax: /subdirectory/.../ subdirectory/). The first and last slashes are optional.

 Sub-directory Name Format field: Also in this case, files will be sorted by sitename, year, month and day of creation, using the same instructions as previously (File Move) to set this field.

You can also ask the receiver to delete the raw data files once they have been transferred to the FTP server. This is done by enabling the **Delete Files After Transfer** option.

 You may define a second FTP server, called "backup FTP server" for securing the raw data file transfer to an external repository.

In the Backup FTP Server pane, first specify the conditions in which the backup FTP server will be used:

- Never (two buttons cleared)
- Always (Always Used button checked)
- Only when the primary FTP server is unable to fulfil its function (Used When Primary FTP... button checked)

Then enter the data required for an IP connection to this second FTP server (address, login, password, path; keep the default value "21" for the IP port).

Note that you don't need to define a folder naming convention for the backup FTP server. The same naming convention as the one defined for the primary FTP will be used (see **Sub-directory Name Format** field above).

• Click on the **Configure** button to save all your settings.

Programming Email Notifications

- Click on Advanced Setup and then on the Email Notifications submenu. Enter the following parameters:
 - SMTP Server and SMTP Port: Enter respectively the name and port of the server in charge of routing the emails issued by the receiver.

The SMTP server you need to use depends on the network the receiver is connected to. In most cases, it is the one of your Internet Service Provider.

- "25" is the well known port number for communications using the SMTP protocol.
- Username and Password: Give identification information allowing you to send emails to the specified SMTP server.
- Sender Email Address: Email address of the CORS station from which emails will originate. It is a good idea to keep the default email address (no-

- reply@proflex500.com), as it suggests that no response should be sent back to this address.
- Notification Email Address: Recipient email address, typically the email address of the CORS station administrator or of any person in charge of monitoring and maintaining the station. There can only be one recipient.
- Verbose Level: This field is used to control which of the possible alarms or warnings are allowed to trigger notification emails. (See also *List of Alarms on* page 694).
 - "Full email notification" will let all the alarms and warnings trigger emails (no filtering).
 - "Standard email notification" will only let the warnings and highest-priority alarms trigger emails (selective filtering).
 - "No email notification" will prevent the receiver from issuing any emails, regardless of the nature of the possible alarms and warnings.
- Click on the Configure button to save all your settings. An email is then sent automatically to check that the email notification process is now working.

Activating the Embedded FTP Server & Creating New Users

- Click on Advanced Setup and then on the Embedded FTP Server submenu. Enter the following parameters:
 - Enable the **Activation** check box to activate the embedded FTP server.
 - **FTP Port**: Keep the default option (21) as it is the usual port number used for most FTP applications.
 - In the Memory Location field, choose the memory the FTP server will give access to.
 - In the FTP Path field, specify the path to the subdirectory (in the selected memory) the FTP server will have access to (syntax: /subdirectory/.../ subdirectory/). The first and last slashes are optional.
 - Administrator Username and Password fields: Username and password for the administrator of the embedded FTP server (default: "admin", "changeme"). Not to be confused with the administrator of the ProFlex 500 Web Server. It is your responsibility to define distinct or similar connection profiles for these two administrators.

- Click on the **Configure** button to save all your settings.
- Click on Back to return to the Embedded FTP Server web page.
- In the Users pane, enter as many user profiles for the Embedded FTP server as necessary.

For each user, enter a **Username** and a **Password**, then click on **Add/Modify**.

To modify the password of a user profile, click on the corresponding username in the table on the right. This updates the **Userrname** and **Password** fields with the current settings of this profile. Edit the password and click on **Add/Modify**.

To delete a user profile, click on the corresponding username in the table on the right and click on **Delete**.

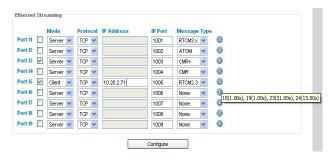
Setting the External Sensors

Before starting, you should know which sensors are used, and which receiver ports they are connected to.

If port B or F is used, you should first go to **Connections** - **Serial Ports** and enable the **Power ON** box, followed by a click on the **Configure** button.

Setting a tiltmeter or a meteorological unit refers to the same procedure. For this reason, only the setting of a meteorological unit is described below.

- Click on Connections and then on Meteorological Unit.
- Identify the pane describing the serial port to which the sensor is connected (Serial Port A, Serial Port B or Serial Port F). Then set the parameters located inside this pane as follows:
 - Enable the Process Meteorological Unit option so that the receiver can start querying the sensor right after clicking on Configure.
 - Set the port's Baud Rate and RTS/CTS
 - Enter the Initialization String and Trigger String. These are parameters specific to the sensor used. They should normally be found in the manufacturer's documentation.
 - Set the interval of time, in seconds, through which the receiver queries the meteorological unit (Interval).
- Set the Legacy D-File Support option as needed. Enabling this option means that the sensor data will not only be inserted into the collected G-file but also saved as a separate D-file. With this option cleared, no D-file will be created.


• Click on the **Configure** button to save all your settings.

Adding Delivery of Real-Time RTK Corrections

The ProFlex 500 CORS has the capability to deliver RTK corrections (differential messages) for real-time applications while being also busy collecting raw data files.

As an example, the instructions below allow you to configure the CORS station to perform Ethernet data streaming, delivering compact ATOM differential data on two IP ports (I3, I5). In one case, the station will be a server, and in the other it will be the client of, for example, 10.20.2.71.

- Click on the Configuration tab and then on Data Output -Differential Messages
- Select "Compact (Static Base)" in the RNX Scenario field
- Keep the default settings for the refresh rates of the associated parameters.
- Click on the Configure button to save all your settings.
- Click on Base Setup Data Streaming on IP and perform the following settings in the Ethernet Streaming pane:

• Click on the **Configure** button to save all your settings.

For more information on the various possibilities of routing differential data to users, refer to the *ProFlex 500 Web Server Getting Started Guide* or the *ProFlex 500 Reference Manual*.

NTRIP Server Via Ethernet

- Click on Base Setup > NTRIP Server.
- Scroll down the page to display the "NTRIP Server 1" frame. In the Connection field, select "External NTRIP Caster via Ethernet".

NOTE: If the Embedded NTRIP Caster firmware option is activated, a third option is available ("Embedded NTRIP Caster") through which you can connect the NTRIP server directly to the embedded NTRIP caster (instead of connecting it to an external NTRIP caster).

 Enter the information (Connect Now, Address, Port, Password, Mount Point) allowing the base to connect to the NTRIP caster (the server) to which it is supposed to deliver its corrections.

NOTE: If you chose "Embedded NTRIP caster", the **Address** field has been unconditionally set to "localhost".

- Enable **Connect Now** to allow the receiver to establish the connection right after you have clicked on **Configure**.
- In the Message field, select the type of differential data the base will deliver (ATOM, RTCM, CMR or DBEN). Following your selection, you will see the detail of the selected data by placing the cursor over the "I" sign on the right of this field, as defined in Data Output > Differential Messages.
- If you need to define a second NTRIP server, scroll down to the "NTRIP Server 2" frame and resume the above steps.
- Click on the Configure button to let the Web Server load all your new parameters to the receiver.

Setting the Embedded NTRIP Caster

Remember the Embedded NTRIP Caster will be visible on the Status and Configuration tabs of the Web Server only after the NTRIP Caster firmware option ([C] option) has been activated in the receiver.

- Click on Embedded NTRIP Caster > Settings
- Enable the **Activation** button to start the embedded NTRIP caster (start-up will be effective after you have clicked on the **Configure** button).
- Enter the public IP address (or hostname) and IP port of the NTRIP caster:

By default the **Caster Hostname or IP Address** field shows the local IP address of the receiver (the one that can be read on the receiver display screen).

If the Ethernet port is set to work in DHCP and you have declared a hostname on the DynDNS site, then the field should be updated to hold that hostname.

If on the contrary, the public IP address to communicate with the receiver is a static address, then it should be known to the station administrator and entered in that field.

By default the **Caster Port Number** field reads "2101". This value should not normally be changed.

 Define a password that NTRIP servers will have to provide for being authorized to connect to the NTRIP caster as correction data providers. Enter this password in the **Caster Password** field. The password can be displayed in plain by clicking on the **Show Characters** button.

- Use the Caster Information area to enter informative data about the NTRIP caster. The whole set of information entered in this area will be made available to NTRIP caster users through the so-called NTRIP Source Table.
- Click on the Configure button to load all the NTRIP caster settings to the receiver.
- Click on Embedded NTRIP Caster > Mount Points. Use this tab
 to define all the mount points the NTRIP caster will have
 to manage. Behind each mount point is a base station
 installed at a given location and generating a given data
 format.

While most of the data presented to define a mount point are mostly informative (identifier, data format, approximate location of the base, country, fee indicator), the **Name** field on the contrary is the key parameter through which the NTRIP caster will organize the connections between NTRIP servers and NTRIP clients (users). So each mount point name should be chosen to depict as accurately as possible the source of corrections available through the mount point. Making all those names as short as possible is also recommended for the convenience of NTRIP clients.

For example, the mount point corresponding to a base station installed near the town of Balville and generating ATOM differential data in compact format could be named: "Balv_ATO_Sc100".

- After all the fields on the tab have been defined for a mount point, click on the Add/Modify button to save this mount point (there is no Configure button on the Mount Points tab). Resume this operation until all the required mount points have been created.
- At this point, now that all the mount points have been defined, you should make sure all the NTRIP servers are properly configured to serve the embedded NTRIP caster, i.e. their IP connection settings should mention the IP address or hostname of the NTRIP caster, the corresponding mount point name and the caster password.

If you plan to use internal NTRIP servers (there may be two in the ProFlex 500 CORS, see *NTRIP Server Via Ethernet on page 227*), then for each of them, you will have to choose a mount point from the list of existing mount points. For both, the IP address of the caster will

be forced to "localhost". Unlike external NTRIP servers, the caster password is not requested when configuring an internal NTRIP server.

 Click on Embedded NTRIP Caster > Users. Use this tab to create the list of authorized users. For each user, a username and password, as well as the authorized mount points, should be defined.

Remember that not assigning any user to a mount point results in making this mount point accessible not only to all declared users but also to anyone who can connect to the NTRIP caster.

- After all the fields on the tab have been defined for a user, click on the Add/Modify button to save this user (there is no Configure button on the Users tab). Resume this operation until all the users have been created.
- At this point, now that all the users have been defined, you should provide all these users with the following information so they can connect successfully to the NTRIP caster:
 - Caster IP address or hostname
 - IP port
 - Username and password
 - List of authorized mount points.

Monitoring ProFlex 500 CORS

Reading the Status pages of the ProFlex 500 Web Server is a nice way of monitoring ProFlex 500 CORS through an IP connection. Opening the web pages requires that you log in either as the administrator or as a simple user.

This section gives a quick overview of the monitoring function. For a detailed description of all the status pages, refer to Chapter *ProFlex 500 Web Server Help Files Collection* For a detailed description of the Status Bar, you can also refer to *Status Bar and Units Used on page 93*.

After configuring ProFlex 500 CORS, you can cast an eye at the Status bar to check that (from left to right):

- The receiver mode is "Base"
- There is enough free memory
- The Sessions status is as expected (Off, On or Recording)
- The computed latitude longitude and ellipsoidal height are close enough to the entered reference position (to within a few meters)
- The values of HDOP and VDOP are low enough (less than 3)

- There is a sufficient number of received satellites (used/ tracked)
- No alarm has been triggered.

You can also go to the **Status** tab and click on **Receiver Status & Settings**. The resulting web page will give an overview of the station operation.

A click on **Satellites** will tell you more about the satellites received for each GNSS used.

A click on **System** will list the current status of the different hardware components of the receiver.

A click on **Connections** and then on each of its submenus will list status information for the different communication components or external devices used.

A click on **Data Output** will list the currently programmed data outputs.

A click on **Alarms** will list the alarms that have been triggered so far.

A click on **Version** will give identification information about the various hardware components used in the receiver.

Chapter 5. FAST Survey Field Software

Installing FAST Survey

This section describes how to install FAST Survey from the CD provided, using an office computer. The FAST Survey software can also be downloaded from the Ashtech FTP server.

If Windows XP (or older OS version) is used on your computer, you first need to install Microsoft Active Sync on your office computer.

If Windows Vista is used, you don't normally need to install an additional program on your computer. However, if the installation of FAST Survey fails, you will have first to install Windows Mobile Device Center and then resume the installation of FAST Survey.

The latest versions of ActiveSync and Device Center can be downloaded from http://www.microsoft.com/windowsmobile/activesync/default.mspx at no cost.

Installation Procedure

- Connect the field terminal to your office computer using the USB data cable provided. For ProMark 200 or ProMark 100, place the receiver on its docking station and connect the docking station to the computer through the USB cable.
- Turn on the field terminal (or receiver).
- Insert the FAST Survey CD in your office computer. This automatically starts the setup file stored on the CD.
- Click on the Install FAST Survey for... option corresponding to your equipment. This starts the FAST Survey Setup Wizard.
- Click Next>.
- Check on the I accept the terms in the License Agreement option and then click Install.
- At the end of this phase, a message appears asking you to check the field terminal (or receiver) screen to see if additional steps are needed to complete the installation.

- Click OK, then Finish to complete installation on computer side.
- On the field terminal or receiver, the installation phase has automatically started. For ProMark 200 or ProMark 100, a message first appears asking you to choose the location where to install FAST Survey (the default "Device" option is recommended), then tap on **Install** to continue.

When the progress bar disappears from the screen, this means installation is complete. The FAST Survey icon can then be seen on the screen.

For ProMark 200 and ProMark 100, a message indicates that installation has been successful. Tap **OK** to go back to the Today screen where the FAST Survey command line and icon line are now visible.

Registering as a FAST Survey User

The first time you start FAST Survey, you will be prompted to register your license of the software. If you do not register, FAST Survey will remain in demo mode, limiting each job file to a maximum of 30 points.

How to Register

FAST Survey registration is done via the Internet at the following address:

www.survce.com/Ashtech

You will be asked to enter the following information:

- User Name
- Company Name
- Serial Number*
- Email Address
- Phone Number
- Fax Number
- Hardware ID#1*
- Hardware ID#2*
- · Reason for Install
- Registration Code*
- *: Select Equip>About Fast Survey>Change Registration in FAST Survey to read this information.

After you submit this information, your change key will be displayed and emailed to the address that you submit. Keep this for your permanent records. You may then enter the manufacturer and model of your equipment.

If you do not have access to the Internet, you may fax the above information to (+1) 606-564-9525. Your registration information will be faxed back to you within 48 hours. During this time, you may continue to use the program without restriction. After you receive your Change Key, enter it and tap **OK**. You can then create a new FAST Survey job, as explained further.

Saving your registration in the Field Terminal

When you register FAST Survey in a MobileMapper CX, a ProMark 100 or ProMark 200, the code is automatically and safely saved at the end of the registration procedure.

With a Juniper Allegro CX, you need to perform a RAM backup or a System Save to be sure your authorization code will not be lost when you next reboot your Allegro CX. If you cannot find this option on the Allegro CX Start menu, then open the Control Panel and choose RAM backup.

Creating a New FAST Survey Job

- Turn on the field terminal and wait until the boot sequence is complete.
- Make sure the clock is set properly before starting FAST Survey.

- 3. Double-tap Fast Survey to launch FAST Survey.
- 4. Tap the **Select New/Existing Job** button. This opens the Coordinate Files window.
- 5. Tap on the highlighted "crd" file name located at the bottom of the screen. This opens FAST Survey's virtual keyboard with the file name now appearing above.
- 6. Using the keyboard, type in the name of the "crd" file in which FAST Survey will store the data you will collect during your job.
- Tap . This takes you back to the Coordinate Files window where your file name now appears in the Name field.
- 8. Tap again. This opens the Job Settings window, which consists of five different tabs on which you can set a large

number of parameters pertaining to the job (or future jobs).

Only the parameters that make sense with a GNSS system are presented below. All other parameters should be kept with their default settings.

On the **System** tab:

- Distance: Choose the unit in which all measured distances will be expressed (US Survey Feet, Metric or International Feet). Unless "Metric" is selected, you can also choose the units in which distances will be displayed ("Decimal feet" or "Feet and Inches").
 Warning! You cannot change this setting after creating the file!
- Angle: Choose the unit in which all measured angles will be expressed (degrees, minutes, seconds or grads)
- Zero Azimuth Setting: Choose the direction for which azimuth is arbitrarily set to 0° (North or South)
- Projection: Choose a projection from the combo box. To select a different projection, tap the Edit Projection List button. The Add Predefined button allows you to select an existing projection. The Add User Defined button allows you to create an entirely new projection. The selected or created projection will then be selectable from the combo box.

On the Stake tab:

 Precision: Choose the number of decimal places (0 to 5) used to express the three coordinates of any stakeout point. "0.000" (3 decimal places) is the best setting to fully benefit from the precision offered by your equipment.

On the Format tab:

- Coordinate Display Order: Choose the order in which you want FAST Survey to display East and North coordinates (East, North or North, East).
- Angle Entry and Display: Choose the type of angle FAST Survey will display (Azimuth or Bearing).
- 9. Tap . This creates the file, closes the Job Settings window and takes you to the FAST Survey menu.

How FAST Survey Interfaces With Your Equipment Via Bluetooth

First-Time Use

Right after you start FAST Survey and create or open your first job, FAST Survey will try to activate the preset connection (default: "Cable") to the receiver. Because no cable is connected to the field terminal, a message will be displayed informing you that the connection failed.

Assuming your base and rover are nearby and powered on, follow the procedure below to perform a Bluetooth connection with the base.

- Tap Equip>GPS Base.
- Tap on the Comms tab.
- Select "Bluetooth" from the Type field and, depending on the field terminal used, "Ashtech BT" or "Windows Mobile" from the Device field.
- Tap on 🔀 . This opens the Bluetooth Devices window.
- Tap Find Receiver. Wait until FAST Survey lists the Bluetooth identifiers of your base and rover. The list appears in a new window.
- Highlight the Bluetooth identifier corresponding to the base. To make sure you select the right identifier, press the Scroll button on the base until you display the Receiver Identification screen. The identifier is in the lower line (after the "BT:" prefix).
- Tap . This takes you back to the previous screen where the selected Bluetooth identifier remains highlighted in the list. The following actions may be performed on the selected receiver using the following buttons:
 - **Set Receiver Name**: By default, the "Receiver Bluetooth Identifier" of the detected receiver is assigned to this parameter. You may use a more self-explanatory name to identify your base (e.g.: "MyBase").
 - Set Receiver PIN: Do not use this button. In its default configuration, your equipment does not request a PIN code to allow a peripheral device to connect to it via Bluetooth.
 - **Delete Receiver**: Removes the selected receiver from the list of remote receivers detected by Bluetooth.
- Tap to connect the field terminal to the base via Bluetooth and then configure the base according to your needs (see *RTK Base Configuration on page 255*).

 Later, you will establish a Bluetooth connection with the rover. The process will start when you tap Equip>GPS Rover to configure the rover. From the Comms tab, you will be able to access the Bluetooth Devices window and select the rover receiver from the list of remote receivers detected by Bluetooth, in the same way as you did for the base.

Switching Between Base and Rover

During a FAST Survey session, you can quickly change the receiver you are communicating with (provided the receiver you want to communicate with is within Bluetooth range).

The killing icon located in the upper-right corner of the FAST Survey window allows you to change receivers. Tap on this icon and then:

- Select GPS Base to switch to the base,
- Or select **GPS Rover** to switch to the rover.

NOTE: If you examine more carefully this icon, you will see that it changes aspect (base or rover icon) depending on which receiver is currently communicating with FAST Survey. In addition, on the **Equip** menu, a small check box appears in the icon inside either the **GPS Rover** or **GPS Base** button to indicate which connection is active.

Subsequent Uses

In the next sessions of FAST Survey, the software will prompt you to re-activate the Bluetooth connection you last established in the previous session, or simply work without a connection. If you choose the first option, FAST Survey will automatically re-establish the connection, provided the concerned receiver is still on and within Bluetooth range.

Setting the Base Position With FAST Survey

This section is a supplement to the section *Set Base Position* on page 259 where the procedure is only outlined.

Depending on how you chose the base site (is its position known or unknown?), choose either **From Known Position**, for known position, or **From New Position**, for unknown position. Then of the three possible choices, choose the one that suits your job.

Known Base Position

Choice	Case of Use
Previously Surveyed Point	Choose this option if the base is installed on a point you surveyed earlier and the latitude, longitude and ellipsoidal height of this point are saved in the open job. In this case, select this point from the job's point list or select it graphically on the map of the working area.
Use Local Coordinates	Choose this option if the coordinates of the point where the base is installed are known and expressed in the projection system used in the job. You can enter the local coordinates either manually or by choosing a point from the job's points list. In this case, and unlike the previous choice, the point from the points list is defined with local instead of geographical (lat, lon, height) coordinates.
Read from File	Choose this option if the geographical coordinates of the base were saved earlier to a REF file. Then select this file to load the position held in this file as the base position.

Unknown Base Position

Choice	Case of Use
Read from GPS	Choose this option if you want the base receiver to determine its own WGS84 coordinates. The coordinates will be determined to within 2-3 meters as the autonomous GPS mode is used in this case. To improve the accuracy of the computation, FAST Survey prompts you to take several readings (typically 10) so all the readings can be averaged to provide a more accurate position solution for the base.
Enter Lat/Lon	Choose this option if you know and want to enter manually the latitude, longitude and ellipsoidal height of the base location, rather than ask the receiver to compute them by itself. The coordinates should be entered in the "dd.mmssss" format for latitude and longitude.
Enter Grid System Coordinates	Choose this option to freely enter base coordinates expressed in the projection system used in the job. You may enter them manually or derive them from a point in the points list or a point you select on the map of the working area.

Saving/Restoring Base and Rover Configurations

FAST Survey allows you to save into a file all the settings you have prepared for your base or rover.

This function is useful when you regularly have to switch between two or more configurations. By simply selecting the right configuration, you immediately restore all the settings FAST Survey needs to load to the receiver before the receiver/field terminal system can operate as expected.

The table below summarizes the parameters held in a configuration file.

Parameters	Base	Rover
Equipment manufacturer	•	•
Equipment model	•	•
Communication Type (Bluetooth or other)	•	•
Antenna height measurement type and value	•	•
Elevation mask	•	•
Ambiguity fixing		•
Use SBAS satellites	•	•
Use GLONASS satellites	•	•
Device used in RTK data link and device settings	•	•

For network connections, the file includes the provider's connection parameters as well as, for NTRIP, the last reference station selected from the source table. Needless to say in these cases, you'll really save time when starting your system if you first take a couple of seconds to save your configurations.

FAST Survey manages base and rover configurations independently of job files. All saved configurations are potentially usable in all new jobs and whatever the existing jobs you re-open, provided the hardware available matches the configuration.

The two procedures described below apply to either a base or rover.

Saving a Configuration

- Tap Equip then GPS Base for a base, or GPS Rover for a rover.
- Enter all the parameters needed to set the equipment in the four tabs presented in this window.
- Before you tap to load the configuration to the receiver, come back to the Current tab.

- Tap on the Save button located in the lower part of the window and then name the configuration (e.g. "Radio" or "NTRIP").
- Name the configuration file and tap . This takes you back to the current tab where the new configuration is now listed.

Making a Saved Configuration the Current Configuration

- Tap Equip then GPS Base for a base, or GPS Rover for a rover.
- Select the name of the desired configuration from the lower list.
- Tap on the Load button.
- Tap Yes to confirm your choice. This restores all the settings held in this configuration. You may check this by scrolling all the tabs in the window.
- Tap to load the configuration to the receiver.

Using a Geoid File in the Localization Process

A library of geoids is available from the Ashtech website. Once you have downloaded the desired geoid, you need to use the Extract tool, also available and downloadable from the same web page, to convert the geoid into a GSF file, the only format FAST Survey can work from. The converted file can then be downloaded to the field terminal through ActiveSync. The details of the procedure are given below. Note that the Extract Tool can also be used to reduce the geographical extent of the geoid before you download it to the field terminal.

Downloading a Geoid to your Computer

- Use your office computer to go to the web page: http://resources.ashtech.com/GEOIDS,
- Select the desired geoid by clicking on the corresponding link. You are then prompted to save the Install <Geoid Name>.exe file on your computer.
- Click Save File and wait until the download is complete.
- Run the Install_<Geoid_Name>.exe file on your computer.
 Follow the instructions on the screen to complete the installation.

If your field terminal is currently connected to the computer via ActiveSync, instructions will also be provided to install the geoid file on the receiver as well (in \text{\mathbb{Program Files\Geoids Data\mathbb{\mathbb{O}}}. Tap "No" in this case.

Installing the Extract Tool on your Computer

- Go back to the web page: http://resources.ashtech.com/
 GEOIDS,
- Click on Extract Tool located at the bottom of the menu in the left-hand part of the screen.
- Again, click on the Extract Tool link, now appearing at the bottom of the web page (you need to scroll down the page). You are then prompted to save the Install Geoids.exe file on your computer.
- Click Save File and wait until the download is complete.
- Run Install_Geoids.exe on your computer. Follow the instructions on the screen to complete the installation. Click on the Close button once complete.

Preparing the Geoid for Use in FAST Survey

- From the computer's task bar, select Start>All Programs>Ashtech> Geoids.
- Select File>Open. The program opens directly the folder containing the downloaded geoid.
- Select it and click Open.
- Select File>Save, select "GSF File (*.gsf)" as the new file format, name the file and click Save. By default, the resulting GSF file is saved to the same folder on the computer.
- Copy the resulting GSF file to the ...*\IFAST Survey*\Data*\folder on the receiver, using Microsoft ActiveSync.

Selecting a Geoid File for Use in FAST Survey's Localization Process

In FAST Survey, do the following:

- In the **Equip** menu, tap on the **Localization** button.
- Tap on the GPS tab.
- Tap on the Geoid File: button. This opens the \MyDevice\FAST Survey\Data\ folder from which you can now select the geoid file you have just uploaded.
- Select the file and tap . The name of the geoid file now appears underneath the Geoid File: button, meaning that from now on, it is used in the localization procedure for the processing of elevations.

Deselecting the Currently Used Geoid File

In FAST Survey, do the following:

- In the **Equip** menu, tap on the **Localization** button.
- Tap on the GPS tab.
- Tap on the Geoid File: button. This opens the \MyDevice\FAST Survey\Data\ folder.

- Select the file corresponding to the geoid currently used.
- Tap . This causes the geoid filename to disappear from underneath the Geoid File: button, meaning the geoid is no longer used in FAST Survey.

Using a Background Map In FAST Survey

Preparing a Map File for Use as a Background Map in FAST Survey

Use your office computer and the Carlson Image X-Port.exe program to georeference a map before uploading it into your FAST Survey field terminal as a background map.

The Carlson Image X-Port.exe program can be downloaded for free from:

http://update.carlsonsw.com/ kbase main.php?action=display topic&topic id=477

After opening this web page, click on the "Carlson Image-Export.exe" link at the bottom of the page and save the file to your computer.

Follow the instructions below to prepare a map.

- 1. Create a new folder (e.g. "Maps") on your computer, necessarily in the "My Documents" folder.
- 2. Copy the image file (e.g. "RFS20L.TIF") you want to georeference to the new folder.
- 3. Run Carlson Image X-Port.exe.
- 4. Select **File>Open Image File**. Browse to the image file folder, and double-click the file name. This opens the map in the program window.

If necessary, use the **Zoom Level** drop-down menu to adjust the map zoom setting.

You can also use the **Tools>Image Brightness** function to make the map lighter or darker. **Important!** The resulting background map in FAST Survey will feature the same brightness.

- 5. Select **Tools>World File Editor**. This opens the World File Editor window in which you have to define the following parameters:
 - X Resolution: Indicates the real distance represented by one pixel in the image file. It is obtained by making the ratio between the real distance represented by the total width of the map and the total number of pixels used horizontally. For example, the map width represents 200 meters and the number of pixels used is 1000, then X Resolution=0.2, which means one pixel represents a square of 20 cm.
 - Negative Y Resolution: Usually equal to X Resolution with a minus sign placed before.
 - Amount of Translation, Amount of Rotation: Keep the default value "0.0000" for these two parameters.
 - X Coordinate: Easting of upper left corner of the map (pixel 1,1)
 - **Y Coordinate**: Northing of upper left corner of the map (pixel 1,1)

Note that if the file was georeferenced earlier, all these parameters may have been saved in a *.tfw, *.jgw or *.bpw file. If that is the case, click on the **Import World Files** button, select the corresponding file and click **Open**. This causes all the fields on the World File Editor window to be filled in from this file.

If there is not such a file, you have to work on finding georeferencing information for the map, as explained in *Determining Georeferencing Information for an Image File on page 246.*

- 6. After entering all the parameters in the World Map Editor window, click **OK** to close it.
- 7. Select Image Database>Add Image to Database. This opens the Add Images to Database window in which the program indicates that the original map is going to be split into several smaller map sections, each in BMP file format. The program indicates the number of files that will be created in the horizontal (columns) and vertical (row) directions. Depending on the extent of the original map, up to five different levels of image resolution may be created to match the different zoom settings in FAST Survey.

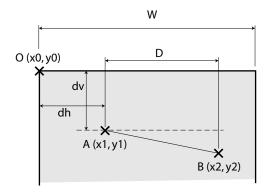
- 8. Click on the **Process** button and wait until the program has finished processing the original map. In the left column is an example of a map split into three smaller map sections arranged vertically (i.e. column=1; rows=3).
- 9. Click **OK** to close the window.
- 10.Click File>Save as Image Database and name the project file (e.g. "Map1"). This will be a text file gathering the georeferencing data of the map project as well as the paths and names of the different bmp files created through the above process step.
- 11.Click **Save** to save the different files of the map project to the folder created earlier ("Maps" in our example).
- 12.Click **File>Exit** to quit the program. If you now have a look into the "Maps" folder, you will see the following list of files (still referring to our example):
 - Map1.imd (map project description file)
 - A_RFS20Lr1c1.bmp (1st bitmap file, 1st row, 1st column),
 - A_RFS20Lr2c1.bmp (2nd bitmap file, 2nd row, 1st column),
 - A_RFS20Lr3c1.bmp (3rd bitmap file, 3rd row, 1st column).

The naming convention used for the BMP files is the following:

- Prefix representative of the resolution of each file ("A_"= lower resolution; "F_"= higher resolution),
- Original file name re-used in the body of the filename,
- "rxcx" suffix to identify the row and column of the map section,
- File extension (bmp).

Enabling/Disabling a Background Map in FAST Survey

- 1. Create a new folder in the root directory of your field terminal's memory card. This folder must have the same name as the one created in "My documents" on the office computer ("Maps" in our example).
- Copy the IMD file as well as the generated BMP files to that folder. You don't need to copy the original image file or the world file to the folder.


- 3. Remove the memory card from the office computer and insert it into your field terminal.
- 4. Run FAST Survey and start a new job.
- 5. Tap oin the upper-right corner of the screen.
- 6. Tap TOOLS>Place World Image.
- 7. Check on Use Image Database and Save Image Boundary Points.
- 8. Tap on the **Select Image Database** button and find the IMD file on the memory card.
- 9. Select the IMD file and tap
 wice.
- 10.Tap to adjust the zoom so the background map can now be seen.

If later on you wish to hide the background map, simply go back to TOOLS>Place World Image and clear the Use Image Database box.

Determining Georeferencing Information for an Image File

You may have no information at all that would allow you to quickly georeference the image file of your background map. In that case, you need to determine the following parameters (illustrated in the diagram below) to be able to georeference the image file:

- Real coordinates of points A (x1, y1) and B (x2, y2), and horizontal distance (D) between points A and B. Points A and B are arbitrary points well distributed horizontally on the image file and easy to spot both on the image file (map) and in the field.
- Real coordinates of point O (x0, y0) located at the upperleft corner of the image file.
- 3. **Image width** expressed in pixels.

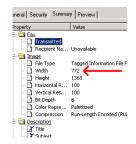
Determining Points A & B and Distance D

- Choose two points that can easily be spotted both on the image file and in the field.
- Go the the field and survey these two points with your surveying system. This immediately gives the coordinates x1, y1 and x2, y2 of points A and B respectively.
- From these coordinates, you can deduce D:
 D = | x2-x1 |

Determining the Coordinates (x0, y0) of Point 0

- Print out the image file using a high-quality printer.
- Using a graduated ruler, measure successively the lengths of D, dh and dv on the map printout.
- Assuming the obtained measurements are respectively D', dh' and dv', we have:

$$D / D' = dh / dh' = dv / dv'$$


This means the values of dv and dh can be determined as follows (make sure you use the same distance unit for all these distances):

$$dh = (D \times dh') / D'$$
 and $dv = (D \times dv') / D'$

The (x0, y0) coordinates are then:

$$x0 = x1 - dh \text{ and } y0 = y1 + dv$$

xO and yO are the values you have to enter in the **X** Coordinate and **Y** Coordinate fields of the World File Editor window.

Reading the Image Width

- Still with the graduated ruler, measure the map width.
 Assuming W is the real distance in the field, then W' is the equivalent length measured on the map printout.
- Using Windows Explorer on your office computer, navigate to the folder containing the image file.
- Right-click on the filename and select Properties from the popup menu.
- On the Summary tab, click on the Advanced button (this
 may not be necessary if the advanced parameters are
 displayed by default).
- Read the number of pixels (P) displayed for the width parameter (see example on the left).

Computing the X Resolution

Since we have:

W/W' = D/D'

• Then the value of the real distance W is:

$$W = (W' \times D) / D'$$

• And the X Resolution is finally equal to:

X Resolution = W /P

The X Resolution is the value you have to enter in the X Resolution field of the World File Editor window. Enter this value as well in the **Negative Y Resolution** field, this time with a minus sign placed ahead.

Saving the Georeferencing Information

Yo can create an ASCII text file, using a simple text editor such as Microsoft Notepad, to save the parameters you have just determined. The file should be saved with the tfw, jgw or bpw extension, depending on whether the original image file is respectively a TIF (or TIFF), JPG (or JPEG) or BMP file. The content of the ASCII text file should always be formatted as follows:

X Resolution (x.x) Amount of Translation (x.xxx) Amount of Rotation (x.xxx) Y Resolution -x.x) x0 coordinate (xxxxxx) y0 coordinate (xxxxxx)

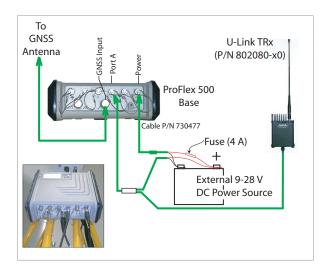
After saving the ASCII text file to the same folder as the original image file, you can come back to the procedure

described in *Preparing a Map File for Use as a Background Map in FAST Survey on page 243* to georeference your map and generate the corresponding BMP map sections used by FAST Survey.

Chapter 6. RTK Configuration Steps

Temporary RTK Base Setup

Prerequisites

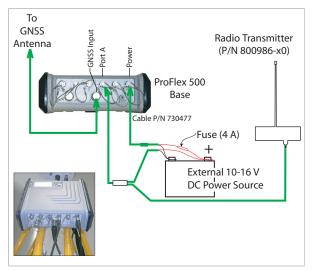

- You will need a tripod and a tribrach (not provided) to install the base. You will also need an antenna extension pole fitted with a 5/8" male adaptor (not provided but available as an Ashtech accessory).
- For a long-range radio link, i.e. more than 1 mile or 1.6 km, for which the radio antenna should be placed as high as possible, it is good practice to install the antenna on top of an antenna pole secured on a tripod (neither of these items is provided).
- To power the radio, you need an external 9-28 V DC (U-Link TRx), 10-16 V DC (Radio P/N 800986-x0) or 9-16 V DC (Pacific Crest radio) power source. In all cases, using a standard 12 V DC battery is a convenient choice. In this configuration, the ProFlex 500 can be powered either from the same power source (recommended), using cable P/N 730477, or from its internal battery.

Powering the ProFlex 500 from the external battery offers two advantages:

- 1. Operating sessions can be extended significantly.
- 2. The external battery operates as a trickle charger for the ProFlex 500's internal battery.

U-Link TRx

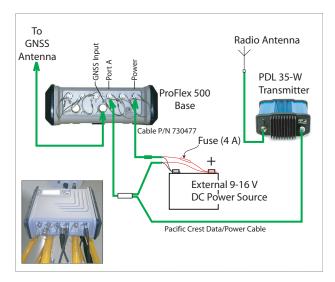
The connection diagram is as follows. The use of port A is recommended on the receiver side. However, any of the other serial ports may be used as well.



Mount the different items as shown on the picture.

Radio P/N 800986

The connection diagram is as follows. Note that, due to the limited input voltage range for this radio, only a 12-V battery can be used in this setup. Use of port A is mandatory with this transmitter.



Mount the different items as shown on the picture.

PacCrest Radio Link

The connection diagram is as follows. The use of port A is recommended on the receiver side. However, any of the other serial ports may be used as well.

Mount the different items as shown on the picture.

RTK Base Configuration

Prerequisites

- Your base is properly set up and powered on. It is on its definitive location for the survey and the field terminal is located at less than 10 metres from the base.
- Your field terminal is on, FAST Survey is running, a Bluetooth connection has already been configured (with the base; see *How FAST Survey Interfaces With Your Equipment Via Bluetooth on page 237*) and a job file is open.
- In FAST Survey, tap on the Equip tab and then the GPS
 Base button. A message may appear asking you to confirm
 your choice of configuring a base. Tap Yes. This opens the
 Current tab of the GPS Base window.

Set Manufacturer & Model

• Set the Manufacturer ("Ashtech") and Model ("ProFlex 500") of the equipment used as the base.

Note that the **b**utton beside the **Manufacturer** field allows you to read the following information about the connected receiver:

- Firmware version
- Receiver ID
- Power status
- Free memory space
- Firmware options installed.

Tap on to return to the **Current** tab.

Check/Change Bluetooth Connection

- Tap on the Comms tab. Since the Bluetooth connection was performed earlier, just check that FAST Survey is properly configured to communicate with the base. You should read:
 - Type = "Bluetooth"
 - **Device** = "Ashtech BT" or "Windows Mobile", depending on the field terminal used.
 - Instr = should be set to the name you gave earlier to the base, as seen from FAST Survey Bluetooth.

Note that located next to the **Device** field allows you to return to the Bluetooth Devices window through which you earlier configured the Bluetooth connection to the base (see *How FAST Survey Interfaces With Your*

Equipment Via Bluetooth on page 30). Changes can be made now if necessary.

Set Receiver Parameters

- Using the HI measurement tool provided, perform a slant measurement of the antenna height (recommended).
- On the field terminal, tap on the **Receiver** tab.
- In the scroll-down menu, select "[ASH111661] AT..." as the antenna type.
- Select the Slant option for the antenna height measurement.
- Tap within the Antenna Height field and enter the value you have just measured.
- Choose your preferred settings for Elevation Mask, SBAS, GLONASS and Virtual Antenna.

Using SBAS and/or GLONASS satellites will help the rover maintain the availability of fixed positions in those difficult environments where GPS alone would fail to do so.

The Virtual Antenna option is disabled by default. Enabling the virtual antenna, which is defined as the generic "ADVNULLANTENNA" GNSS antenna, allows all broadcast differential data and recorded raw data to be decorrelated from the GNSS antenna actually used at signal reception level. This may be useful when a rover from another manufacturer, which does not know the type of antenna used at the base, needs to receive RTK corrections from this base.

Enable Ports B, F and Ethernet: Check this box if one of these
ports is used for the connection to the radio transmitter. If
port A is used for this connection and ports B, F and
Ethernet are not used for other purposes, clear this box to
disable ports B, F and Ethernet. This will reduce power
consumption in the receiver.

- Tap on the RTK tab. This tab allows you to set the data link on the base side. Several configurations are possible:
 - 1. Using a U-Link TRx device

Selecting Radio

- 2. Using radio transmitter P/N 800986-x0
- 3. Using an external Pacific Crest radio.
- 4. Using the internal modem in CSD mode for a "phone call" type connection (Direct Dial).
- 5. Using the internal modem for a Direct IP connection to the RTDS software.
- Using an external device connected to ProFlex 500's port A. The external device may be a radio transmitter from another manufacturer, or the local computer running the RTDS software.

The table below gives all the required settings depending on the chosen configuration.

	#1	#2	#3	#4	#5	#6
	U-Link TRx	Radio P/N	Pacific Crest	Direct	Direct IP/GPRS	External
		800986	Radio	Dial	- RTDS	Device
Device	Ashtech U-Link	Magellan Radio	Pacific Crest PDL	Internal GSM	Internal GSM	Cable or Generic Device
Network	[None]	[None]	[None]	Direct Dial	"TCP/IP Netw." or "UDP/IP Network"	[None]
Port	[A]	[A]	User-settable (A, B or F)	[E]	[E]	User-settable (A, B or F)
Parity	[None]	[None]	[None]	[None]	[None]	[None]
Baud	[38400]	[19200]	9600 to 115200 User-settable	[19200]	[19200]	1200 to 115200 User-settable
Stop	[1 bit]	[1 bit]	[1 bit]	[1 bit]	[1 bit]	[1 bit]
Message	Choose the format used to generate base data messages: ATOM, ATOM compact, RTCM V3.0,					
Type	RTCM V2.3, CMR or CMR+, (RTCM-DGPS)					
Base ID	Choose a number to identify the base. Several ranges are possible depending on the selected data format (0-4095 for RTCM 3.0, 0-1023 for RTCM 2.3, 0-31 for CMR and CMR+)					

NOTE: All parameters between square brackets [..] are software-set, they cannot be changed.

• If you want to use a radio, tap on Device field to set the radio. The table below lists the required and recommended settings for the three radio models available.

Field	Model P/N 800986-x0	U-Link TRx Model	Pacific Crest Radio Model	
Protocol	-	"Transparent" recommended	"Transparent" recommended	
Channel	Choose channel used (channel No Frequency)	used (channel	Choose channel used (channel No Frequency)	

Field	Model P/N 800986-x0	U-Link TRx Model	Pacific Crest Radio Model
Over the Air Baud	-	4800 Bd recom- mended	"9600 Bd" recommended
Scram- bling	-	-	In a PacCrest radio trans- mitter, enables or disables scrambling in this radio. Keep disabled for other radios.
Forward Error Cor- rection	-	-	In a PacCrest radio transmitter, enables or disables FEC in this radio. Keep disabled for other radios.

The DSNP protocol should be used for the following transmitter-receiver combinations:

Transmitter	Receiver
800986-x0	U-Link Rx
800986-x0	PDL
U-Link TRx	PDL
U-Link TRx	TDRE (Z-Max)

• If you want to use the internal modem, tap on next to the **Device** field to set the internal modem. The modem settings are listed in the table below:

Field	Setting
Power Management	"Automatic" is recommended. In Automatic, the modem is automatically powered when you turn on the receiver and will only be turned off when you turn off the receiver. In Manual, the modem will be powered on only when you configure the base.
Band	Select the frequency band used for GSM communications in the country where you are.
Provider	- If you choose Network=" TCP/IP Direct" or Network="UDP/IP Direct", choose the name of your mobile communication provider in this field. There are three preset providers: Cingular, T-Mobile and MoviStar. If you are using another provider, select "Other" in this field and then tap on the Settings button underneath to enter the parameters of your provider (APN server, APN User Name and APN Password). - If you choose Network="Direct Dial", ignore this field.
Pin	Enter the Pin number of the SIM card inserted in your ProFlex 500.

Field	Setting
Dial Mode	"Analog" is usually the right selection at the base. Please call your communication provider for more information.
Auto Dial	Keep this box disabled for a base.

- If you choose Network="TCP/IP Direct" or "UDP/IP Direct", tap on the Config button next to the Network field and enter the IP address and port number allowing the connection to the RTDS software.
- If a repeater is used within your system to extend the range of the UHF radios used, enable the Repeater Mode check box. Enabling this option causes the output rates of all the differential messages to be changed into an even value (2 sec.) in order to make them compatible with the use of the repeater.
- Tap to load the settings to the radio or modem. This
 may take a few seconds. FAST Survey then returns to the
 GPS Base configuration window.

Load Configuration to the Base

Now that you have browsed all the tabs in the Base Configuration window and set all the parameters, just tap to connect and load the configuration to the base. This may take a few seconds.

Set Base Position

FAST Survey then asks you to set the base position. Depending on the chosen method, follow the instructions displayed on the screen to define this position. (See Chapter 11 for more details.) This completes the base configuration phase.

RTK Rover Setup

Prerequisites

- Insert a freshly charged battery into the ProFlex 500.
- Use a range pole fitted with a 5/8" male adaptor at the upper end (not provided).
 - **Caution!** Use of a non-metal range pole is recommended to maintain the performance level of the radio antenna.
- Mount the GNSS antenna at the top of the range pole.

- Connect coaxial cable P/N P076510A to the GNSS antenna.
- If a radio link is used with the base, your rover should normally have been fitted with the radio receiver kit that matches the reception band covered by the radio transmitter used at the base.
- If a GPRS connection is used, your rover should normally have been fitted with the SIM card that will allow it to perform a network connection.

To connect a SIM card, open the trapdoor and remove the battery. The SIM card can be inserted in a dedicated socket located at the bottom of the compartment. Insert the SIM card as shown on the picture.

Preparing the Backpack

- 1. Unzip the larger compartment of the backpack.
- Insert the different cables needed into the backpack. All cables can pass through either of the velcro flaps [1] located at the top of the backpack.
 - GNSS antenna: Insert the TNC end of the 1.50 m
 "Quick Release" cable (P/N P076500A) into the
 backpack through one of the velcro flaps, then make it
 run along the inner edge of the compartment, down to
 where the rear panel of the receiver will be located
 once placed in the backpack.

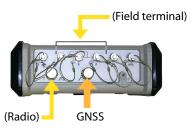
Data Link:

If cellular communication is used to receive RTK corrections, no special cable is needed.

If a radio is used to receive RTK corrections, insert the UHF range pole into the side compartment of the backpack. Secure the pole using the short velcro strap [2] located on top of the side compartment. Pass the attached coaxial cable through a velcro flap [1], then make it run along the inner edge of the main compartment, down to where the rear panel of the receiver will be located once placed in the backpack.

Communication with field terminal:

If Bluetooth is used, no special cable is needed.



[3]

If wired communication is used, pass the Fischer end of serial data cable P/N 700461 (provided) through a velcro flap, and again make it run along the inner edge of the compartment, down to where the rear panel of the receiver will be located once placed in the backpack.

- 3. Anchor all the cables together, inside the compartment, using the short velcro straps [3].
- 4. Insert the ProFlex 500 into the compartment in such a way that the rear panel is facing the bottom of the compartment [4].
- 5. Connect all the ends of the cables present at the bottom of the compartment to the rear panel. The required connections are:
 - GNSS cable to GNSS Input #1 (mandatory)
 - UHF radio cable to UHF input (if a radio is used)
 - Serial data cable to the serial port of your choice (if a serial link is used with the field terminal).

- 6. If needed, connect the following antennas directly to the front panel of the receiver:
 - Bluetooth antenna, if wireless communication with the field terminal is preferred to a serial link.
 - Cellular antenna, if the internal cellular modem is used to receive RTK corrections.
- 7. Secure the receiver inside the backpack by tightening the three pairs of Velcro straps [5] over the case. If internal antennas are used, some straps should be positioned in such a way that the antennas can pass through the slots designed into these straps.
- 8. Turn on the ProFlex 500 and close (zip) the compartment.
- 9. Place the backpack on your back.

- 10.Connect the free ends of the quick-release coaxial cables together. This connects the GNSS antenna to the receiver.
- 11.Secure your field terminal on the range pole and turn it on. You are now ready to start using your system.

If you are using an external cell phone for acquiring RTK corrections, place it in the mesh pocket [6] located on the left-hand belt of the backpack.

RTK Rover Configuration

Prerequisites

- Your rover is properly set up and powered on.
- Your field terminal is on, FAST Survey is running and a job file is open.
- In FAST Survey, tap on the Equip tab and then the GPS
 Rover button. A message may appear asking you to
 confirm your choice of configuring a rover. Tap Yes. This
 opens the Current tab of the GPS Rover window.

Set Manufacturer & Model

 Set the Manufacturer ("Ashtech") and Model ("ProFlex 500") of the equipment used as the rover.

Note that the button beside the **Manufacturer** field allows you to read the following information about the connected receiver:

- Firmware version
- Receiver ID
- Power status
- Free memory space
- Firmware options installed.

Tap on to return to the **Current** tab.

Set Bluetooth Connection

- Tap on the Comms tab.
- In the **Type field**, select "Bluetooth".
- In the **Device** field, select "Ashtech BT" or "Windows Mobile" depending on which field terminal is used.
- Tap on \(\frac{\dagger}{\dagger} \) to access the Bluetooth Devices window. The window lists Bluetooth identifiers that correspond to the receivers found in the vicinity.
- Select the rover's Bluetooth identifier from the list. To make sure you are making the right selection, press the Scroll button on your rover until you display the Receiver Identification screen. The Bluetooth identifier is shown in the last line but one. This is the parameter you must select from the list.

You may give the rover a more familiar name (e.g. "MyRover") using the **Set Receiver Name** button.

- Tap to connect the field terminal to the rover via Bluetooth. FAST Survey then returns to the GPS Rover configuration window.
- Check that the rover name is now selected in the Instr field.

Set Receiver Parameters

 Measure or read the length of the range pole on top of which the ProFlex 500 GNSS antenna is mounted.

- On the field terminal, tap on the **Receiver** tab.
- In the scroll-down menu, select "[ASH111661] AT..." as the antenna type.
- Select the Vertical option for the antenna height measurement.
- Tap within the Antenna Height field and enter the value you have just measured or read for the range pole length.
- Choose your preferred settings for Elevation Mask,
 Ambiguity Fixing (see table below), SBAS, GLONASS and
 Virtual Antenna.

Choice	Definition
Float	Choose this option if you only need decimeter accuracy (position status will never go to "Fixed").
95.0	95% confidence level
99.0	99% confidence level (default and recommended setting)
99.9	99.9 confidence level

Using SBAS and/or GLONASS satellites helps to maintain the availability of fixed positions in those difficult environments where GPS alone would fail to do so.

The **Virtual Antenna** option is disabled by default. Enabling the virtual antenna, which is defined as the generic "ADVNULLANTENNA" GNSS antenna, allows all collected data to be decorrelated from the GNSS antenna actually used at signal reception level. This may be useful if you wish to post-process the collected raw data using base raw data collected with a base from another manufacturer.

Enable Ports B, F and Ethernet: Check this box if one of these
ports is used for the connection to the radio transmitter. If
port A is used for this connection and ports B, F and
Ethernet are not used for other purposes, clear this box to
disable ports B, F and Ethernet. This will reduce power
consumption in the receiver.

Set Data Link

- Tap on the RTK tab. This tab allows you to set the data link on the rover side, in accordance with the base or network you will be working with. Several configurations are possible:
 - 1. Using the internal radio receiver.
 - 2. Using the internal modem in CSD mode for a "phone call" type connection with the base (Direct Dial).

- Using the internal modem in Direct IP mode (TCP/IP or UDP/IP) to receive base data from either a thirdparty network or the remote RTDS software.
- 4. Using the internal modem for a network connection (NTRIP or SpiderNet).
- 5. Using an external CDMA cell phone for a network connection (Direct IP, NTRIP or SpiderNet).
- 6. Using an external device (for example an external corrections receiver).

The table below gives all the required settings depending on the chosen configuration.

	#7	#8	#9	#10	#11	#12	#13
	Internal	Internal	Direct	Direct IP	Network,	Network,	External
	Radio	Radio	Dial	GPRS	GPRS	CDMA	Device
Device	Ashtech	Pacific	Internal	Internal GSM	Internal GSM	Data Collector	Cable or
Device	U-Link	Crest	GSM	Internal Colvi	Internal Colvi	Internet	Generic Device
						"NTRIP", "TCP/IP	
Network	[None]	[None]	Direct	"TCP/IP Direct",	NTRIP	Direct", "UDP/IP	[None]
INCLINOIN			Dial	or "SpiderNet"		Direct" or "Spi-	[NOTIC]
						derNet"	
Port	[D]	[D]	[E]	[E]	[E]		User settable
Parity	[None]	[None]	[None]	[None]	[None]		[None]
Baud	[38400]	[38400] [38400]	[19200] [19	[19200]	[19200]		1200 to 115200
Dauu	[30400]	[30400]	[19200]	[19200]			User-settable
Stop	[1 bit]	[1 bit]	[1 bit]	[1 bit]	[1 bit]		[1 bit]
Send Rover	This option should be enabled only when working with networks offering VRS capability (NTRIP).						

NOTE: All parameters between square brackets [..] being software-set, they cannot be changed.

• If you want to use the internal radio, tap on the **Device** field to set the radio receiver:

Field	Setting
Protocol	Select "DSNP" if the radio transmitter used at the base is radio model P/N 800986-x0. Select "Transparent" if it's a U-Link TRx or a Pacific Crest radio transmitter.
Power Man- agement	"Automatic" is recommended. In Automatic, the radio module is automatically powered when you turn on the receiver and will only be turned off when you turn off the receiver. In Manual, the module will be powered on only when you configure the rover.
Channel	Choose channel used (Channel No Frequency)

Field	Setting			
Squelch	The factory default setting of "High" provides maximum effective sensitivity to incoming signals. This is the preferred setting. "Medium" and "Low" sensitivity settings are available for use if local electrical noise or distant radio signals falsely activate the radio receiver. Use of these settings may reduce the radio range.			
Over the Air Baud	Forced to "4800" with DSNP protocol; "9600 Bd" recommended with other protocols; "7600 Bd" for U-Link.			
Scrambling	Relevant to Pacific Crest radios only. Set this parameter as set at the base if it uses a Pacific Crest transmitter. For another radio used at the base, keep this option disabled.			
Forward Error Correction	Relevant to Pacific Crest radios only. Set this parameter as set at the base if it uses a Pacific Crest transmitter. For another radio used at the base, keep this option disabled.			

Then tap to load the settings to the radio. This may take a few seconds. FAST Survey then returns to the GPS Rover configuration window.

• If you want to use the internal GSM modem, tap on next to the **Device** field to set the internal modem.

The modem settings are listed in the table below:

Field	Setting			
Power Management	"Automatic" is recommended. In Automatic, the modem is automatically powered when you turn on the receiver and will only be turned off when you turn off the receiver. In Manual, the modem will be powered on only when you configure the rover. "Automatic" is mandatory if "Auto Dial" is enabled.			
Band	Select the frequency band used for GSM communications in the country where you are.			
Provider	- Choose the name of your mobile communication provider in this field. There are three preset providers: Cingular, T-Mobile and MoviStar. If you are using another provider, select "Other" in this field and then tap on the Settings button underneath to enter the parameters of your provider (APN server, APN User Name and APN Password) If you set Network=Direct Dial, ignore this field.			
Pin	Enter the Pin number of the SIM card inserted in your Pro- Flex 500.			
Dial Mode	Depending on the provider, this may be "Analog" or "Digital". "Analog" is usually the right selection. Please call your communication provider for more information			

Field	Setting				
Auto Dial	Check this box when the data link is based on a GSM connection in CSD mode between the base and the rover. Check this box as well if you wish that after a power cycle, the receiver can connect automatically to the last used NTRIP mount point or last used Direct IP server.				

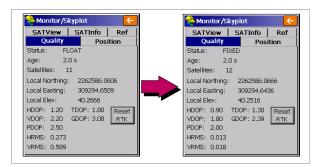
• If you want to use a CDMA cell phone, you should first establish and then pair a Bluetooth link between that cell phone and your field terminal, using Bluetooth Manager. Then, you should use the Network and Dial-up Connections utility in your field terminal to connect it to the Internet. The incoming corrections will be automatically transferred to the ProFlex 500. For more information on this option, see *Using a CDMA Cell Phone for Network Connection on page 275*.

• When this button is visible, tap on Network field, for additional settings. The table lists all the parameters that need to be defined, depending on the desired operating mode.

Parameter	TCP/IP Direct UDP/IP Direct	NTRIP	SpiderNet	Direct Dial (CSD mode)
Name	•	•	•	•
IP Address	•	•	•	
Port	•	•	•	
User Name		•	•	
Password		•	•	
Phone Number				•

For more information on network connections, see *Network Connection on page 269.*

Tap to load the settings to the radio or modem. This
may take a few seconds. FAST Survey then returns to the
GPS Rover configuration window.


Load Configuration to the Rover

Now that you have browsed all the tabs in the Rover Configuration window and set all the parameters, just tap to connect and load the configuration to the rover.


Check that a "Fixed" Solution is Now Available

The rover then starts acquiring corrections data from the selected base. Note that the rover will automatically recognize the format of the received data (ATOM, RTCM2.3, RTCM 3, CMR, CMR+, DBEN). Do the following before starting your survey:

- In the Equip menu, tap on the Monitor/Skyplot button
- Read the different parameters displayed on the screen. You should see the HRMS and VRMS rapidly decrease from a few meters to less than 10 to 20 mm, while the position status switches from "AUTO" to "FLOAT" and finally "FIXED".

Other screens are available from within the **Monitor/Skyplot** function showing the details of the constellation, of the base position and of the RTK position solution:

In NTRIP and Direct IP modes, a **Disconnect/Connect** button is available on the **Ref** tab to easily control the network connection. There is also a horizontal bar showing

the GSM signal level until the modem is on-line. The bar disappears when the modem is online.

In Direct Dial mode, a **Hang up** button is available on the same tab to terminate the connection with the base.

 Tap after you have made sure the FIXED position status is settled. This takes you back to the FAST Survey menu from which you can start your survey.

Network Connection

From the GPS Rover's **RTK** tab, do the following to choose, set and activate a network connection.

TCP/IP Direct Connection

- 1. Select "TCP/IP Direct" from the Network field.
- 2. Tap on located next to the Base ID field to set the connection:
 - Name: Select <New> from this field and then, in the same field, enter a name for the file in which the properties of the TCP/IP Direct connection you are now creating will be saved.
 - Address: IP address of the Direct IP server.
 - Port. Port number.
- 3. Tap . This takes you back to the **RTK** tab.
- Tap again to configure the rover and establish the connection to the network.

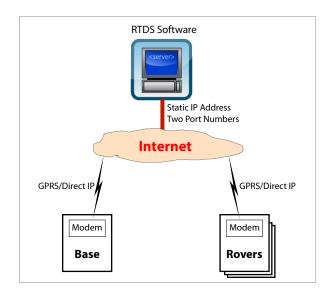
NTRIP Network Connection

- 1. Select "NTRIP" from the Network field.
- 2. Tap on located next to the **Network** field to set the connection:
 - Name: Select <New> from this field and then, in the same field, enter a name for the file in which the properties of the NTRIP connection you are now creating will be saved.
 - IP Address: IP address of the NTRIP server.
 - Port. Port number.

- User Name. Enter your user name (provided by the NTRIP provider).
- Password. Enter your password (provided by the NTRIP provider).
- 3. Tap . This initializes the modem, saves the NTRIP configuration under the specified name, and finally downloads and displays the source table. This table lists all the stations made available by your provider for use in RTK mode.
- 4. Select the station from which you want to receive data.
- 5. Tap to confirm your choice and return to the **RTK** tab.
- 6. Tap **again** to activate the NTRIP connection.

SpiderNet Connection

- 1. Select "SpiderNet" from the Network field.
- 2. Tap on on Nocated next to the Base ID field to set the connection:
 - Name: Select <New> from this field and then, in the same field, enter a name for the file in which the properties of the SpiderNet connection you are now creating will be saved.
 - Address: IP address of the SpiderNet server.
 - Port. Port number.
 - **User Name**. Enter your user name (provided by SpiderNet).
 - Password. Enter your password (provided by SpiderNet).
- 3. Tap . This takes you back to the RTK tab.
- 4. Tap **again** to activate the SpiderNet connection.


Direct IP Connection To Your Own Base Through GPRS Modem and RTDS Software

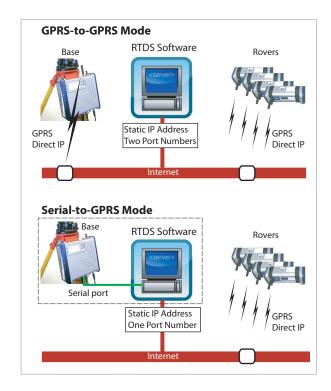
Introduction

Until recently, Direct IP connections from Ashtech rovers were possible only with third-party reference stations.

Today, with the Ashtech RTDS 1 software, you can also have your own base transmitting its corrections to your rovers through a Direct IP connection.

In this configuration, the RTDS software serves as the relaying device between the base and the rovers. The presence of a relaying device is required because modems are assigned an IP address by the network when they connect to it, and this IP address cannot be known ahead of time for both modems. The RTDS software solves this problem by providing a fixed IP address through which that base and rover modems can communicate.

Software Requirements & Features


 The computer used to run the RTDS software is Internetaccessible through a static IP address and one or two port numbers.

^{1.} RTDS for Real Time Data Server

- Several instances of the RTDS software can be run on the same computer, meaning the same computer can serve as data relay for several bases.
- Up to 100 rovers can receive data from a single instance of the RTDS software. All rovers communicate with a given instance of RTDS through the same port number.

Configuration Modes

The diagram below summarizes the possible two cases of use for the RTDS software with your system.

In Serial-to-GPRS mode, the base and the computer running RTDS are at the same location since a conventional RS232 serial line is used to connect one to the other.

Getting Started With RTDS

The implementation procedure can be outlined as follows:

 You first need to know which IP address should be entered in your surveying system to establish a Direct IP connection to the RTDS software. Unless you already have a static IP address, or if you don't know whether you have one or not, call your Internet Service Provider (ISP) to obtain a static IP address for the computer on which you will install the RTDS software. With most ISPs, you'll have to pay a fee to get a static IP address option for your computer.

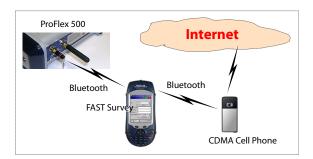
2. You then have to choose one or two **port numbers**. depending on whether you will be using the GPRS-to-GPRS or Serial-to-GPRS mode.

In theory, port numbers can range from 1 to 65536 but No. 1 to No. 1024 are considered as reserved numbers. There are also conventions recommending the use of specific port numbers for specific applications. For example, all GNSS-related data exchanged on the Internet are usually routed through port 2101. This port number can then be chosen (plus others if necessary, for example, "2102", "2103", etc.), but remember that any numbers greater than 1024 may be chosen, provided they are not used on your computer for some other application.

- 3. Take the necessary steps to allow data to flow freely between RTDS and your surveying system through the chosen port number(s). This means you have to declare the use of this port (or these ports) in the ADSL modem firewall (or gateway), and possibly in the computer firewall. You may need some advice from your computer specialist to complete this operation.
 - If your computer is part of a local network (LAN), ask the network administrator to perform the required network address translations (NAT) and declare the port numbers used so the data arriving at the public IP address can be routed to your computer through its local IP address and port.
- 4. Install the RTDS software on your computer. This is an easy step during which you just have to run the "Ashtech Real Time Data Server x.x-x setup.exe" file provided, then follow the instructions to complete the installation phase.
- Determine whether you need to use the GPRS-to-GPRS or Serial-to-GPRS mode (see above), depending on your application. Choose the base location and computer location accordingly.
- On the computer, launch RTDS and make the appropriate settings (plus make the serial connection if the Serial-to-GPRS mode is selected). See RTDS on-line help for more details.

- Start the RTDS server and let the software run throughout your field survey, or permanently if you wish to set up a community base station.
- 8. Set the base in Direct IP mode so that it sends its corrections to the RTDS software. When defining the Direct IP connection, you need to enter:
 - The static IP address of the computer running the RTDS software.
 - The port number assigned to the base connection in the RTDS software (as entered in RTDS Software's RTDS Config>Port Config>Base Port field).

The RTDS operator will see the base-to-server arrow blink when corrections are received from the base. The IP address of the base will appear under the base icon. The incoming data throughput will be indicated just underneath the blinking arrow.


- Set the rover in Direct IP mode in order to receive corrections from the RTDS software.
 - The static IP address of the computer running the RTDS software.
 - The port number assigned to the rover connection in the RTDS software (as entered in RTDS Software's RTDS Config>Port Config>Rover Port field).

On the rover side, wait until the data link icon appears on the front panel. When this happens, corrections are received and at least a float solution is available.

The RTDS operator will see the server-to-rover arrow start blinking when at least one rover queries the server for corrections. The outgoing data throughput is also indicated just underneath the blinking arrow.

Using a CDMA Cell Phone for Network Connection

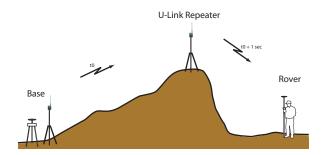
Your receiver is fitted with an internal GSM/GPRS modem but can also be operated with an external CDMA cell phone, as illustrated in the diagram below.

The CDMA connection is entirely controlled from the field terminal running FAST Survey.

FAST Survey will automatically forward corrections through the receiver-field terminal Bluetooth link.

The procedure for operating a rover with a CDMA cell phone can be outlined as follows:

- Use Bluetooth Manager on MobileMapper CX to detect the cell phone. When this is done, pair MobileMapper CX with the cell phone. This will ease and speed up future connections.
- 2. Establish a Bluetooth connection between MobileMapper CX and the cell phone.
- 3. Use the **Start>Settings>Network and Dial-up Connections** utility on MobileMapper CX to create a dial-up connection to your Internet Service Provider.
- 4. Make this connection active.
- 5. In FAST Survey, go to **Equip>GPS Rover**, **RTK** tab and select "Data Collector Internet" in the **Device** field.
- 6. Select the desired connection type in the **Network** field (NTRIP, etc.). Assuming the connection data have already been entered for the selected mode, your rover should start receiving corrections and rapidly switch to the FLOAT then the FIXED position status.


You can download the MobileMapper CX Getting Started Guide from:

ftp://ftp.ashtech.com/Mobile Mapping/MobileMapper CX/Manuals/MMCX Getting Started Guide/

For detailed information on steps 1-4, refer to "Step-by-Step Procedure to Establish a GPRS Connection Via Bluetooth" (pages 18-28) in the MobileMapper CX Getting Started Guide. This procedure also applies for a CDMA cell phone.

Using a U-Link Repeater to Extend the Radio Range

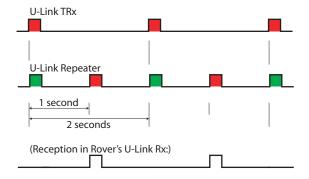
Typically, you will need to use a repeater when a major natural or artificial obstacle gets in the way of the direct path between the base and the rover. This is simply illustrated in the diagram below.

Assuming the U-Link repeater has been configured to operate with the U-Link transmitter you are using at the base and the U-Link receiver used in the rover¹, do the following to operate the radio link:

1. Adjust the configuration of the U-Link TRx at the base:

- Perform a Bluetooth connection with the base receiver from your field terminal and run FAST Survey.
- Go to **Equip>GPS Base** and select the **RTK** tab.
- Enable the Repeater mode function located in the lower part of the screen.
- Tap . As a result, the transmission rate of the U-Link transmitter is changed to 2 seconds. This can be verified by watching the TX-RX LED on the U-Link TRx, which blinks, still in red color, but this time at a rate of 2 seconds.

^{1.}This means that the U-Link TRx, the U-Link repeater and the U-Link Rx work in the same sub-band, use the same central frequency and channel number, and also the same modulation type and over-the-air baud rate.


 Terminate the communication with the base by quitting FAST Survey and then turning off your field terminal.

2. Install and run the repeater:

- Take the following equipment with you before making for the installation site: U-Link repeater and its whip antenna, battery and pole. Make sure that the cable coming out of the repeater is fitted with the appropriate items for a steady connection to the battery terminals.
- When you are on the installation site, first connect the antenna to the repeater, then mount the repeater at the top of the pole.
- Secure the pole in vertical position on the chosen installation point.
- Place the battery on the ground, by the pole.
- Connect the power end of the cable to the two terminals of the battery.
 - Note that the other end of the cable is not used and so should be left free, with its protective cap on.

3. Check repeater operation:

- As soon as you connect the repeater to the battery, the ON LED on the repeater is instantly turned on (red color). This indicator will stay on as long as power is applied to the repeater.
- After a short time, the TX-RX LED starts a sequence of green and red flashes, indicating that the repeater first receives data from the base (green color), and then broadcasts these data in the second that follows (red color). See diagram below.

 When the repeater reaches this operational status, you can let it operate on its own and proceed with your job.

NOTE 1: In somes cases, the location of the rover may be such that it can receive the data from both the repeater and the base transmitter. This situation will not affect the operation of the rover but simply give the opportunity for the rover to receive the same data twice.

NOTE 2: You should be aware of the following when using a repeater: Any change to the settings of the U-Link transmitter will cause the repeater to stop working. If however you have to change the channel number of the U-Link TRx for example, use one of the following procedures to update the channel number used in the repeater:

- Bring the repeater back to the base, unplug the U-Link TRx normally used at the base and connect the repeater instead.
 - From FAST Survey, select **Equip>GPS Base** and then tap on the **RTK** tab. Tap on next to the **Device** field and then change the channel number of the repeater.
 - Once this is done, unplug the repeater and connect the U-Link TRx back to the base. Put the repeater back to work on its installation site.
- If it is more convenient to perform the update from the rover, you can proceed as explained for the base, but in addition you will have to temporarily transform the rover into a base, in order to allow the receiver to access the repeater settings.

When this is done, don't forget to put the receiver back in rover configuration, and also change the channel number in the rover.

NOTE 3: Using the RTCM2.3 format is not recommended when a repeater is used, owing to the larger amount of data to be transmitted with this format.

Chapter 7. RTK Surveying

Uploading Stakeout Points

In your office, do the following:

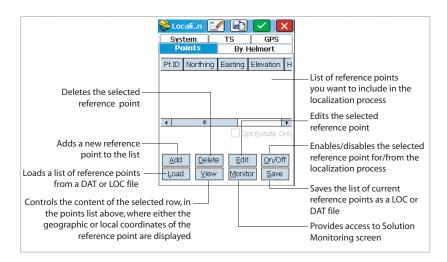
- Connect the receiver or field terminal to your office computer using the USB data cable. For ProMark 200 or ProMark 100, place the receiver on its docking station and connect the docking station to the computer via the USB cable.
- Make sure ActiveSync is installed on your computer and is allowed to perform USB connections. If you do not have ActiveSync installed, download the latest version from the following web page:

http://www.microsoft.com/windowsmobile/activesync/default.mspx

- Run GNSS Solutions on your office computer.
- Open the project containing the stakeout points you want to transfer to the receiver or field terminal as your job.
- On the project map view, select all the reference and target points making up your job.
- Select Project>Upload Positions to External Device..
- Select RTK Job and FAST Survey data collector.
- Click OK.
- Name the job (e.g. MYJOB). Keep the Selected Targets and References option selected and click OK. This opens the Data Transfer dialog box.
- In the combo box, select Active Sync and keep Automatic transfer enabled.
- Click **OK** to establish the connection with the receiver or field terminal and upload the job (to \My Device\Program Files\FAST Survey\Data\).
- After the job has been uploaded, turn off the receiver or field terminal, disconnect the USB cable and go to the field with your surveying equipment to stake out your points.

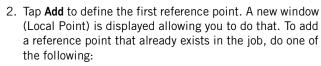
Running Localization

Choosing the Localization Method

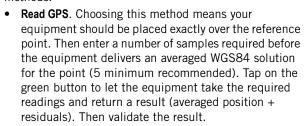


One-Point or Multi-Point Localization

 With your job open in FAST Survey, tap on the Equip tab and then on the Localization button. This opens the Localization window with the System tab shown first.


For your information, this tab shows the name of the projection selected earlier for the project (see File>Job Settings>System). Choosing another projection here would change the projection used in the job. It is your responsibility to have the right projection selected on which the localization process is going to be run.

- Tap on the GPS tab and select your localization methods for multi-point and one-point localizations. If you choose "Helmert" as the localization method, the one-point method selection is grayed.
- Tap on the **Points** tab. This tab allows you to define the reference points used as the input to the localization process.


For each of the available reference points, you need to enter the local coordinates and then the WGS84 coordinates, as measured by your equipment.

- Type its name in the Point From File field. This automatically updates the window with the point's local coordinates.
- Or tap on the button to access the list of points available. Choose one and tap the green button to return to the Local Point window.
- Or tap on the button to select the point directly on the map of the working area.
- 3. Tap on the green button () to enter the name and local coordinates of the reference point.

FAST Survey then asks you to enter the WGS84 coordinates of the point. Choose one of the following methods:


- Enter latitude/Longitude. Enter the three WGS84 coordinates of the point, using the "dd.mmssss" format, for latitude and longitude. Elevation should be entered in the distance unit chosen for the job. Enter the orthometric elevation if a geoid file is used otherwise enter the ellipsoid elevation.
- From Raw File: Select a point from the job holding the WGS84 coordinates of the reference point. This point should have been surveyed earlier by the system in the same measurement conditions (same base setup, etc.) as now.

Once both the local and WGS84 coordinates have been entered, the reference point appears in the list of points used in the localization process.

 With the point selected in the list, tap on the On/Off button to tell FAST Survey how the point should be used in the localization process.

You can force the local grid to pass through its horizontal position by checking the **Horizontal Control** button and/or its vertical position by checking the **Vertical Control** button. Clearing the two options means the point is not involved at all in the localization process. Tap on the green button to validate your choices.

5. Resume the previous three steps until all your reference points have been added to the list.

As you add new points, check the amount of residual for each reference point involved in the localization (residuals are displayed in the lower part of the screen). The lower these values, the better the consistency of your set of reference points.

Should some residuals be abnormally high, the relevant point(s) should be deleted using the **Delete** button, or its contribution to the localization process changed by editing its control settings through the **On/Off** button.

If you enter only two reference points, the **2 pt Rotate Only** button is made available. This option allows you to use the second point for direction but not for scaling.

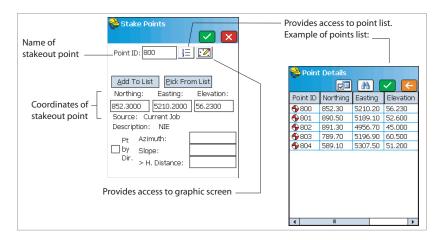
- Tap when you are satisfied with the level of residuals.
 FAST Survey then asks you to save your list of points as a LOC or DAT localization file.
- 7. Name the file and tap . The localization process is now complete and active. This means every new point you will now survey will be expressed on the local grid.

If points have been surveyed in the job prior to the localization process, FAST Survey will prompt you to convert their coordinates to the new local grid. If you accept, FAST Survey will open the Process Raw File window.

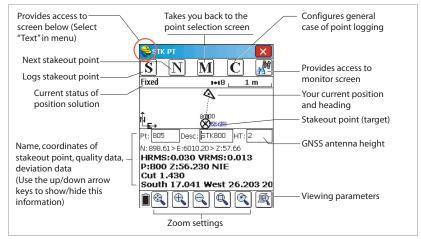
Simply tap to re-process the coordinates of these points. FAST Survey will return the list of converted coordinates.

NOTE: Tapping from the Localization screen is mandatory to activate the new localization file. Using the **Save** button saves the localization file but does not make it active.

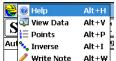
Helmert Localization



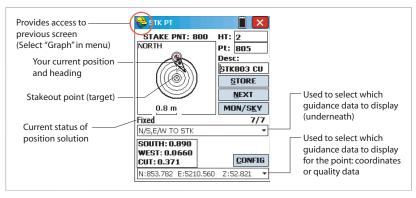
Computing Helmert Parameters from a Multi-Point Localization File


- 1. With your job open in FAST Survey, tap on the **Equip** tab and then on the **Localization** button.
- Tap on the GPS tab and select "Helmert" from the Multi Point Method field.
- Tap on the By Helmert tab and then enter the seven parameters defining the new datum of the local grid.
- 4. Tap . The localization process is now complete and active. This means every new point you will now survey will be expressed on the local grid.
- Follow the instructions to perform a multi-point localization.
- After all the points have been defined, tap on the By Helmert tab.
- Tap on the Calc from Pts button. FAST Survey computes the seven Helmert parameters and displays the result in the corresponding fields.
- To save the seven parameters as a TXT file, tap on the Output to Text File button and name the file.

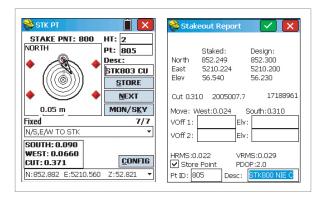
Staking Out Points


- 1. Run FAST Survey and open the job containing the points you want to stake out.
- Tap on the Survey tab and then select Stake Points. The screen now displayed allows you to stake out points.
- 3. On this screen, FAST Survey asks you to choose the point you want to stake out. You can either type in its coordinates in the Northing, Easting and Elevation fields, or select a pre-defined point from the points list (see File> Points). You can also define graphically the point by tapping on the point on the graphic screen, or define the point according to azimuth, slope and horizontal distance.

4. Once you have chosen a point, tap . A graphic screen is now displayed to help you head for the point.



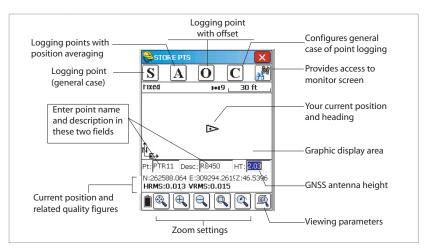
Yellow helmet gives access to Function Menu!


When the distance to the stakeout point is too small to be clearly seen on this screen, tap on the surveyor's helmet in the upper-left corner and select **Text** from the menu that pops up.

A new screen appears giving a more accurate view of the remaining distance to the stakeout point. (If you want to return to the previous screen, just select **Graph** in the same menu.)

When the remaining distance is within the stakeout tolerance (this parameter can be changed in **Equip>Tolerances**), markers appear in the four corners of the target. You can now set a stake on this point.

6. Tap on the STORE button if you want to store the position of this point. You will be notified if the values of HRMS and VRMS exceed the tolerances set for these two parameters in Equip>Tolerances. A new screen is then displayed showing the coordinates of both the staked and design points.



- 7. Tap if you agree. The "Point Stored" message appears briefly. The screen then comes back to the Stake Points screen where you can choose the next point to be staked.
- 8. After staking out all your points, tap X in the upperright corner of the screen to return to the menu.

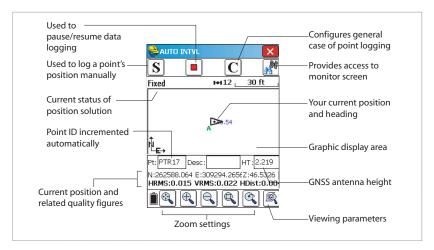
Logging Points

 Tap on the Survey tab and then on Store Points. The screen now displayed allows you to log all your points.

The figure below summarizes all the functions available from that screen.

- 2. Type in the point name and description in the corresponding two fields (see above)
- 3. Tap on the "A" button
- 4. Enter the number of readings you want before FAST Survey is allowed to compute an average position for this point.

For example, type in "5" and tap ...


Messages follow successively indicating that the system is taking the five requested readings. Then FAST Survey displays the average coordinates it has determined for the point.

- 5. Tap if you agree. The "Point Stored" message appears briefly. The screen then shows the location of the point together with its name and description.
- 6. After logging all your points, tap in the upper-right corner of the screen to return to the menu.

Logging a Line

- 1. On the **Survey** tab, select the **Auto by Interval** function. Two different modes are possible: Time or Distance.
- If you choose **Distance**, enter the horizontal and vertical increment value respectively in the **X/Y** and **Z** fields, according to the chosen unit. If you choose **Time**, enter the increment value, in seconds.
- 3. Enter a point Id. for the start point in the **Starting Pt ID** field. This field will be incremented by one after each point logging. Initially, the Point Id. may only consist of letters (e.g. "ABCD"). FAST Survey will then increment the Point Id. as follows: ABCD1, ABCD2, etc.
- 4. Tap to switch to the graphic screen (see figure below) and start logging the series of points along the line.

The **\$** button lets you instantly log the position of a point. The pause button allows you to pause data logging in continuous mode.

If data logging in continuous mode is paused, you can still continue to log points in manual mode using the $\bf S$ button.

Tap the pause button again to resume data logging in continuous mode.

If you directly tap to come back to the main menu, data logging in continuous mode is automatically stopped.

Downloading RTK Points to GNSS Solutions

- Go back to your office and connect the receiver or field terminal to your office computer using the USB data cable. For ProMark 200 or ProMark 100, place the receiver on its docking station and connect the docking station to the computer via the USB cable.
- Run GNSS Solutions on your office computer.
- Open the project in which to add the points from the field.
- Select Project>Download Positions from External Device...
- Select RTK Results and FAST Survey data collector.
- Click **OK**. This opens the Data Transfer dialog box.
- In the combo box, select ActiveSync, enable Automatic
 Transfer and click OK. This opens a new window listing all
 the jobs stored in the field terminal.
- Select the job you want to download (e.g. "MYJOB") and click OK. This starts the download process.

Vector information relative to surveyed points is available only in .rw5 files. FAST Survey saves vector information directly in this file format and so *does not* create O-files that would contain such information.

Chapter 8. Logging Raw Data

Introduction

You can log raw data in two different ways:

 Standalone: You simply need to use the Log button to start and stop raw data logging.

Later, you will however need to do the following manually:

- 1. Downloading phase: Rename the raw data files collected on each site.
- 2. Post-processing phase: Manually correct all computed elevations for the antenna height.
- Using FAST Survey: The Survey>Log Raw GPS function allows you to fully control raw data logging. Using this method offers three advantages:.
 - Antenna reduction is automatically performed during post-processing because of the antenna height value (from the receiver properties) stored in the raw data files.
 - 2. Ability to name the raw data file and insert time tags.
 - 3. Ability to pause/resume data logging.

By default, raw data is logged to the receiver's internal memory.

Using FAST Survey, you can change the storage medium (internal memory or USB memory stick).

The choice of storage medium is then valid for both data logging methods (standalone and using FAST Survey). If "USB memory stick" is selected and no USB stick is connected to the receiver, then no data logging will take place.

In both data logging methods, the Raw Data Logging icon on the General Status screen will start flashing when a raw data file is open for logging.

Raw Data Logging Methods

Standalone

✓ X

- Press the Log button to start data logging.
- Press the Log button again when it's time to stop data logging.

Using FAST Survey

Start New File

- Tap Survey>Log Raw GPS.Tap Start File.
- Set the following parameters:
 - Elevation Mask in degrees.
 - Check the antenna height value. If it's wrong, tap the Change Ant. button to set the new value.
 - Storage medium (internal or USB memory stick).
 Choosing the internal memory is recommended for inclement conditions because USB sticks are not waterproof. If using a USB stick is necessary, please be sure to somehow ensure that it is out of contact with water.
 - Logging interval in seconds.
- Tap . This starts data logging. From the screen then displayed, you can do the following:
 - Name the raw data file, mark a particular point or event (Tag New Site).
 - Stop data logging (Close File).
 - Access the File Manager window in read-only mode (File Manager).
 - Continue Logging / Pause Logging. Pausing data logging means closing the currently open file. Continuing data logging means opening a new file. Data logging will start immediately based on the parameters set for the previous file.

Combining the two Methods

Combining the two methods is possible.

For example, you can start data logging using FAST Survey. Then you can quit FAST Survey and turn off the field terminal without disturbing data logging. Later, you will be allowed to stop data logging by simply pressing the Log button on the receiver front panel.

Downloading Raw Data

Use a USB mass storage device as a transit storage medium to download raw data files from the receiver's internal memory to your office computer.

Important! During a download operation, files are not deleted from the receiver but simply copied to the USB mass storage device.

After downloading the files to this device, connect the USB device to your computer and use your usual browser to copy the files to the project folder.

Using a USB Mass Storage Device

 Connect the USB mass storage device to the receiver via the short USB Device cable provided (P/N 702103).
 If raw data files are present in the receiver's internal memory, the following icons will automatically appear on the display screen:

- To confirm the file transfer, press the Log button. The General status screen will re-appear after the file transfer is complete.
- To cancel the file transfer, press the Scroll button.
- If you do not press any button within the next 10 seconds, the download procedure will be canceled automatically and the screen will come back to the previous display.

Using the USB Cable Provided

- Connect the USB cable provided (P/N 702104) between the office computer and the receiver's USB port. The receiver is then seen as a USB device from the office computer
- Using Windows Explorer on your office computer, browse the receiver's internal memory for the raw data files.
- Copy/paste the files to your project folder. Note that raw data files can directly be deleted from the receiver's internal memory through this connection.

Case of Static Survey in Standalone

When static surveys are performed without the field terminal and FAST Survey, you must be careful with raw data file names. In view of the ATOM naming conventions used and the system's default settings, there is indeed every chance that the base file and the rover file have the same name. It is good practice to follow this procedure:

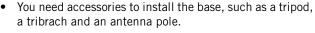
- Download the raw data file from one of the receivers to the USB device.
- Plug the USB device to the office computer, copy the raw data file to the project folder and rename the file to reflect the site where the static occupation took place (e.g. replace "G____" with "GPREF")
- Repeat the previous two steps with the other receiver, using a different name for the file (e.g. replace "G____" with "GP100").

Deleting Raw Data Files

Use FAST Survey to delete raw data files from the receiver internal memory.

- 1. Tap on the Survey tab and then on Log Raw GPS.
- Tap on File Manager. The screen displays the following parameters:
 - · List of raw data filenames.
 - · Selected storage medium.
 - · Free memory available.
 - Current number of raw data files in memory.
- 3. Unless already done, select **Internal Mem** to list the files stored in the internal memory.
- 4. To delete one file, highlight its name in the list and tap the Delete button. To delete all the files, tap Delete All Files. Important! When the receiver is logging raw data, the file being logged cannot be deleted. The file is protected from deletion until you close it.

Chapter 9. Post-Processed Surveying



System Setup

Base Setup

This setup should always be used for a base and may also be used for a rover running a static survey.

Prerequisites:

 Allow for an external DC power source if this is how you want the base to be powered. Connect the power source to the DC Power Input located underneath the unit.

Step-by-step Procedure:

- Set up the tripod and tribrach over the point chosen for the base.
- 2. Secure the ProFlex 500 on the tripod.
- 3. Insert the antenna pole into the tribrach.
- Perform a slant height measurement and make a note of this value.

Rover Setup

This setup is intended for rovers having to run continuous or stop&go kinematic surveys.

Prerequisites:

- Use the backpack kit and a range pole fitted with a 5/8" male adaptor at the upper end (not provided).
- Screw the GNSS antenna on top of the range pole and connect the TNC end of quick-release cable P/N P076510A to the antenna.
- Insert a freshly charged battery in the receiver.

Step-by-step Procedure (More visual information is given about this procedure in *Preparing the Backpack on page 260*):

- Unzip the backpack and insert the TNC end of quick-release cable P/N P076500A (GNSS cable) into the backpack through one of the velcro flaps. Make it run along the inner edge of the compartment, down to where the rear panel of the receiver will be located once placed in the backpack.
- Insert the ProFlex 500 into the compartment in such a way that the rear panel is facing the bottom of the compartment.
- 3. Connect the GNSS cable to GNSS input #1
- If wireless communication with the field terminal is used, connect the Bluetooth antenna to the leftmost connector on the receiver front panel.
- 5. Secure the receiver in the backpack by tightening the three pairs of Velcro straps over the case. The Bluetooth antenna should pass through one of the slots designed in these straps.
- 6. Turn on the receiver and then zip the backpack.
- 7. Place the backpack on your back.
- Connect the free ends of the quick-release cables together. This connects the GNSS antenna to the receiver.
- 9. Secure the field terminal on the range pole and turn it on. You are now ready to start using your system.
- 10. Perform a vertical measurement of the antenna height, which consists in either measuring the length of the range pole or reading the graduation on the pole. Make a note of this value as you will need to enter it in FAST Survey when asked to do so.

System Configuration

Foreword

Please read the following before going any further:

- System configuration for post-processed surveys is required only when FAST Survey is used to control your system. Configuring the system then only consists in activating a Bluetooth connection between the field terminal and the desired receiver.
- The FAST Survey field software is required to perform stop&go or continuous kinematic surveys, but it is optional for static surveys. Static surveys may indeed be run either with or without FAST Survey.
- When a static survey is run without FAST Survey, data collection is started/stopped directly from the receiver by pressing the Log button (see Logging Raw Data on page 289).
 - In this case however, because the antenna height will be missing from the raw data file, you will have to measure and remember the antenna height, and later enter this information, for antenna reduction, when post-processing the static raw data file with GNSS Solutions.
- Opening a job file is mandatory when running FAST Survey but is in fact useless in the case of post-processed surveys. In addition, the notion of "base" and "rover" as presented in FAST Survey's Equip menu is irrelevant for post-processed surveys in the sense that you don't need to upload a "base" or rover" configuration to your receiver (except for changing the GLONASS or SBAS setting). So consider creating a job just as a means to access the FAST Survey main menu, with the following objectives:
 - Allow a Bluetooth connection to be established with your base and rover through the Equip>GPS Base or GPS Rover button.
 - 2. Check communication between the field terminal and the receiver using the Monitor/Skyplot function.
 - 3. Access the **Survey>Log Raw GPS** function to perform your survey.

Prerequisites

- Your base and rover are properly set up and powered on.
- Your field terminal is on and within Bluetooth range of the base and afterwards, of the rover.

Establishing Bluetooth Connection with the Base

- Run FAST Survey on your field terminal and create a new job.
- Tap on the Equip tab and then on the GPS Base or GPS Rover button, whichever is the currently active button (for more convenience).

NOTE: If a Bluetooth connection was established previously with your base, you just have to tap on the **Connect to last bluetooth device** button to restore the Bluetooth connection with the base (this would end the current procedure).

- 3. Tap on the Comms tab.
- Select 'Bluetooth" in the Type field and, in the Device field, "Ashtech BT" or "Windows Mobile", depending on the field terminal used.
- 5. Tap on next to the **Device** field.
- In the Bluetooth Devices window that opens, tap on the Find Receiver button. After a few seconds, the window lists the Bluetooth identifiers of your base and rover.
- 7. Select the base's Bluetooth identifier from the list.
- 8. Tap **b** to connect the field terminal to the base. Then FAST survey takes you back to the **Comms** tab.
- 9. Tap **t** to return to the FAST Survey **Equip** menu.

Starting Base Data Collection, Naming the Base Raw Data File, Programming the End of Base Data Collection Before starting base data collection, you need to define the elevation mask, the base antenna height, the storage medium used in the receiver and the raw data recording rate. Follow the instructions below.

- 1. Tap on the Survey tab and then on Log Raw GPS.
- 2. Tap on **Start File**. The screen lists the currently used settings.
- 3. Keep or edit these settings, depending on the specific requirements of your survey:
 - Elev Mask: Elevation mask, in degrees (default: 5 degrees)
 - Antenna Height: Current value of antenna height, expressed in the chosen unit. Use the Change Ant. button to change the antenna height. Choose the measurement type first (Vertical or Slant) and then enter the measured value.
 - Choose the storage medium where to store the file (Internal Mem or USB Mem Stick).
 - Interval: Raw data recording rate, in seconds (possible range: 0.1 to 999 seconds, or 0.05 to 999 seconds with the [F] option activated and \$PASHS,POP,20 executed).
- 4. Tap . On top of the screen now appears the Logging... message indicating raw data recording in progress. A

- default name is given to the open raw data file, based on the naming conventions described in ATOM File Naming Conventions on page 707.
- 5. Name the site where data collection is taking place. According to the same ATOM file naming conventions, naming this site will impact the raw data filename. To name the site, tap on the Tag New Site button. This opens a new window on which you can enter the following parameters:
 - Site Name: Enter a name for the base location. A fourcharacter name is recommended so that the entire name, and not a truncated name, appears later in the raw data file name. Longer names will not be truncated however in GNSS Solutions.
 - . Site Attr.: Enter an optional description of the base location.
 - [The antenna height and raw data recording rate (interval) are recalled on this screen. You can still change them if necessary.]
 - **Stop Logging:** FAST Survey allows you to stop data collection automatically by selecting After and entering the duration, in minutes, of data collection. If you wish data collection to be stopped by an operator, select Manually.
- 6. Tap . A new screen is displayed summarizing all your settings.
- 7. Tap on the Monitor/Satellite View button to make sure GNSS reception is good at the base location (enough satellites are received, DOP values low). Ignore all RTK-related indicators.
- 8. Tap
 to return to the previous screen.
- 9. Tap on the Exit-Continue Logging button.
- 10. Tap **Yes** to confirm that you want to exit the Log Raw GPS function but you want data logging to continue.
- 11. Tap Can to return to the main menu.
- 12. Tap **Yes** twice to continue data logging at the base location. You can now let the base operate on its own and switch to the rover.
- **Establishing** Bluetooth 2. Tap on the Comms tab. the Rover
- **Connection with**

Tag New Site

Site Name:

Site Attr.:

Antenna Height:

Stop Logging:

Free Mem on Receiver: 98087 kBytes

Interval (in Seconds) 1.0000

Recording site '#578'..

Site Duration: 00:00:13 Time Remaining: 07:59:47

Antenna Height: 2.0500 m

Stop Point Logging

Monitor/Satellite View

Exit - Continue Loggina

Manually After 480 minutes

#578

ERBIE SITE

2.0500 m

Change Antenna

- 1. Tap on the **Equip** tab and then on the **GPS** Base or **GPS Rover** button, whichever is the currently active button.

- 3. Tap on next to the **Device** field. This opens the Bluetooth Devices window.
- 4. Select the rover Bluetooth identifier from the list.
- 5. Tap **b** to connect the field terminal to the rover. Then FAST survey takes you back to the **Comms** tab.
- 6. Tap to return to the FAST Survey Equip menu. The field terminal now communicates with the rover. Move both the rover and field terminal to the working area so you can start your static, stop & go or kinematic survey. See next sections.

Static Survey

The rover has been installed on the survey point and will stay there throughout the static survey. What you will have to do now with your rover is much similar to what you've just done for the base. Follow the instructions below to run the survey:

- 1. Tap on the Survey tab and then on Log Raw GPS.
- Tap on Start File. The screen lists the currently used settings.
- 3. Keep or edit these settings, depending on the specific requirements of your survey:
 - Elev Mask: Elevation mask, in degrees (default: 5 degrees)
 - Antenna Height: Current value of antenna height, expressed in the chosen unit. Use the Change Ant. button to change the antenna height. Choose the measurement type first (Vertical or Slant) and then enter the measured value.
 - Choose the storage medium where to store the file (Internal Mem or USB Mem Stick).
 - Interval: Raw data recording rate, in seconds. Use the same recording rate as the base.
- 4. Tap . On top of the screen now appears the Logging... message indicating raw data recording in progress. A default name is given to the open raw data file, based on the naming conventions described in ATOM File Naming Conventions on page 707.
- 5. Name the point where data collection is taking place. According to the same ATOM file naming conventions, naming this point will impact the raw data filename. To name the point, tap on the Tag New Site button. This opens

a new window on which you can enter the following parameters:

- Site Name: Enter a name for the survey point. A fourcharacter name is recommended so that the entire name, and not a truncated name, appears later in the raw data file name. Longer site names will not be truncated however in GNSS Solutions.
- Site Attr.: Enter an optional description for the survey point.
- [The antenna height and raw data recording rate (interval) are recalled on this screen. You can still change them if necessary.]
- Stop Logging: FAST Survey allows you to stop data collection automatically (recommended) by selecting After and entering the duration, in minutes, of data collection (typically 5 to 30 minutes). You may also want to stop data collection by yourself. In this case, select Manually.
- Tap . A new screen is displayed summarizing all your settings.
- Tap on the Monitor/Satellite View button to make sure GNSS reception is good at the survey point (enough satellites are received, DOP values low). Ignore all RTK-related indicators.
- 8. Tap contains to the previous screen.
- 9. Wait until the end of the countdown. A message then informs you that the programmed time of data collection has elapsed.
- 10. Tap **OK** to acknowledge the message.
- 11. Tap on the **Close File** button to end data collection and close the raw data file.
- 12. Tap on the **File Manager** button. You should recognize the last file in the list as the file you have just closed (the file is identified by the point name).

"Stop & Go" Kinematic Survey

Once the rover is located on the first survey point, follow the instructions below to run the survey:

- 1. Tap on the Survey tab and then on Log Raw GPS.
- Tap on Start File. The screen lists the currently used settings.
- 3. Keep or edit these settings, depending on the specific requirements of your survey:
 - Elev Mask: Elevation mask, in degrees (default: 5 degrees)
 - Antenna Height: Current value of antenna height, expressed in the chosen unit. Use the Change Ant. button to change the antenna height. Choose the measurement type first (Vertical or Slant) and then enter the measured value.
 - Choose the storage medium where to store the file (Internal Mem or USB Mem Stick).
 - Interval: Raw data recording rate, in seconds. Use the same recording rate as the base.
- 4. Tap . On top of the screen now appears the Logging... message indicating raw data recording in progress. A default name is given to the open raw data file, based on the naming conventions described in ATOM File Naming Conventions on page 707.
- 5. Name the point where data collection is taking place. According to the same ATOM file naming conventions, naming this point will impact the raw data filename. To name the point, tap on the **Tag New Site** button. This opens a new window on which you can enter the following parameters:
 - Site Name: Enter a name for the survey point. A four-character name is recommended so that the entire name, and not a truncated name, appears later in the raw data file name. Longer site names will not be truncated however in GNSS Solutions. In stop & go the filename will pick up the name of the last surveyed point.

- Site Attr.: Enter an optional description for the survey point.
- [The antenna height and raw data recording rate (interval) are recalled on this screen. You can still change them if necessary.]
- Stop Logging: FAST Survey allows you to stop data collection automatically (recommended) by selecting After and entering the duration, in minutes, of data collection (typically 1 minute). You may also want to stop data collection by yourself. In this case, select Manually.
- 6. Tap . A new screen is displayed summarizing all your settings.
- Tap on the Monitor/Satellite View button to make sure GNSS reception is good at the survey point (enough satellites are received, DOP values low). Ignore all RTK-related indicators.
- 8. Tap <a> to return to the previous screen.
- 9. Wait until the end of the countdown. A message then informs you that the programmed time of data collection on the point has elapsed.
- 10. Tap **OK** to acknowledge the message.
- 11. Move the rover to the next point. Remember data logging continues so you should not mask the antenna while walking to this point.
- 12. Resume the previous seven steps (5 to 11) until all the points have been visited. In the Tag New Site window, you just need to enter a new point name. All other parameters may be kept unchanged.
- 13.At the end of the survey, tap **Close File** to end data collection.
- 14. Tap on the **File Manager** button. You should recognize the last file in the list as the file you have just closed (the file is identified by the point name you last entered).

Continuous Kinematic Survey

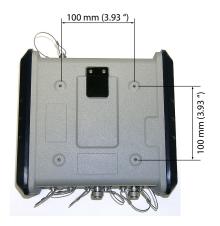
Once your rover is located at the beginning of the trajectory, do the following to run the survey:

- 1. Tap on the Survey tab and then on Log Raw GPS.
- Tap on Start File. The screen lists the currently used settings.
- 3. Keep or edit these settings, depending on the specific requirements of your survey:
 - Elev Mask: Elevation mask, in degrees (default: 5 degrees)
 - Antenna Height: Current value of antenna height, expressed in the chosen unit. Use the Change Ant. button to change the antenna height. Choose the measurement type first (Vertical or Slant) and then enter the measured value.
 - Choose the storage medium where to store the file (Internal Mem or USB Mem Stick).
 - Interval: Raw data recording rate, in seconds. Use the same recording rate as the base.
- 4. Tap . On top of the screen now appears the Logging... message indicating raw data recording in progress. A default name is given to the open raw data file, based on the naming conventions described in ATOM File Naming Conventions on page 707.
- 5. As you start walking or driving along the trajectory, you can name it. According to the same ATOM file naming conventions, naming this trajectory will impact the raw data filename. To name the trajectory, tap on the Tag New Site button. This opens a new window on which you can enter the following parameters:
 - Site Name: Enter a name for the trajectory. A fourcharacter name is recommended so that the entire name, and not a truncated name, appears later in the raw data file name. Longer site names will not be truncated however in GNSS Solutions.

- Site Attr.: Enter an optional description for the trajectory.
- [The antenna height and raw data recording rate (interval) are recalled on this screen. You can still change them if necessary.]
- Stop Logging: Select Manually.
- Tap . A new screen is displayed summarizing all your settings.
- Tap on the Monitor/Satellite View button to make sure GNSS reception is good at the survey point (enough satellites are received, DOP values low). Ignore all RTK-related indicators.
- 8. Tap <a> to return to the previous screen.
- 9. When you arrive at the end of your trajectory, tap on the Stop Point Logging button.
- 10. Tap **OK** twice to confirm the end of data collection.

Chapter 10. Integrating ProFlex 500 into Your Application

Installation Instructions


GNSS Antenna

First find the best place to install the GNSS antenna. Follow the usual recommendations for a GNSS antenna. Remember that the chosen location should be free of any close obstacles that could hinder GNSS reception, and mechanically safe for the antenna (no nearby parts in motion liable to damage the antenna).

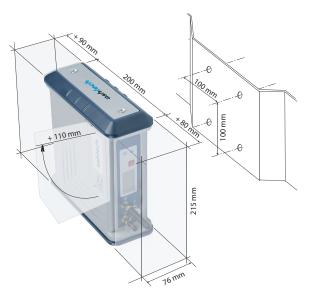
Make sure you can easily measure the antenna height from where you install it. Accurately measuring the antenna height with respect to the height reference on the vehicle, machine or ship is critical for getting the best performance from your equipment.

Receiver

The recommended setup for the ProFlex 500 when used as a GNSS receiver is to secure it from underneath. The bottom plane is fitted with four tapped holes M4 (tap depth=8 mm max.) forming a square 100 mm (3.93 inches) in size (a VESA-compliant feature).

After you have decided where to install the GNSS
antenna, find the best place to install the receiver, making
sure the signal level at the GNSS antenna input will
always stay within the permitted range:

+23 dB < LNA Gain - RF network loss < +45 dB


This has an impact on the type of coaxial cable you will be using as well as its length.

Note that there is no coaxial cable provided in the basic receiver package to perform the GNSS antenna-to-receiver connection. The reason for this is that there is no unique length for this cable that would meet all possible requirements in various applications. If however you bought any of the two UHF connection kits (more particularly intended for marine surveying), then you automatically have at your disposal a 10-meter TNC/TNC coaxial cable that can be used to perform this connection. It is always your responsibility to install the system so that the cable length and loss are appropriate for your setup.

- Make available a flat and rigid plane in which four holes dia. 4.2 mm (minimum) will be drilled to allow fixing screws to go through. The flat plane may have any orientation (horizontal, vertical or slant), but if the receiver is communicating with a cellular network or you are using Bluetooth to communicate with the receiver, the vertical orientation for the receiver is recommended so that the concerned antenna can be in the vertical position as well.
- Make room for the receiver, allowing for enough space at the rear and at the front of the receiver to accommodate the receiver itself and the cables connected to it, and also the Bluetooth and cellular antennas if used.

If the internal battery is used (recommended for backup DC source in case of power outage), allow for enough space near the trapdoor so it can be easily opened to insert or remove the battery.

To sum up, you should allow for a cubic space adjacent to the fixing plane with the following approximate dimensions (H x W x D) (see also diagram below): $186 \times 215 \times 370 \text{ mm}$ (7.4 x 8.5 x 14.6 ")

This should also be an open space allowing sufficient ventilation. Air should freely circulate around the receiver.

 Consider the following to orientate the receiver on its support: Do you need visual access to the display screen?
 Do you need frequent access to the USB port? Are you using the front panel buttons frequently? Do you often need to connect or disconnect cables to/from the rear panel? Will a Bluetooth connection be used between the receiver and the user interface?

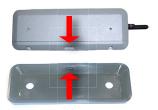
Depending on your answers to these questions, you will orientate the receiver accordingly, making sure you can easily access the panel you need to use most.

NOTE: With the receiver installed on-board a vehicle, if a cellular connection is used, you may need, for best coverage, to use an external cellular antenna rather than the one that can be screwed directly to the front panel of the receiver. In this case, you will have to use a coaxial cable to connect this antenna to the receiver. Again, the type and length of coaxial cable used may significantly impact the performance level of the cellular link. Follow the usual recommendations to preserve a sufficient level of radio-frequency signal at the antenna, both in reception and transmission.

 When used on the bridge for example, the receiver can also be mounted horizontally on a cradle (not provided), a rack or a shelf, either from the bottom of the case, as explained previously, or from the two lateral panels if you want to create free space underneath the receiver (for running cables, etc.).

Mounting the receiver on a cradle, rack or shelf makes sense when the user regularly needs to read the display screen, press the three buttons on the front panel or use the USB port. This mounting configuration will usually be more interesting in marine surveying than in machine guidance.

When fixing the receiver from its two lateral panels, you need to prepare the two vertical support planes, drilling two holes dia. 4.2 mm (minimum) in each of them. The drilling plan should be designed taking into account the dimensions of the two lateral panels, as illustrated below.



After loosening and removing the two screws from either side of the receiver using an Allen key, remove the Ashtech logo plate (an aluminum plate) and then the dark-blue rubber pad.

When mounting the receiver, you do not need to put the two lateral Ashtech logo plates and rubber pads back in position. Not putting back these parts will not affect the sealing of the receiver case.

If on the contrary you wish to put these parts back, be careful with the orientation of the rubber pad. Make sure the tab on the rubber pad goes into the receiver case (see picture below).

Because of the thickness of the support, you will have to use screws that are longer than those initially used to secure the rubber pads and aluminum plates. Choose the right length for the new screws knowing that the depth of the tapped hole in the receiver case is 8 mm maximum.

UHF Antenna

Consider the following when you wish to use a UHF radio system to transfer base corrections to a rover:

- As standard, each of the available radio transmitter kits is provided with its own UHF whip antenna as well as the coaxial cable needed to connect the transmitter to the UHF antenna.
- Conversely, there is no antenna delivered as standard with each of the available radio receiver kits.
- However two UHF accessory kits are available, including a
 UHF whip antenna and coaxial cable, for use with the
 built-in radio receiver of your ProFlex 500. These two kits
 are more especially intended for marine surveying. One
 includes a 30-meter coaxial cable and the other a 10 meter coaxial cable. If these kits are not suitable for your
 application, the choice and purchase of the appropriate
 antenna and cable will be your responsibility.

Cellular Antenna

Connect the cellular antenna directly to the SMA connector on the receiver front panel. The best performance of the antenna is obtained when in vertical position, meaning the receiver should as far as possible be in vertical position as well, with the front panel oriented upward or downward. As mentioned earlier, with the receiver installed on board a

As mentioned earlier, with the receiver installed on board a vehicle, you may need, for best coverage, to use an external cellular antenna. In this case, you will have to use a coaxial

cable (not provided) to connect this antenna to the receiver. Remember the type and length of coaxial cable used may significantly impact the performance level of the cellular link.

Bluetooth Antenna

Connect this antenna directly to the reverse SMA connector on the receiver front panel. The best performance of the antenna is obtained when in vertical position, meaning the receiver should as far as possible be in vertical position as well, with the front panel oriented upward or downward.

Cables and Connectors

After installing the receiver, connect the different cables needed for your application.

Take the usual precautions to properly anchor the cables to the vehicle, machine or ship structure, in order to avoid any risks of malfunctioning due to unreliable connections.

Make sure the sealing caps of all free connectors are properly inserted into these connectors. This will ensure an efficient protection not only for these connectors but for the receiver as well.

Earth Terminal

In some applications, and more particularly in marine applications, you will need to electrically connect the receiver chassis to the superstructure.

Use a large section of braided wire to connect the receiver's Earth terminal to the superstructure. The shorter the connection, the better. On the receiver side, use a screw M4x10 mm and a washer to tighten the braid against the Farth terminal.

Manual Configuration Steps: Introductory Notes

Configuring the receiver manually consists of running less than 20 proprietary \$PASH commands through which you will enter the parameters specific to your application.

See *Using Serial Commands on page 339* for more information on sending serial commands.

Some of these commands are required, some others are only optional, depending on how different from the receiver's default settings your application is.

After you have run these commands, the receiver will indefinitely operate in the new configuration. Being saved in the receiver's permanent memory, the new configuration will remain unchanged after a power cycle. Should you want to

restore the default settings, please use the \$PASHS,RST command.

NOTE: Introduced in July 2009, the ProFlex 500 Web Server application is a tool designed to configure the receiver without having to handle a single \$PASH command. This tool should always be preferred. However, having a good knowledge of the \$PASH commands is an asset to whoever claims to be a ProFlex 500 expert.

Required Settings

In the following sections, you will find the script that allows you to implement one of the configurations listed below:

- RTK rover using internal radio (U-Link Rx or PDL)
- RTK rover in NTRIP mode.
- RTK rover using corrections from port A
- RTK rover using corrections from port B or F
- RTK rover in Direct IP mode
- RTK rover in direct-dial (CSD) mode
- Rover operating in long-range, Flying RTK mode
- RTK base using Pacific Crest radio transmitter
- RTK base using Ashtech radio transmitter (U-Link TRx or Older model)
- RTK base delivering corrections on its port A
- RTK base delivering corrections on its port B or F
- RTK base delivering corrections on its Ethernet port
- RTK base transferring its corrections to a static IP address (Direct IP) via its modem
- RTK base in direct-dial (CSD) mode
- RTK base used as NTRIP server (connected to the Internet via its modem)

Each script provides a series of commands that should be run in the given order.

Identify the script that matches your application and then use it to guide you toward the configuration you wish to create.

As you follow the script, replace some of the indicated values with those corresponding to your application. The parameters shown in **bold characters** are those that probably need to be different for your application.

Optional Settings

Although designed to meet the requirements of a large number of applications, some of the default settings in the

receiver may not be suitable for your application. Below are some settings you may need to change.

Purpose	Command
Sets the receiver to receive differential data	\$PASHS,CPD,REM, AUT
from any port.	\$PASHR,ACK*3D
Code the modified planting model (a.g. 400)	\$PASHS,PEM,10
Sets the position elevation mask (e.g. 10°).	\$PASHR,ACK*3D
Sets the elevation mask (raw data recording,	\$PASHS,ELM,10
raw & differential data output) (e.g. 10°).	\$PASHR,ACK*3D
Sets the dynamic model (e.g. "8" for "adaptive	\$PASHS,DYN,8
model).	\$PASHR,ACK*3D
Sets the receiver in Fast RTK.	\$PASHS,CPD,FST, ON
Sets the receiver in Fast KTK.	\$PASHR,ACK*3D
Coto the emplionity fining a second to a (con 00 0)	\$PASHS,CPD,AFP,99.9
Sets the ambiguity fixing parameters (e.g. 99.9).	\$PASHR,ACK*3D
Enables or disables GLONASS tracking.	\$PASHS,GLO, ON
Eliables of disables GLONAGS tracking.	\$PASHR,ACK*3D
Enables or disables SBAS tracking.	\$PASHS,SBA, ON
Eliables of disables SBAS flackling.	\$PASHR,ACK*3D
Disables the Ethernet connection, if not used, to	\$PASHS,ETH, OFF
save the internal battery.	\$PASHR,ACK*3D
Disables hardware handshake on port A, B or F.	\$PASHS,CTS,A,OFF
Disables hardware handshake on port A, B of F.	\$PASHR,ACK*3D
Disables the extended communication port, if	\$PASHS,ECP, OFF
not used, to save the internal battery.	\$PASHR,ACK*3D
Base only:	
Sets the station ID	\$PASHS,STI,10
JOEIS LITE STATION ID.	\$PASHR,ACK*3D

Rover Using Internal Radio

Script

Action	Command
Set the antenna name connected to the receiver:	\$PASHS,ANP,OWN, ASH111661 \$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordi- nates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D
Enter the antenna height (e.g. a vertical height of 2.0 meters was measured):	\$PASHS,ANT,0,0,2 \$PASHR,ACK*3D

Action	Command
Turn on the internal radio (unless the radio has been set in automatic power mode):	\$PASHS,RDP,ON \$PASHR,ACK*3D
Read the current status of the internal radio through the following two commands (mandatory)	\$PASHQ,RDP,PAR,D Wait about 5 seconds, then: \$PASHQ,RDP,CHT,D Wait about 5 seconds
Set the radio parameters, i.e. channel, protocol, air link speed and sensitivity, using one these commands:	U-Link Rx radio: \$PASHS,RDP,PAR,D,MDL,0,AUT,0,9600,LOW \$PASHR,ACK*3D PDL radio: \$PASHS,RDP,PAR,D,PDL,3,AUT,0,9600 ,MED,0,0 \$PASHR,ACK*3D
Set the receiver to be a rover:	\$PASHS,CPD,MOD,ROV \$PASHR,ACK*3D

Checking Radio Operation

Action	Command
Query the type of internal	if a U-link Rx:
radio used. If NONE is	\$PASHQ,RDP,TYP,D
returned, there is no radio	\$PASHQ,RDP,TYP,D, MDL *42
inside, or the radio is not	If a PDL radio:
detected (in this case, per-	\$PASHQ,RDP,TYP,D
form a hardware reset):	\$PASHR,RDP,TYP,D, PDL *5F
	If a PDL radio:
Query the radio settings	\$PASHQ,RDP,PAR,D
(channel, protocol, air link	\$PASHR,RDP,PAR,D,PDL,ON,3,AUT,0,9600,
speed and sensitivity):	MED ,447.1000,447.1000,25.0,430450,V02.53,0,0 *0F
	If a PDL radio:
Query the channel table:	\$PASHQ,RDP,CHT,D
Query the challier table.	\$PASHR,RDP,CHT,PDL, 2 , 0 , 464.5000 ,0.0000, 1 ,
	464.5500 ,0.0000*01

Rover Using Port A as Corrections Input

Action	Command
Set the name of the antenna connected to	\$PASHS,ANP,OWN, MAG111406
the receiver:	\$PASHR,ACK*3D
Set the antenna reduction mode to ON, so	\$PASHS,ANR,ON
that all coordinates refer to the ground mark:	\$PASHR,ACK*3D

Action	Command
Enter the antenna height (e.g. a vertical	\$PASHS,ANT,0,0,2
height of 2.0 meters was measured)	\$PASHR,ACK*3D
Set port A baud rate to 115200 Bd:	\$PASHS,PRT, A,9 \$PASHR,ACK*3D
Set port A as an RS232 port (unless already	\$PASHS,MDP,A,232
done):	\$PASHR,ACK*3D
Set the receiver to be a rover:	\$PASHS,CPD,MOD,ROV \$PASHR,ACK*3D

Rover Using Port B or F as Corrections Input

Action	Command
Set the name of the antenna connected to	\$PASHS,ANP,OWN,ASH111661
the receiver:	\$PASHR,ACK*3D
Set the antenna reduction mode to ON, so	\$PASHS,ANR,ON
that all coordinates refer to the ground	\$PASHR,ACK*3D
mark:	
Enter the antenna height (e.g. a vertical	\$PASHS,ANT,0,0, 2
height of 2.0 meters was measured):	\$PASHR,ACK*3D
Set port B or F baud rate to 115200 Bd:	\$PASHS,PRT,B,9
Set port B of P baud rate to 115200 Bu.	\$PASHR,ACK*3D
Power on the extended communication	\$PASHS,ECP, ON
port:	\$PASHR,ACK*3D
Set the receiver to be a rover:	\$PASHS,CPD,MOD,ROV
Set the receiver to be a rover.	\$PASHR,ACK*3D

NTRIP Rover (Via Modem)

Script

Action	Command
Set the name of the antenna connected to the receiver:	\$PASHS,ANP,OWN, ASH111661 \$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D
Enter the antenna height (e.g. a vertical height of 2.0 meters was measured):	\$PASHS,ANT,0,0,2 \$PASHR,ACK*3D

Action	Command
Set the modem and GPRS parameters (PIN code, band, APN settings):	\$PASHS,MDM,PAR,PWR,AUT, PIN,1234,BND,1,APN,orange.fr, LGN,orange,PWD,orange \$PASHR,ACK*3D
Set the modem in GPRS and TCP/IP modes:	\$PASHS,MDM,PAR,PTC,1,IPT,0 \$PASHR,ACK*3D
Turn on the modem (unless the modem has been set in automatic power mode):	\$PASHS,MDM,ON \$PASHR,ACK*3D
Initialize the modem. Wait a few seconds until the receiver can respond to this command. NOTE: If the initialization fails, the message \$PASHR,MDM,INI,FAILED*7D is returned.	\$PASHS,MDM,INI \$PASHR,MDM,INI,OK*7A
Enter the NTRIP caster parameters (see example in the right column). NOTE: The ADD field may contain either an IP address or a host name.	\$PASHS,NTR,PAR,ADD, 83.167.123.12,PRT,2101,LGN, name,PWD,password,TYP,0,IPP,E \$PASHR,ACK*3D
Set the receiver to be a rover:	\$PASHS,CPD,MOD,ROV \$PASHR,ACK*3D
Set the receiver to send a GGA message periodically to the caster, if necessary.	\$PASHS,NME,GGA,E,ON,5 \$PASHR,ACK*3D
Ask the modem to connect to the mount point (e.g. NAN1): NOTE: If you don't know which mount point to connect the modem to, see Acquiring the NTRIP Source Table below.	\$PASHS,NTR,MTP, NAN1 \$PASHR,ACK*3D

Acquiring the NTRIP Source Table

After the \$PASHS,NTR,PAR command has been sent and the modem state has switched to INIT, you can ask the receiver to get the source table from the caster.

NOTE: The modem INIT state is indicated on the receiver front panel when the following icon (static) appears in the lower line: . The number of bars is proportional to the strength of the signal received by the cellular antenna. You can also use the \$PASHQ,MDM to read this state.

Action	Command
Load the NTRIP source table to the receiver:	\$PASHS,NTR,LOD \$PASHR,NTR,OK*14
Query the source table: NOTE: In the receiver response, you can find the label of the mount point you would like the modem to connect to. If necessary, refer to the NTRIP or RTCM standard docu- mentation to decode this information.	\$PASHQ,NTR,TBL \$PASHR,NTR,TBL SOURCETABLE 200 OK ENDSOURCETABLE

Action	Command
Query the modem status and settings:	\$PASHQ,MDM
	\$PASHR,MDM,E,9,ONLINE,
Query the modem signal level:	\$PASHQ,MDM,LVL
	\$PASHR,MDM,LVL,80*6E
Query the current mount point:	\$PASHQ,NTR,MTP
	\$PASHR,NTR,MTP,NAN1*05

Ending the NTRIP Connection

Action	Command
Finding the NTRIP connection:	\$PASHS,NTR,MTP,OFF \$PASHR,NTR,OK*14

Direct-IP Rover (Via Modem)

Script

Action	Command
Set the name of the antenna connected to	\$PASHS,ANP,OWN,ASH111661
the receiver:	\$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D
Enter the antenna height (e.g. a vertical	\$PASHS,ANT,0,0,2
height of 2.0 meters was measured):	\$PASHR,ACK*3D
	\$PASHS,MDM,PAR,PWR,AUT,
Set the modem and GPRS parameters	PIN,1234,BND,1,APN,orange.fr,
(PIN code, band, APN settings):	LGN,orange,PWD,orange
	\$PASHR,ACK*3D
Set the modem in GPRS and TCP/IP	\$PASHS,MDM,PAR,PTC,1,IPT,0
modes:	\$PASHR,ACK*3D
Turn on the modem (unless the modem has	\$PASHS,MDM,ON
been set in automatic power mode):	\$PASHR,ACK*3D
Initialize the modem. Wait a few seconds	
until the receiver can respond to this com-	\$PASHS,MDM,INI
mand.	\$PASHR,MDM,INI,OK*7A
NOTE: If the initialization fails, the message	FASI IK, MIDIN, INI, OK 1A
\$PASHR,MDM,INI,FAILED*7D is returned.	
Set the receiver to be a rover:	\$PASHS,CPD,MOD,ROV \$PASHR,ACK*3D

Action	Command
N() L. The DID field may contain either an	\$PASHS,DIP,PAR,IPP,E \$PASHR,ACK*3D \$PASHS,DIP,ON \$PASHR,ACK*3D

Action	Command
Ouer, the modern status and settings:	\$PASHQ,MDM
	\$PASHR,MDM,E,9,ONLINE,
Query the modem signal level:	\$PASHQ,MDM,LVL \$PASHR,MDM,LVL,80*6E

Ending the Direct IP Connection

Action	Command
Fuding the Direct IP connection:	\$PASHS,DIP,OFF \$PASHR,ACK*3D

Direct-Dial (CSD) Rover

Script

Action	Command
Set the name of the antenna connected to	\$PASHS,ANP,OWN,ASH111661
the receiver:	\$PASHR,ACK*3D
Set the antenna reduction mode to ON, so	\$PASHS,ANR,ON
that all coordinates refer to the ground mark:	\$PASHR,ACK*3D
Enter the antenna height (e.g. a vertical	\$PASHS,ANT,0,0,2
height of 2.0 meters was measured):	\$PASHR,ACK*3D
	\$PASHS,MDM,PAR,PWR,AUT,
Set the modem parameters (PIN code,	PIN, 1234 ,BND, 1 ,PTC,0,
band, CSD mode, Autodial mode):	CBS,1,ADL,Y
	\$PASHR,ACK*3D
Turn on the modem (unless the modem has	\$PASHS,MDM,ON
been set in automatic power mode):	\$PASHR,ACK*3D
Initialize the modem. Wait a few seconds	
until the receiver can respond to this com-	\$PASHS,MDM,INI
mand.	\$PASHR,MDM,INI,OK*7A
NOTE: If the initialization fails, the message \$PASHR,MDM,INI,FAILED*7D is returned.	y

Action	Command
Set the receiver to be a rover:	\$PASHS,CPD,MOD,ROV \$PASHR,ACK*3D
Enter the base phone number.	\$PASHS,MDM,PAR,PHN, 0228093 800
Dial the base phone number	\$PASHR,ACK*3D \$PASHS,MDM,DAL,1 \$PASHR,ACK*3D

Action	Command
Query the modem status and settings:	\$PASHQ,MDM \$PASHR,MDM,E,9,ONLINE,
Query the modem signal level:	\$PASHQ,MDM,LVL \$PASHR,MDM,LVL,80*6E

Ending the Phone Connection

Action	Command
Ending the phone connection:	\$PASHS,MDM,DAL,0
	\$PASHR,NTR,OK*14

Rover Operating in Long-Range Flying RTK Mode

Choose and set the configuration allowing the rover to receive corrections. See the different possible configurations. Then you just need to use \$PASHS,CPD,AFP,O to force the rover to deliver a float solution (a Flying RTK solution).

Base With Pacific Crest Radio Transmitter

Script

In the example below, it is assumed that the transmitter is connected to serial port A, and the receiver will generate differential data in RCTM V3.0 format. You may replace port A with port B or F, and RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+).

See \$PASHS,RTC,TYP, \$PASHS,ATD,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

Action	Command	
Set the name of the antenna connected to the receiver:	\$PASHS,ANP,OWN, ASH111661 \$PASHR,ACK*3D	
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D	
Set the antenna height (for example a slant height of 1.45 meters was measured): NOTE: When a slant height is entered, you also need to enter the antenna radius and the ARP-to-SHMP vertical offset (negative if ARP is below SHMP).	\$PASHS,ANT,1.45,0.0921,-0.0516 \$PASHR,ACK*3D	
Enter the coordinates of the base:	\$PASHS,POS,4717.93777,N, 130.541864,W,87.007 \$PASHR,ACK*3D	
Set the type of the radio transmitter and the serial port to which it is connected:	\$PASHS,RDP,TYP, A ,PDL \$PASHR,ACK*3D	
Set the baud rate of the port connected to the radio. The recommended value is 38400 Bd.	\$PASHS,PRT, A,7 \$PASHR,ACK*3D	
If port A is used for the connection to the transmitter, select the RS232 mode for this port.	\$PASHS,MDP,A,232 \$PASHR,ACK*3D	
If port B or F is used for the connection to the transmitter, enable the extended communication port:	\$PASHS,ECP, ON \$PASHR,ACK*3D	
Set the radio parameters (channel, protocol, air link speed)	\$PASHS,RDP,PAR, A ,PDL, 3 ,, 0 , 9600 \$PASHR,ACK*3D	
Set the type of differential data that will be generated by the receiver as well as the port routing the data to the transmitter:	\$PASHS,BAS, A,RT3 \$PASHR,ACK*3D	
Set the receiver to be a base transmitting GPS data (+ GLONASS and/or SBAS data):	\$PASHS,CPD,MOD,BAS,0 \$PASHR,ACK*3D	

Checking Radio Operation

Action	Command
Query the radio settings	\$PASHQ,RDP,PAR, A
(channel, protocol and air link	\$PASHR,RDP,PAR,A,PDL,,3,,0,9600,,
speed):	447.1000,447.1000,25.0,430450,V02.53,0,0*07

Action	Command
Query the channel table:	\$PASHQ,RDP,CHT, A \$PASHR,RDP,CHT,PDL, 2 , 0 , 464.5000 ,0.0000, 1 , 464.5500 ,0.0000*01

Base With Ashtech Radio Transmitter

Script

In the example below, it is assumed that the receiver will generate differential data in RCTM V3.0 format. You may replace RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+). In the connection between the receiver and the radio transmitter, port A is necessarily used on the receiver side. See \$PASHS,RTC,TYP, \$PASHS,ATD,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

Action	Command
Set the name of the antenna connected to the receiver:	\$PASHS,ANP,OWN, ASH111661 \$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D
Set the antenna height (for example a slant height of 1.45 meters was measured): NOTE: When a slant height is entered, you also need to enter the antenna radius and the ARP-to-SHMP vertical offset (negative if ARP is below SHMP).	\$PASHS,ANT,1.45,0.0921,-0.0516 \$PASHR,ACK*3D
Enter the coordinates of the base:	\$PASHS,POS,4717.93777,N, 130.541864,W,87.007 \$PASHR,ACK*3D
Set the type of the radio transmitter and the serial port to which it is connected (port A necessarily):	U-Link TRx: \$PASHS,RDP,TYP,A,MDL \$PASHR,ACK*3D Radio transmitter 800986: \$PASHS,RDP,TYP,A,MGL \$PASHR,ACK*3D
Set the baud rate of the port connected to the radio (port A; 19200 Bd necessarily):	\$PASHS,PRT,A,6 \$PASHR,ACK*3D
Select the RS422 mode for port A:	\$PASHS,MDP,A,422 \$PASHR,ACK*3D

Action	Command
Set the radio transmitter (channel number, protocol, air link speed):	U-Link TRx: \$PASHS,RDP,PAR,A,MDL,3,,2,4800 \$PASHR,ACK*3D Radio transmitter 800986: \$PASHS,RDP,PAR,A,MGL,3,,2,4800 \$PASHR,ACK*3D
Set the type of differential data that will be generated by the receiver as well as the port routing the data to the transmitter:	\$PASHS,BAS,A, RT3 \$PASHR,ACK*3D
Set the receiver to be a base transmitting GPS data (+ GLONASS and/or SBAS data):	\$PASHS,CPD,MOD,BAS,0 \$PASHR,ACK*3D

Checking Radio Operation

Action	Command
Query the radio settings (channel, protocol and air link speed):	If a radio transmitter P/N 800986: \$PASHQ,RDP,PAR,A \$PASHR,RDP,PAR,A,MGL,,3,,2,4800,, 447.1000,447.1000,12.5,430-450,*48
Query the channel table:	If a radio transmitter P/N 800986: \$PASHQ,RDP,CHT,A \$PASHR,RDP,CHT,MGL, 2 , 0 , 464.5000 ,0.0000, 1 , 464.5500 ,0.0000*31

Base Using Port A as Corrections Output

In the example below, it is assumed that the receiver will generate differential data in RCTM V3.0 format. You may replace RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+).

See \$PASHS,RTC,TYP, \$PASHS,ATD,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

Action	Command
Set the name of the antenna connected to the receiver:	\$PASHS,ANP,OWN, ASH111661 \$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D

Action	Command
Set the antenna height (for example a slant height of 1.45 meters was measured): NOTE: When a slant height is entered, you also need to enter the antenna radius and the ARP-to-SHMP vertical offset (negative if ARP is below SHMP).	\$PASHS,ANT,1.45,0.0921,-0.0516 \$PASHR,ACK*3D
Enter the coordinates of the base:	\$PASHS,POS,4717.93777,N, 130.541864,W,87.007 \$PASHR,ACK*3D
Set the baud rate of port A (e.g. 19200 Bd):	\$PASHS,PRT,A, 6 \$PASHR,ACK*3D
Select the RS422 or RS232 mode for port A:	\$PASHS,MDP,A, 422 \$PASHR,ACK*3D
Set the type of differential data that will be generated by the base as well as the port on which the corrections will be available:	\$PASHS,BAS,A, RT3 \$PASHR,ACK*3D
Set the receiver to be a base transmitting GPS data (+ GLONASS and/or SBAS data):	\$PASHS,CPD,MOD,BAS,0 \$PASHR,ACK*3D

Base Using Port B or F as Corrections Output

In the example below, it is assumed that the receiver will generate differential data in RCTM V3.0 format. You may replace RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+).

See \$PASHS,RTC,TYP, \$PASHS,ATD,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

Action	Command
Set the name of the antenna connected to the receiver:	\$PASHS,ANP,OWN, ASH111661 \$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D
Set the antenna height (for example a slant height of 1.45 meters was measured): NOTE: When a slant height is entered, you also need to enter the antenna radius and the ARP-to-SHMP vertical offset (negative if ARP is below SHMP).	\$PASHS,ANT,1.45,0.0921,-0.0516 \$PASHR,ACK*3D

Action	Command
Enter the coordinates of the base:	\$PASHS,POS,4717.93777,N, 130.541864,W,87.007 \$PASHR,ACK*3D
Set the baud rate of port B or F (e.g. 19200 Bd):	\$PASHS,PRT, B ,6 \$PASHR,ACK*3D
Enable the extended communication port:	\$PASHS,ECP,ON \$PASHR,ACK*3D
Select the RS422 or RS232 mode for port A:	\$PASHS,MDP,A, 422 \$PASHR,ACK*3D
Set the type of differential data that will be generated by the receiver as well as the port on which the corrections will be available:	\$PASHS,BAS, B,RT3 \$PASHR,ACK*3D
Set the receiver to be a base transmitting GPS data (+ GLONASS and/or SBAS data):	\$PASHS,CPD,MOD,BAS,0 \$PASHR,ACK*3D

Base Using the Ethernet Port as the Corrections Output

In the example below, it is assumed that the receiver will generate differential data in RCTM V3.0 format. You may replace RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+).

See \$PASHS,RTC,TYP, \$PASHS,RNX,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

See \$PASHS,ETH,PAR and \$PASHS,TCP,PAR to configure the TCP/IP connection.

Action	Command
Set the name of the antenna connected to the receiver:	\$PASHS,ANP,OWN,ASH111661 \$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D
Set the antenna height (for example a slant height of 1.45 meters was measured): NOTE: When a slant height is entered, you also need to enter the antenna radius and the ARP-to-SHMP vertical offset (negative if ARP is below SHMP).	\$PASHS,ANT,1.45,0.0921,-0.0516 \$PASHR,ACK*3D
Enter the coordinates of the base:	\$PASHS,POS,4717.93777,N, 130.541864,W,87.007 \$PASHR,ACK*3D

Action	Command
Enable the Ethernet connection:	\$PASHS,ETH,ON \$PASHR,ACK*3D
Set the type of differential data that will be generated by the receiver as well as the port on which the corrections will be available (port I):	\$PASHS,BAS,I, RT3 \$PASHR,ACK*3D
Set the receiver to be a base transmitting GPS data (+ GLONASS and/or SBAS data):	\$PASHS,CPD,MOD,BAS,0 \$PASHR,ACK*3D

Direct-IP Base (Via Modem)

Script

In the example below, it is assumed that the receiver will generate differential data in RCTM V3.0 format. You may replace RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+).

See \$PASHS,RTC,TYP, \$PASHS,RNX,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

the receiver: \$PAS Set the antenna reduction mode to ON, so that all coordinates refer to the ground \$PAS	SHS,ANP,OWN,ASH111661 SHR,ACK*3D SHS,ANR,ON
Set the antenna reduction mode to ON, so that all coordinates refer to the ground \$PAS	SHS,ANR,ON
that all coordinates refer to the ground \$PAS	
I SPAS	OLID A OLIFOD
mark:	SHR,ACK*3D
Set the antenna height (for example a slant	
height of 1.45 meters was measured): NOTE: When a slant height is entered, you \$PAS	SHS,ANT, 1.45 , 0.0921 , -0.0516
	SHR,ACK*3D
the ARP-to-SHMP vertical offset (negative	iorn t, tort ob
if ARP is below SHMP).	
\$PAS	SHS,POS, 4717.93777,N ,
Enter the coordinates of the base: 130.5	.541864,W,87.007
\$PAS	SHR,ACK*3D
II .	SHS,MDM,PAR,PWR,AUT,
· · · · · · · · · · · · · · · · · · ·	,1234,BND,1,APN,orange.fr,
,	N,orange,PWD,orange
'	SHR,ACK*3D
Set the modem in GPRS and TCP/IP \$PAS	SHS,MDM,PAR,PTC,1,IPT,0
modes: \$PAS	SHR,ACK*3D
Turn on the modem (unless the modem has \$PAS	SHS,MDM,ON
been set in automatic power mode): \$PAS	SHR,ACK*3D

Action	Command
Initialize the modem. Wait a few seconds until the receiver can respond to this command. NOTE:If the initialization fails, the message \$PASHR,MDM,INI,FAILED*7D is returned.	\$PASHS,MDM,INI \$PASHR,MDM,INI,OK*7A
Set the type of differential data sent to the modem (port E):	\$PASHS,BAS,E, RT3 \$PASHR,ACK*3D
Set the receiver to be a base transmitting GPS data (+ GLONASS and/or SBAS data):	\$PASHS,CPD,MOD,BAS,0 \$PASHR,ACK*3D
Ask the modem to connect to the server: NOTE: The ADD field may contain either an IP address or a host name.	\$PASHS,DIP,PAR,ADD,192.65.54. 1,PRT,80,IPP,E \$PASHR,ACK*3D \$PASHS,DIP,ON \$PASHR,ACK*3D

Action	Command
Query the modem status and settings:	\$PASHQ,MDM \$PASHR,MDM,E,9,ONLINE,
()HAN/ the modern clanal level:	\$PASHQ,MDM,LVL \$PASHR,MDM,LVL,80*6E

Ending the Direct IP Connection

Action	Command
Ending the Direct IP connection.	\$PASHS,DIP,OFF \$PASHR,ACK*3D

Direct-Dial (CSD) Base

Script

In the example below, it is assumed that the receiver will generate differential data in RCTM V3.0 format. You may replace RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+).

See \$PASHS,RTC,TYP, \$PASHS,RNX,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

Action	Command
Set the name of the antenna connected to	\$PASHS,ANP,OWN,ASH111661
the receiver:	\$PASHR,ACK*3D
Set the antenna reduction mode to ON, so	\$PASHS.ANR.ON
that all coordinates refer to the ground	\$PASHR,ACK*3D
mark:	
Set the antenna height (for example a slant	
height of 1.45 meters was measured):	\$540110 ANT 4 45 0 0004 0 0540
NOTE: When a slant height is entered, you	\$PASHS,ANT,1.45,0.0921,-0.0516
also need to enter the antenna radius and	\$PASHR,ACK*3D
the ARP-to-SHMP vertical offset (negative	
if ARP is below SHMP).	₱₽A CLIC P.O.C. 4747 02777 N
Fatastha accordinates of the base.	\$PASHS,POS,4717.93777,N,
Enter the coordinates of the base:	130.541864,W,87.007
	\$PASHR,ACK*3D
0.44	\$PASHS,MDM,PAR,PWR,AUT,
Set the modem parameters (PIN code,	PIN,1234,BND,1,PTC,0,
band, CSD mode, Autodial mode):	CBS,1,ADL,Y
	\$PASHR,ACK*3D
Turn on the modem (unless the modem has	\$PASHS,MDM,ON
been set in automatic power mode):	\$PASHR,ACK*3D
Initialize the modem. Wait a few seconds	
until the receiver can respond to this com-	\$PASHS,MDM,INI
mand.	\$PASHR,MDM,INI,OK*7A
NOTE:If the initialization fails, the message	, , , , , , , , , , , , , , , , , , ,
\$PASHR,MDM,INI,FAILED*7D is returned.	
Set the type of differential data sent to the	\$PASHS,BAS,E, RT3
modem (port E):	\$PASHR,ACK*3D
Set the receiver to be a base transmitting	\$PASHS,CPD,MOD,BAS,0
GPS data (+ GLONASS and/or SBAS	\$PASHR,ACK*3D
data):	, - ,

Monitoring the Modem

Action	Command
Query the modem status and settings:	\$PASHQ,MDM \$PASHR,MDM,E,9,ONLINE,
Query the modem signal level:	\$PASHQ,MDM,LVL \$PASHR,MDM,LVL,80*6E

NTRIP Station

By following the script described below, and according to the terminology used in the NTRIP standard, the receiver will be configured to operate as an "NTRIP server", that is, a station capable of delivering its data to an NTRIP caster.

Script

In the example below, it is assumed that the receiver will generate differential data in RCTM V3.0 format. You may replace RT3 with RT2 (RTCM2.3), ATOM, CMR or CMP (CMR+).

See \$PASHS,RTC,TYP, \$PASHS,RNX,TYP or \$PASHS,CMR,TYP if you want to change the default messages and periods.

Action	Command
Set the name of the antenna connected to the receiver:	\$PASHS,ANP,OWN, ASH111661 \$PASHR,ACK*3D
Set the antenna reduction mode to ON, so that all coordinates refer to the ground mark:	\$PASHS,ANR,ON \$PASHR,ACK*3D
Set the antenna height (for example a slant height of 1.45 meters was measured): NOTE: When a slant height is entered, you also need to enter the antenna radius and the ARP-to-SHMP vertical offset (negative if ARP is below SHMP).	\$PASHS,ANT, 1.45 , 0.0921,-0.0516 \$PASHR,ACK*3D
Enter the coordinates of the base:	\$PASHS,POS,4717.93777,N, 130.541864,W,87.007 \$PASHR,ACK*3D
Set the modem and GPRS parameters (PIN code, band, APN settings):	\$PASHS,MDM,PAR,PWR,AUT, PIN,1234,BND,1,APN,orange.fr, LGN,orange,PWD,orange \$PASHR,ACK*3D
Set the modem in GPRS and TCP/IP modes:	\$PASHS,MDM,PAR,PTC,1,IPT,0 \$PASHR,ACK*3D
Turn on the modem (unless the modem has been set in automatic power mode):	\$PASHS,MDM,ON \$PASHR,ACK*3D
Initialize the modem. Wait a few seconds until the receiver can respond to this command. NOTE: If the initialization fails, the message \$PASHR,MDM,INI,FAILED*7D is returned.	\$PASHS,MDM,INI \$PASHR,MDM,INI,OK*7A
Enter the NTRIP caster parameters (see example in the right column). NOTE: The ADD field may contain either an IP address or a host name.	\$PASHS,NTR,PAR,ADD, 83.167.123.12,PRT,2101,LGN, name,PWD,password,TYP,0 \$PASHR,ACK*3D

Action	Command
Set the type of differential data sent to the modem (port E):	\$PASHS,BAS,E, RT3 \$PASHR,ACK*3D
Set the receiver to be a base transmitting GPS data (+ GLONASS and/or SBAS data):	\$PASHS,CPD,MOD,BAS,0 \$PASHR,ACK*3D
Ask the modem to connect to the mount point (e.g. NAN1): NOTE: If you don't know which mount point to connect the modem to, see Acquiring the NTRIP Source Table below.	\$PASHS,NTR,MTP, NAN1 \$PASHR,ACK*3D

Acquiring the NTRIP Source Table

After the \$PASHS,NTR,PAR command has been sent and the modem state has switched to INIT, you can ask the receiver to get the source table from the caster.

NOTE: The modem INIT state is indicated on the receiver front panel when the following icon (static) appears in the lower line: . The number of bars is proportional to the strength of the signal received by the cellular antenna. You can also use the \$PASHQ,MDM to read this state.

Action	Command
Load the NTRIP source table to the receiver:	\$PASHS,NTR,LOD \$PASHR,NTR,OK*14
Query the source table: NOTE: In the receiver response, you can find the label of the mount point you would like the modem to connect to. The syntax used is in compliance with the recommendations of the NTRIP or RTCM standard.	\$PASHQ,NTR,TBL \$PASHR,NTR,TBL SOURCETABLE 200 OK ENDSOURCETABLE

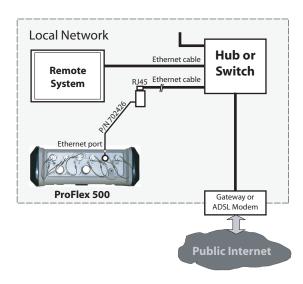
Monitoring the Modem

Action	Command
Query the modem status and settings:	\$PASHQ,MDM
Query the modern status and settings.	\$PASHR,MDM,E,9,ONLINE,
Query the modem signal level:	\$PASHQ,MDM,LVL
	\$PASHR,MDM,LVL,80*6E
Query the current mount point:	\$PASHQ,NTR,MTP
	\$PASHR,NTR,MTP,NAN1*05

Ending the NTRIP Connection

Action	Command
Lending the NTRIP connection:	\$PASHS,NTR,MTP,OFF \$PASHR,NTR,OK*14

Chapter 11. ProFlex 500 Ethernet Connection

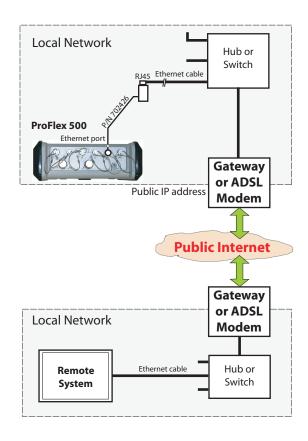

Setting Up the Ethernet Connection

The Ethernet adaptor cable provided (P/N 702426) should be used in all cases.

TCP/IP Connection Within a Local Network

In this case of use, the receiver and the remote system the receiver has to communicate with are connected to the same local network (LAN) and may even be in the same room. Here the communication will NOT take place through the public Internet, but simply within the local network.

The connection diagram typically is the following.

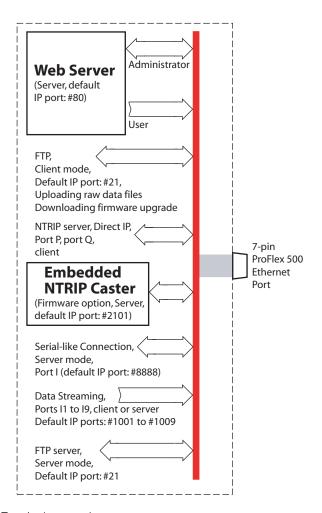

When the ProFlex 500 is the server, the valid receiver IP address to be communicated to the third-party equipment is the one read on the receiver display screen. To read this IP address, from the General Status screen, press the Scroll button twice to access the Receiver Identification screen. The IP address appears in the lower line.

The IT Manager may also create a host name for the receiver. The choice of using or not using the DHCP mode within the local network, and the consequence of this choice on which information to provide to the remote system for the connection are also the decision and responsibility of the IT Manager. When DHCP is used, an account may be opened on DynDNS.com to track the dynamic IP address assigned by the ISP to the receiver's public access point. See *Creating an Account on DynDNS.com on page 86*.

TCP/IP Connection Through the Public Internet

In this case of use, the receiver and the remote system are connected to different local networks. Here the communication will necessarily take place through the public Internet.

The connection diagram typically is the following.



In this configuration, the IT Manager should take all the necessary steps for the remote system to be able to access the ProFlex 500 through the public IP address of the local network. The IP address read on the receiver display screen is NOT the one to be provided to the remote system. It will therefore be the responsibility of the IT Manager to provide the receiver administrator with the appropriate connection information (<IP address:port number> or host name). Once again, if DHCP is used, an account may be opened on DynDNS.com to track the dynamic IP address assigned by the ISP to the receiver's public access point. See *Creating an Account on DynDNS.com on page 86*.

Using the ProFlex 500 Ethernet Port

Introduction

The ProFlex 500 Ethernet port can be used simultaneously for various purposes. The different uses are summarized in the diagram below.

Terminology used:

ProFlex 500 used in server mode: The ProFlex 500 receives a data request from an outside equipment through its Ethernet port via an IP connection. The outside equipment needs to know the IP address (and IP port) or host name of the ProFlex 500 to be able to establish a communication with the receiver.

ProFlex 500 used in client mode: The ProFlex 500 sends a data request to an outside equipment through its Ethernet port via a TCP/IP connection. The ProFlex 500 needs to know the IP address (and IP port) or host name of the outside

equipment to be able to establish a bidirectional communication with the outside equipment.

Running the Web Server

The Web Server is used to remotely configure and monitor the ProFlex 500. Using the Web Server is fully described in *Using the ProFlex 500 Web Server on page 39*. Below are a few key instructions on how to use the Web Server:

- The \$PASHS,WEB,PAR command controls locally the availability of the Web Server for a remote user or administrator. Only the receiver owner can run this command locally.
- Access to the ProFlex 500 Web Server is protected. A
 connection profile (login + password) is needed to run the
 Web Server. Full access (read/write) is given to the
 administrator. Read-only access is given to all user
 profiles.
- Use a web browser (Microsoft Internet Explorer, Mozilla Firefox, etc.) to launch the Web Server. Enter the IP address or host name of the ProFlex 500 in the Address box of the web browser. The different web pages of the Web Server, which are all html pages, can then be seen in the web browser window.
- The ProFlex 500 will keep operating normally with one or more active connections to the Web Server.
- Up to five users + the administrator can be connected simultaneously without affecting the operation of the receiver.

Connection to a Remote FTP Server

The Ethernet port can be used both for downloading and installing a new firmware upgrade from the specified FTP server, and also for uploading raw data files collected by the receiver to the specified FTP server, which may be different from the previous one. Below are a few key instructions on how to use this application:

- In this type of connection, the Proflex 500 is always the client.
- Entering the identification of the FTP server from which to download firmware upgrades is accomplished using the \$PASHS,UPL,PAR command.
- Installing an upgrade is done through the \$PASHS,UPL,UPG command.
- Entering the identification of the FTP server where to upload raw data files is accomplished using the \$PASHS.FTP.PAR command.

- Uploading files to the FTP server is done using the \$PASHS,FTP,PUT command.
- Using the ProFlex 500 Web Server is the easiest way to set up FTP connections.

Data Input/Output Through Port I

When used as an output, typically when the receiver is a base, port I may forward differential data to a client (see \$PASHS,BAS).

Still as an output, typically when the receiver is a rover, port I may provide the following data to a client:

- Differential data (see \$PASHS,ATM \$PASHS,RAW)
- NMEA messages (see \$PASHS,NME)
- 1 PPS time tag message (see \$PASHS,PTT)

In addition, port I can be used as an input port to apply serial \$PASH commands from a terminal (this type of use is described in *Applying Commands Through TCP/IP on page 342*).

Port I can also be used as an input for differential data (see \$PASHS,CPD,REM). This may be typically the case when the receiver is used as a rover.

Here are a few key instructions to understand how to implement and use port I through a TCP/IP connection:

- Port I can only be used in server mode, and through the TCP protocol.
- Port I is configurable through the \$PASHS,TCP,PAR command. For a password-protected TCP/IP connection, use this command to define the login and password the client will have to enter before being allowed to send \$PASH commands to the receiver via the I port.
- Only one client can be connected to port I at a time.
- Using the ProFlex 500 Web Server is the easiest way to set up port I.

Implementing NTRIP or Direct IP Through Port P or Q

The main purpose of ports P and Q is to allow the implementation of the NTRIP or Direct IP mode through the Internet. This makes ports P and Q an alternative to using the internal modem to implement these modes.

Like port I, ports P and Q can also be used for the following:

 When used as an output, typically when the receiver is a base, port P or Q may forward differential data to a server (see \$PASHS.BAS).

- Still as an output, typically when the receiver is a rover, port P or Q may provide NMEA messages to a server (see \$PASHS.NME).
- Port P or Q can also be used as an input for differential data (see \$PASHS,CPD,REM). This may be typically the case when the receiver is used as a rover.

Here are a few key instructions to understand how to use port P or Q through an IP connection:

- Port P or Q can only be used in client mode, using the TCP or UDP protocol.
- Use the \$PASHS,NTR,PAR command to implement the NTRIP mode through port P or Q.
- Use the \$PASHS,DIP command to implement the Direct IP mode through port P or Q.
- Using the ProFlex 500 Web Server is the easiest way to set up port P or Q.

Differential Data Streaming Through Ports 11 to 19

The Ethernet port can also be used through ports I1 to I9 (Ix) to output differential data streams for use either in server or client mode. Ports I1 to I9 can only be used as outputs.

Here are a few key instructions to configure ports I1 to I9:

- Use \$PASHS,DST to configure each port (server/client, UDP/TCP, IP port number).
- Use \$PASHS,BDS to define the differential data available on each port.
- Use \$PASHQ,DST,STS to read the current status of each of the Ix ports. This command also provides information on the status of ports E, P and I.
- In server mode, each port can up to five connections.
- Access to each of these ports is not password protected.
- Using the ProFlex 500 Web Server is the easiest way to set up ports 11 to 19.

Log Files

The history of Ethernet connections and disconnections is kept in a log file stored in the root directory of the internal memory.

This file is kept in memory for a user-set period of time (see \$PASHS,LOG,PAR). A new log file is created every day.

The naming convention used for log files is: "yyyymmdd.log" where yyyy is the year, mm is the month number (1-12) and dd is the day number (1-31) when the file was created. The file extension is "log".

Chapter 12. Using Serial Commands

Introduction to Serial Commands

Serial commands allow you to communicate directly with the receiver in its proprietary command language. Serial commands can be used for various purposes such as:

- Changing default settings
- Monitoring different receiver statuses (internal operation, constellations, etc.)
- Outputting messages on request

Serial commands fall into two categories:

- Set commands (\$PASHS,...), used to set or modify the receiver's internal parameters.
- Query commands (\$PASHQ,...), used to interrogate the receiver.

The few conventions used to describe the serial commands in this manual are summarized in the table below.

String or sign	Description
\$PASHS	Header for set commands (Whole line shown in bold characters)
\$PASHQ	Header for query commands (Whole line shown in bold characters)
\$PASHR	Receiver response line, in normal characters.
\$	Header prefix for all standard NMEA messages delivered by the receiver.
[]	Optional field or parameter
,	Field delimiter
	Decimal point (used in f-type fields)
C	One-character string
d	Integer
f	Real number, with decimal places
h	Parameter in hexadecimal notation
m	Denotes specific data format used, such as angles (e.g. ddmm.mmm) or time (e.g. hhmmss.sss)

String or sign	Description
n	Used in the syntax of responses to query commands to indicate that a sequence of parameters will be repeated "n" times in the response. For example, n(f1,f2,f3) means the response will include the sequence "f1,f2,f3,f1,f2,f3,f1,f2,f3". The value of n is specific to each command.
S	Character string
*cc	Checksum

In response to a well recognized and properly executed set command, the receiver will return the message:

\$PASHR.ACK*3D

A set command is said to be "NAKed" when it is not accepted or acknowledged. The following message is then returned: \$PASHR NAK*30

If this happens, check that the command has been typed correctly and the number and format of parameters are correct. In some cases, the execution of a set command may be contingent upon the prior activation of the corresponding firmware option.

Checksum Calculation: The checksum is computed by "exclusive-ORing" all of the bytes in the message between, but not including, the "\$" and the "*". The result is "*hh" where h is a hexadecimal character.

Applying Commands Through Bluetooth or a Serial Port

From the Office Computer

Use GNSS Solutions' WinComm utility, or any terminal emulation program such as HyperTerminal (a standard Windows communication accessory), to send serial commands to the receiver.

Interfacing the chosen program with the receiver is achieved by establishing a connection through one of the computer's COM port (a serial data cable is then required), or using Bluetooth if this device is available on the computer.

For more information on WinComm, see *GNSS Solutions Reference Manual* or WinComm On-Line Help.

When using HyperTerminal, perform the following settings after creating a new connection (serial ports on Ashtech receivers are usually set as follows: 19200 Bd, 8 data bits, 1

stop bit, no parity, no flow control), and before typing your first command:

- In the HyperTerminal menu bar, select File>Properties.
- Click on the Settings tab.
- Click on the ASCII Setup button.
- Enable the following two options: Send line ends with line feeds and Echo typed characters locally. This will automatically complete all your command lines with <cr><lf> characters and allow you to see in real time the commands you are typing.
- Click **OK** twice to close the Properties window.

From FAST Survey

From the FAST Survey menu, tap on the **Equip** tab, then on the **GPS Utilities** button, and then on the **Send Command** button. It is assumed that the communication with the receiver has been established via Bluetooth or a serial cable.

Running a Single Command at a Time

- Tap your command directly in the combo box using FAST Survey's virtual keyboard. The keyboard appears automatically when you tap inside the box.
- Tap after you have typed the command line.
- Tap on the **Send** button to send the command to the receiver. The command line as well as the response line(s) then appear at the bottom of the screen.

Running a Series of Commands

First of all, you need to create a TXT file containing all the commands you want the receiver to run. Save the file to the "MyDevice/FAST Survey/Data/" folder. Then do the following:

- Use the Send File button in the upper part of the window to select the TXT file and send it to the receiver.
- Once the receiver has executed all the commands included in the file, a new window is displayed listing each of the commands run in the receiver as well the resulting receiver response line(s).
- Tapping will take you back to the command window.

Applying Commands Through TCP/IP

The ProFlex 500 receiver can be remotely controlled through its Ethernet port.

By default, the Ethernet port is on and a default configuration allows you to connect to the receiver via a non-secured TCP/IP connection. However, if the Ethernet port is off and the TCP/IP function has been deactivated or needs new settings, follow the instructions below to set the Ethernet port.

Setting the Ethernet Port

Run the following three \$PASH commands through one of the receiver's serial ports. The syntax of the commands mentioned below is fully described in the *Set Command Library* chapter.

The choices in the last two commands should be made in collaboration with your local network administrator.

 \$PASHS,ETH,ON: This command allows you to power up the Ethernet port. When the port is on, the Ethernet icon appears in the lower-right corner of the receiver screen. Script:

\$PASHS,ETH,ON \$PASHR,ACK*3D

 \$PASHS,ETH,PAR: This command allows you to choose either a static or dynamic (DHCP) IP address for the receiver. If you choose DHCP, you don't need to enter any additional parameter.

Script:

\$PASHS,ETH,PAR,DHP,1 \$PASHR.ACK*3D

If you choose a static IP address for the receiver, the command must also include the following parameters that the administrator of your local network (LAN) should provide you with:

- Static IP address
- Sub-network mask
- Gateway IP address
- DNS 1 IP address and DSN 2 IP address. These two parameters are used to link the receiver name with an IP address.

The \$PASHQ,ETH command can be used to check the settings.

Script example:

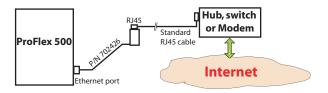
\$PASHS,ETH,PAR,DHP,0,ADD,10.20.2.28,MSK,255.255.255.0,GTW, 10.20.2.1,DN1,134.20.2.16,DN2,134.20.2.3

\$PASHR,ACK*3D

\$PASHQ,ETH

\$PASHR,ETH,I,ON,02:03:04:85:06:07,DHP=1,ADD=10.20.2.28,MSK=255. 255.255.0,GTW=10.20.2.1,DN1=134.20.2.16,DN2=134.20.2.3*67

3. **\$PASHS,TCP,PAR**: This command is used to define the Ethernet port (Port I) as a port dedicated to receiving and parsing \$PASHS commands, and also outputting data (NMEA, RTCM, ATOM, etc.). The port may be activated to do so either with or without user authentication. The command is also used to define the IP port number (default: 8888).


If user authentication is chosen, the login and password must be provided in the command. Later, when remote users want to access the receiver, they will need to provide these two parameters.

Script example (where TCP/IP is activated without authentication and \$PASHQ,TCP is used to check the new setting):

\$PASHS,TCP,PAR,MOD,1 \$PASHR,ACK*3D \$PASHQ,TCP \$PASHR,TCP,MOD=1,LGN=,PWD=,ADD=192.34.76.1, PRT=8888*OC

Connecting the Ethernet Port

After the Ethernet port has been configured, use the Ethernet adaptor cable (P/N 702426) and a standard RJ45 cable to connect the ProFlex 500, either to your local network through a hub or switch, or directly to a modem.

Ask your network administrator to make the receiver visible from the public network (Internet) according to the choices made earlier for the TCP/IP connection. Make sure that the

chosen port (IP port No. 8888 by default) can be reached. The IP port number can be defined using the \$PASHS,TCP,PAR command.

Using a TCP/IP Connection to Communicate With a Receiver

The most convenient way of communicating with a receiver through an IP connection is to access its Web Server using a web browser. This is explained in *Chapter 2*. Other solutions are however possible.

One of the most popular programs used to work in command mode through a TCP/IP connection is Microsoft HyperTerminal. This is the program we chose for the instructions below but you can use any other similar program of your choice.

- Run HyperTerminal on the remote computer (in Start> Programs>Accessories>Communications>)
- Name the connection and press **OK**
- In the Connect using field, select "TCP/IP (Winsock)".
- Enter the IP address of the ProFlex 500 in the Host
 Address field. If you don't know this address, you can read
 it on the receiver display screen. Press the Scroll button
 until you display the Receiver Identification screen. The
 IP address is shown in the lower line.
- Enter the chosen IP port number (default: 8888) in the **Port number** field.
- Click **OK**. You get the following reply from the connected ProFlex 500:

Welcome!

You are connected to the Ashtech ProFlex500 (SN:xxxxxxxxxx). Please send the command \$PASHS,TCP,UID,<login>,<password> to enter the login and the password

>

- Before you type the requested command, make the following settings in HyperTerminal:
 - In the HyperTerminal menu bar, select File>Properties.
 - Click on the Settings tab.
 - Click on the ASCII Setup button.
 - Enable the following two options: Send line ends with line feeds and Echo typed characters locally. This will automatically complete all your command lines with <cr><lf> characters and allow you to see in real time the commands you are typing.
 - Click **OK** twice to close the Properties window.
- Now you can type the requested \$PASHS,TCP,UID command. You need to know the login and password of the receiver you are trying to connect to. If your login and password are correct, the receiver will return the following response:

\$PASHR.TCP.OK*1B

You are then allowed to send all possible \$PASH commands. Note however that you cannot change the login and password through a TCP/IP connection, using the \$PASHS,TCP,PAR command. This is only possible locally through a serial or Bluetooth connection. When authentication is required, you cannot send commands until the login and password have been provided to the receiver. The receiver will however output

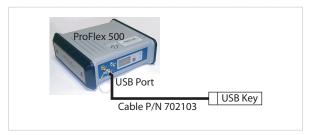
data through this connection without prior authentication if it has been configured to output data on port I.

Running Serial Commands from a USB Key

Serial commands can also be run from a USB key you connect to the receiver's USB port through the dedicated cable.

What you have to do is create a text file containing the list of serial commands you would like the receiver to execute. In this file can also be inserted the \$PASHS,CMD,WTI command, which is used to introduce an idle time before the receiver is allowed to execute the command that comes after. After typing the last command in the file, press the ENTER key to insert a carriage return + line feed as the last item in the file. This is mandatory.

Then you just have to copy the file to the USB key's root directory.


The receiver will always execute the list of commands (the *script*) in the given order, except for some commands like \$PASHS,REC and \$PASHS,INI, which are necessarily run last.

Starting the execution of the script may be done in two different ways:

- Automatically: The receiver will automatically prompt you to run the script when you connect the USB key to the receiver. This is achieved by simply naming the file "autoconfig.cmd"
- Manually: This is achieved by naming the file differently and using the \$PASHS,CMD,LOD command to initiate the execution of the script.

Described below is the typical procedure to make the receiver run automatically a series of commands stored on a USB key under a file named "autoconfig.cmd":

Connect the USB key to the receiver.

• Wait until the USB logo appears on the receiver screen and a message is prompted (**Upload Script?**).

 Accept the request by pressing the Log button (you could reject it by pressing the Scroll button). The receiver will then start executing the script of commands. This is indicated on the display screen where you can see the number of commands to be run (on the right) and the rank of the command being currently run (on the left). In the example below, the receiver is running the 1st command of the 18 ones it has to go through:

- When all the commands have been run, the receiver comes back to the screen it was displaying before.
- Remove the USB key.
- You can now have a check on how the receiver ran each of the commands: Connect the USB key to a computer and edit the autoconfig.log file created on the USB key by the receiver while executing the commands. Each correctly executed command is followed by:

\$PASHR,ACK*3D

List of Commands

All the existing commands for the ProFlex 500 are here arranged in two categories:

- Commands used to configure the receiver.
- Commands used to output the data users need in their applications.

In each of the two tables below, the commands appear in alphabetical order. All pairs of related set and query commands (e.g. \$PASHS,ANH and \$PASHQ,ANH) appear in the same row.

Table 1- Receiver Configuration Commands

Set Command	Description	Query Command	Description
\$PASHS,AGB	GLONASS biases	\$PASHQ,AGB	GLONASS biases
\$PASHS,ANH	Antenna height	\$PASHQ,ANH	Antenna height
\$PASHS,ANP	Antenna parameters	\$PASHQ,ANP	Antenna parameters
\$PASHS,ANP,DEL	Deleting user-defined antenna		
\$PASHS,ANP,OWN	Defining new antenna names	\$PASHQ,ANP,OWN	Local antenna
\$PASHS,ANP,REF	(own/reference)	\$PASHQ,ANP,REF	Antenna used at the base
\$PASHS,ANP,OUT	Defining the virtual antenna	\$PASHQ,ANP,OUT	Virtual antenna
\$PASHS,ANR	Antenna reduction mode	\$PASHQ,ANR	Antenna reduction mode
\$PASHS,ANT	Antenna height	\$PASHQ,ANT	Antenna height
		\$PASHQ,ATL	Debug data recording
\$PASHS,BAS	Differential data type	\$PASHQ,BAS	DIfferential data type
\$PASHS,BDS	Differential data streams	\$PASHQ,BDS	Differential data streams
\$PASHS,BEEP	Beeper	\$PASHQ,BEEP	Beeper
\$PASHS,BRD	RTC Bridge	\$PASHQ,BRD	RTC Bridge
		\$PASHQ,BTH	Bluetooth settings
\$PASHS,BTH,NAME	Bluetooth device name		
\$PASHS,BTH,PIN	Bluetooth device pin code		
\$PASHS,CMD,LOD	Running a command file		
\$PASHS,CMD,WTI	Inserting wait time		
\$PASHS,CP2,AFP	Ambiguity for 2nd RTK engine	\$PASHQ,CP2,AFP	Ambiguity for 2nd RTK engine
\$PASHS,CP2,RST	Reset second RTK process		
\$PASHS,CPD,AFP	Ambiguity fixing parameter	\$PASHQ,CPD,AFP	Ambiguity fixing parameter
		\$PASHQ,CPD,ANT	Base antenna height
\$PASHS,CPD,FST	RTK output mode	\$PASHQ,CPD,FST	RTK output mode
\$PASHS,CPD,MOD	Base/rover mode	\$PASHQ,CPD,MOD	Base/rover mode
\$PASHS,CPD,NET	Network corrections	\$PASHQ,CPD,NET	Network operation mode
		\$PASHQ,CPD,POS	Base position
\$PASHS,CPD,REM	Differential data port	\$PASHQ,CPD,REM	Differential data port
\$PASHS,CPD,RST	RTK process reset		
\$PASHS,CPD,VRS	VRS assumption mode	\$PASHQ,CPD,VRS	VRS assumption mode

Table 1- Receiver Configuration Commands (Continued)

Set Command	Description	Query Command	Description
\$PASHS,CST,MTP,ADD	Adding mount points		
\$PASHS,CST,MTP,DEL	Deleting mount points		
\$PASHS,CST,OFF	Turning off NTRIP caster		
\$PASHS,CST,ON	Turning on NTRIP caster		
\$PASHS,CST,PAR	Setting NTRIP caster	\$PASHQ,CST	NTRIP caster parameters
\$PASHS,CST,RST	NTRIP caster parameters		
\$PASHS,CST,USR,ADD	Adding NTRIP caster users		
\$PASHS,CST,USR,DEL	Deleting NTRIP caster users		
\$PASHS,CTS	Handshaking	\$PASHQ,CTS	Handshaking
\$PASHS,DDN,PAR	Setting DynDNS service	\$PASHQ,DDN	DynDNS parameters
\$PASHS,DDN,SET	Sending IP address to DynDNS		
\$PASHS,DIP	Server connection	\$PASHQ,DIP	Direct IP parameters
\$PASHS,DIP,OFF	Terminating Direct IP connection		
\$PASHS,DIP,ON	Disabling Direct IP connection		
\$PASHS,DIP,PAR	Setting Direct IP parameters		
\$PASHS,DRI	Raw data recording rate	\$PASHQ,DRI	Raw data recording rate
\$PASHS,DST	Connection modes for data streams	\$PASHQ,DST	Connection modes for data streams
		\$PASHQ,DST,STS	Data stream port status
\$PASHS,DSY	Daisy chain	\$PASHQ,DSY	Daisy chain
\$PASHS,DYN	Receiver dynamics	\$PASHQ,DYN	Receiver dynamics
\$PASHS,ECP,OFF \$PASHS,ECP,ON	Controlling power for extended communication port	\$PASHQ,ECP	Extended communication port power status
		\$PASHQ,EFT	Embedded FTP server
\$PASHS,EFT,ON	Starting embedded FTP server		
\$PASHS,EFT,OFF	Stopping embedded FTP server		
\$PASHS,EFT,PAR	Setting embedded FTP server		
\$PASHS,EFT,USR,ADD	Adding embed. FTP server user		
\$PASHS,EFT,USR,DEL	Deleting emb. FTP server user		
\$PASHS,ELM	Elevation mask	\$PASHQ,ELM	Elevation mask
		\$PASHQ,EML	Email settings
\$PASHS,EML,PAR	Email parameters		
\$PASHS,EML,TST	Testing email		
\$PASHS,ETH,OFF	Controlling Ethernet port power	\$PASHQ,ETH	Ethernet status and parameters
\$PASHS,ETH,ON	supply		· ·
\$PASHS,ETH,PAR	Ethernet parameters	\$PASHQ,ETH	Ethernet status and parameters
		\$PASHQ,FIL,CUR	Info on G-file being recorded
\$PASHS,FIL,D	Deleting files		
\$PASHS,FIL,DEL	Deleting files & directories		
		\$PASHQ,FIL,LST	Listing files in memory or USB key
		\$PASHQ,FLS	List of raw data files
		\$PASHQ,FTP	FTP status and settings
\$PASHS,FTP,OFF	Ending FTP file transfer		

Table 1- Receiver Configuration Commands (Continued)

Set Command	Description	Query Command	Description
\$PASHS,FTP,PAR	Setting FTP for file transfer		
\$PASHS,FTP,PUT	Sending files to FTP server		
\$PASHS,GLO	GLONASS tracking	\$PASHQ,GLO	GLONASS tracking
\$PASHS,GNS,CFG	Selecting a GNSS mode	\$PASHQ,GNS,CFG	Reading the GNSS mode used
\$PASHS,INI	Receiver initialization		
#DACLIC L CC	Enable/disable use of local	¢DACHO LOC	I and an adjust a sustain status
\$PASHS,LCS	coordinate system	\$PASHQ,LCS	Local coordinate system status
		\$PASHQ,LOG	Editing a log file
\$PASHS,LOG,DEL	Deleting log files		
		\$PASHQ,LOG,LST	Listing log files
\$PASHS,LOG,PAR	Log file settings	\$PASHQ,LOG,PAR	Log file settings
\$PASHS,LTZ	Time zone		
		\$PASHQ,MDM	Modem status and parameters
\$PASHS,MDM,DAL	Dialing and hanging up		
\$PASHS,MDM,INI	Initializing the modem		
		\$PASHQ,MDM,LVL	Modem signal level
\$PASHS,MDM,OFF	Internal modem power off		
\$PASHS,MDM,ON	Internal modem power on		
\$PASHS,MDM,PAR	Setting modem parameters		
\$PASHS,MDP	Port A setting	\$PASHQ,MDP	Port A setting
\$PASHS,MEM	Memory device used	\$PASHQ,MEM	Memory device used
		\$PASHQ,MET	Meteorological unit settings
\$PASHS,MET,CMD	Trigger string (meteo unit)		
\$PASHS,MET,INIT	Initialization string (meteo unit)		
\$PASHS,MET,INTVL	Query interval (meteo unit)		
\$PASHS,MET,PAR	Setting the meteorological unit		
\$PASHS,MWD	Modem timeout	\$PASHQ,MWD	Modem timeout
\$PASHS,NPT	Tagging SBAS Differential posi-	\$PASHQ,NPT	SBAS Differential positions in
PEAGLIO, NE I	tions in NMEA messages	φελοιία,inf i	NMEA messages
		\$PASHQ,NTR	NTRIP settings
		\$PASHQ,NTR,MTP	Connection to mount point
\$PASHS,NTR,LOD	Loading NTRIP source table		
\$PASHS,NTR,MTP	Connect to NTRIP mount point		
\$PASHS,NTR,PAR	NTRIP settings		
		\$PASHQ,NTR,TBL	Source table
\$PASHS,OCC	Writing occupation data	\$PASHQ,OCC	Occupation state and parameters
\$PASHS,OPTION	Receiver firmware options	\$PASHQ,OPTION	Receiver firmware options
\$PASHS,OUT,MET	Starting meteo data acquisition		
\$PASHS,OUT,TLT	Starting tilt data acquisition		
		\$PASHQ,PAR	Receiver parameters
\$PASHS,PEM	Position elevation mask	\$PASHQ,PEM	Position elevation mask
\$PASHS,PHE	Event marker active edge	\$PASHQ,PHE	Event marker active edge
\$PASHS,POP	Internal update rate (measurements and PVT)	\$PASHQ,POP	Internal update rate (measurements and PVT)

Table 1- Receiver Configuration Commands (Continued)

Set Command	Description	Query Command	Description
\$PASHS,POS	Antenna position		
\$PASHS,PPS	PPS settings	\$PASHQ,PPS	PPS settings
\$PASHS,PRT	Baud rates	\$PASHQ,PRT	Baud rates
\$PASHS,PWR,OFF	Powering off the receiver	\$PASHQ,PWR	Power status
\$PASHS,PWR,PAR	Power management		
		\$PASHQ,RCP	Receiver parameters
\$PASHS,RCP,DEL	Deleting user-defined receiver name		
\$PASHS,RCP,GBx	Defining GLONASS biases for user-defined receiver		
		\$PASHQ,RCP,OWN	Receiver name
\$PASHS,RCP,REF	Naming reference receiver	\$PASHQ,RCP,REF	Reference receiver name
		\$PASHQ,RDP,CHT	Radio channel table
		\$PASHQ,RDP,LVL	Radio reception level
\$PASHS,RDP,OFF	Powering off internal radio		
\$PASHS,RDP,ON	Powering on internal radio		
\$PASHS,RDP,PAR	Setting the radio	\$PASHQ,RDP,PAR	Radio parameters
\$PASHS,RDP,TYP	Radio type used	\$PASHQ,RDP,TYP	Radio type used
\$PASHS,REC	Raw data recording	\$PASHQ,REC	Raw data recording
\$PASHS,REF	External reference clock input	\$PASHQ,REF	External reference clock input
\$PASHS,RFB	Ring file buffer	\$PASHQ,RFB	Ring file buffer
\$PASHS,RFT	Meteo/tilt data file type	\$PASHQ,RFT	Meteo/tilt data file type
		\$PASHQ,RID	Receiver identification
\$PASHS,RST	Default settings		
\$PASHS,RTC,MSG	User message		
\$PASHS,RXC,PAR	Embedded RINEX Converter	(\$PASHQ,PAR,RXC)	See \$PASHQ,PAR above.
\$PASHS,SBA	SBAS tracking (ON/OFF)	\$PASHQ,SBA	SBAS tracking status
		\$PASHQ,SES	Session programming
\$PASHS,SES,AUT	Setting sessions automatically		
\$PASHS,SES,DEL	Deleting one or all sessions		
\$PASHS,SES,FTP,PAR	Setting FTP server, file upload		
\$PASHS,SES,ON	Starting sessions		
\$PASHS,SES,OFF	Stopping sessions		
\$PASHS,SES,PAR	Session recording parameters		
\$PASHS,SES,SET	Setting one session manually		
\$PASHS,SIT	Site name	\$PASHQ,SIT	Site name
\$PASHS,SNM	Signal-To-Noise Ratio Mask	\$PASHQ,SNM	Signal-To-Noise Ratio Mask
\$PASHS,SOM	Masking signal observations	\$PASHQ,SOM	Masking signal observations
\$PASHS,SOM,CTT	Cumul. Tracking Time Mask	\$PASHQ,SOM,CTT	Cumulative Tracking Time Mask
\$PASHS,SOM,NAV	Navigation data mask	\$PASHQ,SOM,NAV	Navigation data mask
\$PASHS,SOM,SNR	Signal-to-noise ratio mask	\$PASHQ,SOM,SNR	Signal-to-noise ratio mask
\$PASHS,SOM,WRN	Channel warnings mask	\$PASHQ,SOM,WRN	Channel warnings mask
\$PASHS,STI	Station ID	\$PASHQ,STI	Station ID
\$PASHS,SVM	Satellite use mask	\$PASHQ,SVM	Satellite use mask

Table 1- Receiver Configuration Commands (Continued)

\$PASHS,TCP,UID TCP/IP authentication \$PASHQ,TLT Tiltmeter setup \$PASHS,TLT,CMD Trigger string (tiltmeter) \$PASHS,TLT,INIT Initialization string (tiltmeter) \$PASHS,TLT,INITUL Query interval (tiltmeter) \$PASHS,TLT,PAR Setting the tiltmeter \$PASHS,UDP User-defined dynamic model \$PASHS,UDP User-defined dynamic model \$PASHQ,UDP User-defined dynamic model \$PASHQ,UD	Set Command	Description	Query Command	Description
\$PASHS,TLT,CMD Trigger string (tiltmeter) \$PASHS,TLT,INIT Initialization string (tiltmeter) \$PASHS,TLT,INTVL Query interval (tiltmeter) \$PASHS,TLT,PAR Setting the tiltmeter \$PASHS,UDP User-defined dynamic model \$PASHS,UNT Distance unit used on display \$PASHQ,UDP User-defined dynamic model \$PASHQ,UNT Distance unit used on display \$PASHQ,UPL FTP server settings (fw. upgrade) \$PASHQ,UPL,LOG Editing Firmware upgrades	\$PASHS,TCP,PAR	TCP/IP server settings	\$PASHQ,TCP	TCP/IP server settings
\$PASHS,TLT,CMD Trigger string (tiltmeter) \$PASHS,TLT,INIT Initialization string (tiltmeter) \$PASHS,TLT,INTVL Query interval (tiltmeter) \$PASHS,TLT,PAR Setting the tiltmeter \$PASHS,UDP User-defined dynamic model \$PASHS,UDP User-defined dynamic model \$PASHS,UNT Distance unit used on display \$PASHQ,UNT Distance unit used on display \$PASHQ,UPL FTP server settings (fw. upgrade) \$PASHQ,UPL,LOG Editing Firmware upgrade log file \$PASHS,UPL,PAR \$PASHS,UPL,PAR \$PASHS,UPL,UPG \$PASHS,UPL,	\$PASHS,TCP,UID	TCP/IP authentication		
\$PASHS,TLT,INIT			\$PASHQ,TLT	Tiltmeter setup
\$PASHS,TLT,INTVL Query interval (tiltmeter) \$PASHS,TLT,PAR Setting the tiltmeter \$PASHS,UDP User-defined dynamic model \$PASHS,UNT Distance unit used on display \$PASHQ,UNT Distance unit used on display \$PASHQ,UPL FTP server settings (fw. upgrade) \$PASHQ,UPL,LOG Editing Firmware upgrade log file \$PASHQ,UPL,LST Listing firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UPL,UPG Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHS,UTS Synchronization with GPS \$PASHQ,UTS Firmware version \$PASHS,WAK Alarm acknowledgement SPASHQ,WARN Warning messages \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-	\$PASHS,TLT,CMD	Trigger string (tiltmeter)		
\$PASHS,UPL,UPG \$PASHS,UPL,UPG \$PASHS,UPL \$PASHS,UPL	\$PASHS,TLT,INIT	Initialization string (tiltmeter)		
\$PASHS,UDP User-defined dynamic model \$PASHQ,UDP User-defined dynamic model \$PASHS,UNT Distance unit used on display \$PASHQ,UPL FTP server settings (fw. upgrade) \$PASHQ,UPL,LOG Editing Firmware upgrade log file \$PASHQ,UPL,LST Listing firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UPL,UPG Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,UTS SYNCHRONIZATION \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-	\$PASHS,TLT,INTVL	Query interval (tiltmeter)		
\$PASHS,UNT Distance unit used on display \$PASHQ,UPL FTP server settings (fw. upgrade) \$PASHQ,UPL,LOG \$PASHQ,UPL,LOG Editing Firmware upgrade log file \$PASHS,UPL,PAR Setting FTP server used for firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UPL,UPG \$PASHQ,UPL,LST Upgrading receiver firmware from FTP server \$PASHS,UPL,UPG \$PASHQ,UTS \$PAS	\$PASHS,TLT,PAR	Setting the tiltmeter		
\$PASHQ,UPL FTP server settings (fw. upgrade) \$PASHQ,UPL,LOG Editing Firmware upgrade log file \$PASHQ,UPL,LST Listing firmware upgrades \$PASHS,UPL,PAR Setting FTP server used for firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UPL Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,VERSION Firmware version \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-	\$PASHS,UDP	User-defined dynamic model	\$PASHQ,UDP	User-defined dynamic model
\$PASHQ,UPL,LOG Editing Firmware upgrade log file \$PASHQ,UPL,LST Listing firmware upgrades \$PASHS,UPL,PAR Setting FTP server used for firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UTS Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,VERSION Firmware version \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-	\$PASHS,UNT	Distance unit used on display	\$PASHQ,UNT	Distance unit used on display
\$PASHS,UPL,PAR Setting FTP server used for firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UTS Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,VERSION Firmware version \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN WEB Web Server control, owner infor-			\$PASHQ,UPL	FTP server settings (fw. upgrade)
\$PASHS,UPL,PAR Setting FTP server used for firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UTS Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,VERSION Firmware version \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-			\$PASHQ,UPL,LOG	Editing Firmware upgrade log file
firmware upgrades \$PASHS,UPL,UPG Upgrading receiver firmware from FTP server \$PASHS,UTS Synchronization with GPS \$PASHQ,UTS \$PASHQ,UTS \$PASHQ,VERSION Firmware version \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-			\$PASHQ,UPL,LST	Listing firmware upgrades
\$PASHS,UPL,UPG from FTP server \$PASHS,UTS Synchronization with GPS \$PASHQ,UTS Synchronization with GPS \$PASHQ,VERSION Firmware version \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-	\$PASHS,UPL,PAR	· ·		
\$PASHQ,VERSION Firmware version \$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-	\$PASHS,UPL,UPG			
\$PASHS,WAK Alarm acknowledgement \$PASHQ,WARN Warning messages \$PASHQ,WARN Web Server control, owner infor-	\$PASHS,UTS	Synchronization with GPS	\$PASHQ,UTS	Synchronization with GPS
\$PASHQ,WARN Warning messages \$PASHQ WEB Web Server control, owner infor-			\$PASHQ,VERSION	Firmware version
Web Server control, owner infor-	\$PASHS,WAK	Alarm acknowledgement		
I SPASHO WER			\$PASHQ,WARN	Warning messages
			\$PASHQ,WEB	Web Server control, owner information, connection profiles
\$PASHS,WEB,OWN Receiver owner information	\$PASHS,WEB,OWN	Receiver owner information		
\$PASHS,WEB,PAR Web Server control and administrator profile	\$PASHS,WEB,PAR			
	\$PASHS,WEB,USR, ADD			
1) Alating user profiles	\$PASHS,WEB,USR, DEL	Deleting user profiles		
\$PASHS,ZDA Set time and date	\$PASHS,ZDA	Set time and date		

Table 2- Data Output Commands

Set Command	Description	Query Command	Description
\$PASHS,ATM	ATOM messages	\$PASHQ,ATM	ATOM data parameters
\$PASHS,ATM,ALL	Disable ATOM messages		
		\$PASHQ,ATO	ATOM message output settings
\$PASHS,ATM,PER	ATOM output rate		
		\$PASHQ,RNX,MSI	ATOM RNX differential message
\$PASHS,RNX,TYP	ATOM RNX diff. message		
\$PASHS,CMR,TYP	CMR message type & rate	\$PASHQ,CMR,MSI	CMR message status
\$PASHS,DBN,TYP	DBEN message type & rate	\$PASHQ,DBN,MSI	DBEN message status
\$PASHS,NME	NMEA messages (ON/OFF)	\$PASHQ,NMO	NMEA output settings
\$PASHS,NME,ALL	Disabling all NMEA messages		
\$PASHS,NME,PER	NMEA output rate		

Table 2- Data Output Commands

Set Command	Description	Query Command	Description
\$PASHS,RAW	Raw data messages (ON/OFF)	\$PASHQ,RAW	Raw data settings
\$PASHS,RAW,ALL	Disabling raw data messages		
\$PASHS,RAW,PER	Raw data output rate		
\$PASHS,RTC,TYP	RTCM message type		
		\$PASHQ,RWO	Raw data output settings
	1		
		\$PASHQ,ALM	Almanac message
		\$PASHQ,CRT	Cartesian coordinates of position
		\$PASHQ,DCR	Cartesian coordinates of baseline
		\$PASHQ,DPO	Delta position
		\$PASHQ,DTM	Datum Reference
		\$PASHQ,GGA	GNSS position message
		\$PASHQ,GLL	Geographic position-lat./long.
		\$PASHQ,GRS	GNSS range residuals
		\$PASHQ,GSA	GNSS DOP & active satellites
		\$PASHQ,GST	GNSS pseudorange error statistics
		\$PASHQ,GSV	GNSS satellites in view
		\$PASHQ,LTN	Latency
		\$PASHQ,POS	Computed position data
		\$PASHQ,PTT	PPS time tag
		\$PASHQ,RMC	Recomm. min. specific GNSS data
		\$PASHQ,RRE	Residual error
		\$PASHQ,RTC	RTCM status
		\$PASHQ,RTC,MSI	RTCM messages status
		\$PASHQ,SAT	Satellites status
		\$PASHQ,SGL	GLONASS satellites status
		\$PASHQ,SGP	GPS & SBAS satellites status
		\$PASHQ,VEC	Vector & accuracy data
		\$PASHQ,VTG	COG and ground speed
		\$PASHQ,XDR	Transducer measurements
		\$PASHQ,ZDA	Time and date

Chapter 13. Set Command Library

AGB: Enabling/Disabling GLONASS Bias Adjustments

Function

This command is used to enable or disable the adjustment of L1 & L2 GLONASS carrier biases in the receiver so that the GLONASS Double-Difference carrier residuals between the receiver and the *golden Ashtech receiver* are equal to zero (± noise errors).

MB 500 is considered as the golden Ashtech receiver. After activating the adjustment function, the receiver name provided by any message supposed to deliver that name (e.g. RTCM-3 MT 1033) will appear in the form:

ASHTECH<space><name>

Where <space> is a space character between the two words and <name> is the receiver name entered through the \$PASHS,RCP,OWN command.

Command Format

Syntax

\$PASHS,AGB,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enabling (ON) or disabling (OFF) adjustment of GLONASS biases	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	

Example

Enabling adjustment of GLONASS biases:

\$PASHS,AGB,ON*1C

ANH: Antenna Height

Function

This command allows you to enter the antenna height measured according to the vertical measurement technique. Even if not specified explicitly, the height measurement type will always be "Vertical".

Command Format

Syntax

\$PASHS,ANH,f1[,c2][*cc]

Parameters

Parameter	Description	Range
f1	Antenna height.	0-6.553 m
c2	Antenna height measurement type (V for "Vertical")	V
*cc	Optional checksum	*00-*FF

Example

Entering the vertical measurement (2 m) of a rover antenna: \$PASHS,ANH,2.000

Relevant Query Command

\$PASHQ,ANH

See also

\$PASHS,ANR \$PASHS,ANT

ANP,PCO & ANP,EDx: Creating/Editing Antenna Definitions

Function

These commands allow you to create or modify antenna definitions. The definition of an antenna includes a name for the antenna, all its phase center offsets as well as the elevation-dependent delays (in 5-degree steps).

Command Format

Syntax

\$PASHS,ANP,PCO,s1,f2,f3,f4,f5,f6,f7[*cc] \$PASHS,ANP,ED1,s1,f2,f3,f4,f5,f6,f7,f8,f9,f10,...,f19,f20[*cc] \$PASHS,ANP,ED2,s1,f2,f3,f4,f5,f6,f7,f8,f9,f10,...,f19,f20[*cc]

Parameters

ANP,PCO (PCO for Phase Center Offsets)

Parameter	Description	Range
s1	Antenna name	31 charac-
31	Antenna name	ters max.
f2	L1 phase center offset, in mm, in the North direction	±0-1000.0
f3	L1 phase center offset, in mm, in the East direction	±0-1000.0
f4	L1 phase center offset, in mm, in the vertical direction	±0-1000.0
f5	L2 phase center offset, in mm, in the North direction	±0-1000.0
f6	L2 phase center offset, in mm, in the East direction	±0-1000.0
f7	L2 phase center offset, in mm, in the vertical (up) direction	±0-1000.0
*cc	Optional checksum	*00-*FF

ANP,EDx (EDx for L1 and L2 Elevation Dependent delays)

Parameter	Description	Range
s1	Antenna name	31 charac- ters max.
f2-f20	Elevation-dependant delays, in mm, for elevations from 90 to 0 degrees, in 5-degree steps.	±0-1000.0
*cc	Optional checksum	*00-*FF

Examples

Setting the PCO parameters for antenna ASH8987: \$PASHS,ANP,PCO,ASH8987,0,0,110,0,0,128*29

Setting the L1 delays for antenna MYANTENNA: \$PASHS,ANP,ED1,MYANTENNA,0,-2,0,-1.5,1,1.2,0,0,0,0,1,1,-1,0,1.2, -1.2,0,1,0*49

Relevant Query \$
Command

\$PASHQ,ANP

See also

\$PASHS,ANP,DEL

ANP, DEL: Delete User-Defined Antenna

Function This command allows you to delete the definition of a user-

defined antenna.

Command Format Syntax

\$PASHS,ANP,DEL,s1[*cc]

Parameters

Parameter	Description	Range
s1	User-defined antenna name (case-sensitive)	31 characters max.
*cc	Optional checksum	*00-*FF

Example

Deleting RZ510A antenna definition:

\$PASHS,ANP,DEL,RZ510A*1A

Relevant Query Command

\$PASHQ,ANP

See Also

\$PASHS,ANP,PCO

\$PASHS,ANP,ED1 \$PASHS,ANP,ED2

ANP,OUT: Defining a Virtual Antenna

Function

This command allows you to specify the name of an antenna that raw data will be adjusted to. By specifying the name of a virtual antenna, you ask the receiver to correct ("reduce") the raw and differential data it generates from the received GNSS signals to make them available as if they had been received through *that* antenna.

Command Format

Syntax

\$PASHS,ANP,OUT,s1[*cc]

Parameters

Parameter	Description	Range
s1	l "()FF" to specify that no virtual antenna is	31 characters max. or OFF
*cc	Optional checksum	*00-*FF

Examples

Setting the ADVNULLANTENNA as the virtual antenna:

\$PASHS,ANP,OUT,ADVNULLANTENNA*73

Disabling the use of the virtual antenna:

\$PASHS,ANP,OUT,OFF*2B

Comments

- By default, the receiver observables are not corrected for the type of GNSS antenna used. It's only by providing separately the name of the GNSS antenna used (declared as the OWN antenna) that the antenna corrections can be performed when processing the receiver observables. Now precisely, the ANP,OUT command allows you to directly generate the raw and differential observables for the type of antenna you specify in the command (e.g. ADVNULLANTENNA).
- Be aware that the raw data reduction process is possible only if the name of the antenna physically used by the receiver has been specified through the \$PASHS,ANP, OWN command and declared in the receiver's antenna database as one of the default or user-defined antennas. Otherwise, the command will be NAKed.
- Raw data reduction will not be performed on data from any satellite located below the elevation mask.

- When raw data reduction is effective, any antenna name messages generated by the receiver will include the name of the virtual antenna, and not the antenna serial number or the setup ID.
- If no reference position has been entered in the receiver, raw data reduction is performed in such a way that the location of the L1 phase center is left unchanged.
- Antenna reduction is performed in such a way that the ARP is unchanged. If the reference position is given with respect to the ARP, and not to the L1 phase center, then the receiver computes the position of the ARP using the physical parameters of the antenna, and then re-computes the position of the L1 phase center according to the ANP,OUT antenna parameters. This guarantees that the reported reference position, the antenna name and the observables are all consistent with one another.

Relevant Query Command

\$PASHQ,ANP

See Also \$PASHS,ANP,OWN

ANP,OWN: Naming the Local Antenna

Function

This command is used to enter the name of the antenna to which the receiver is connected.

Command Format

Syntax

\$PASHS,ANP,OWN,s1[,s2][,d3][*cc]

Parameters

Parameter	Description	Range
s1	User-defined antenna name (case-sensitive). Default name is "UNKNOWN"	31 characters max.
s2	Antenna serial number	31 characters max.
d3	Antenna setup ID	0-255
*cc	Optional checksum	*00-*FF

Comments

 Specifying the antenna name allows the receiver to know the antenna offset parameters using a predefined list. In the receiver, the predefined parameters can be listed using \$PASHQ,ANP. New offset parameters can be added using \$PASHS, ANP,PCO.

- The predefined list complies with the IGS antenna source table.
- The antenna name (and the optional serial number and setup ID) are also inserted into the RTCM antenna message when the receiver is used as a base.

Example

Entering "ASH111661" as the name of the receiver antenna: \$PASHS,ANP,OWN,ASH111661*26

Relevant Query Command

\$PASHQ,ANP

See Also \$PASHS,ANP,REF

ANP, REF: Naming the Antenna Used at the Base

Function This command is used to enter the name of the antenna used

by the base with which the receiver is working.

Command Format Syntax

\$PASHS,ANP,REF,s1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
s1	User-defined antenna name (case-	31 characters	UNKNOWN
31	sensitive).	max.	OMMONIA
d2	Antenna name preference: 0: s1 is ignored if a base antenna name is decoded from the incoming reference data. 1: s1 is always used regardless of whether a base antenna name is decoded from the incoming reference data or not.	0, 1	0
*cc	Optional checksum	*00-*FF	

Comments

- Specifying the antenna name allows the receiver to know the antenna offset parameters using the predefined list. In the receiver, the predefined parameters can be listed using \$PASHQ,ANP. New offset parameters can be added using \$PASHS,ANP,PCO.
- The predefined list complies with the IGS antenna source table.

Example

Entering "MAG990596" as the name of the base antenna: \$PASHS,ANP,REF,MAG990596*3A

Relevant Query Command

\$PASHQ,ANP \$PASHQ,ANP,REF

See Also \$PASHS,ANP,OWN

ANR: Antenna Reduction Mode

Function

This command allows you to set the antenna reduction mode.

The default value is ON.

Command Format Syntax

\$PASHS,ANR,s1[*cc]

Parameters

Parameter	Description	Range
s1	 OFF: No antenna reduction. The receiver ignores the antenna parameters entered via \$PASHS, ANH or \$PASHS,ANT. The computed position is that of the antenna's L1 phase center. This implies that the entered position for the base should also be that of its antenna's L1 phase center. ON: Antenna reduction is active (default). From the parameters entered through the \$PASHS, ANH or \$PASHS,ANT command, the position computed for the L1 phase center is projected to the ground thus making this point (ground mark) the real location of the rover. This implies that the entered position for the base should also be that of its ground mark. ARP: The receiver ignores the antenna parameters entered via \$PASHS,ANH or \$PASHS,ANT. The computed position represents the location of the ARP. This implies that the entered position for the base should also be that of its antenna's ARP. 	OFF, ON, ARP
*cc	Optional checksum	*00-*FF

Example

Setting the antenna reduction mode to ON:

\$PASHS,ANR,ON*05

Relevant Query Command \$PASHQ,ANR

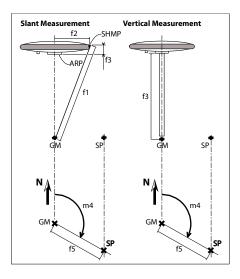
See also

\$PASHS,ANH \$PASHS,ANT

ANT: Antenna Height

Function

This command is used to define the antenna height, especially when it was determined using the slant measurement method. However, a vertical measurement can also be entered through this command.


Using the \$PASHS,ANT command overwrites all previous settings performed with the \$PASHS,ANH command.

Command Format

Syntax

\$PASHS,ANT,f1,f2,f3[,m4,f5][*cc]

Diagrams and Definitions

- ARP: Antenna Reference Point (usually bottom of the antenna).
- SHMP: Slant Height Measurement Point (usually at the hedge of the antenna, above the ARP).
- Ground Mark (GM): above the ARP (same horizontal coordinates).
- Survey Point (SP): same height as Ground Mark but with a horizontal offset.

Parameters

Parameter	Description	Range
f1	Slant height measurement, from ground mark (GM) to antenna edge (SHMP).	0-6.553 m
f2	Antenna radius: horizontal distance from the geometrical center to the antenna edge.	0-6.553 m
f3	Vertical offset: From ARP to SHMP, if radius and slant height are not null. From Ground Mark to ARP, if radius and slant height are null.	0 to ±6.553 m
m4	Horizontal azimuth [dddmm.mm], in degrees, for the horizontal line connecting the ground mark (GM) to the surveyed point (SP), measured with respect to WGS84 North.	0-35959.99 (from 0° to 359° 59.99")
f5	Horizontal offset from the ground mark (GM) to the surveyed point (SP).	0-6.553 m
*cc	Optional checksum	*00-*FF

Examples

Entering the vertical measurement (2 m) of a rover antenna: \$PASHS,ANT,0,0,2.000*2E

Entering the slant measurement (1.543 m) of the MAG11406 antenna used at a base:

\$PASHS,ANT,1.543,0.0921,-0.0516*0A

Comments

- The vertical height from ARP to ground mark can also be entered through the ANT command, which in this case should be used as follows:
 - Set f1 and f2 to "0.0"
 - Enter the antenna height from ARP to ground mark as f3. Only when f1=f2=0.0 can you define f3 this way.
 - **f3** is negative when the ARP is below the SHMP.
- Parameters m4 and f5 are currently NOT processed in the ProFlex 500.

Relevant Query Command

\$PASHQ,ANT

See Also

\$PASHS,ANH \$PASHS,ANR

ATL: Debug Data Recording

Function

This command allows you to enable or disable the recording of debug data. The resulting log file (called "ATL file") is saved to the memory selected through the \$PASHS,MEM command. The file is named as follows:.

ATL_yymmdd_hhmmss.log

Normally you don't have to record debug data. However, the Ashtech Technical Support may ask you to do so if a problem occurs in your receiver and Technical Support needs to analyze the resulting log file to fix the problem. The content of this file can only be analyzed by Ashtech as it uses a proprietary, undisclosed data format, which in addition is subject to change without notice.

Command Format

Syntax

\$PASHS,ATL,s1[,d2][,f3][,d4][*cc]

Parameters

Parameter	Description	Range	Default
s1	Controls debug data recording: ON: Enables debug data recording OFF: Disables debug data recording AUT: Automatically starts debug data recording every time the receiver is turned on.	ON, OFF, AUT	OFF
d2	Recorded data: 0: Only \$ATL messages from GNSS board to system board 1: Only those from system board to GNSS board 2: All data exchanged between GNSS board and system board	0-2	0
f3	Output interval, in seconds	0.05, 0.1, 0.2, 0.5, 1	1
d4	Configuration index	0-1	0
*cc	Optional checksum	*00-*FF	

Example

Enabling the ATL message:

\$PASHS,ATL,ON*01

Comment

 If the memory selected through \$PASHS,MEM is unavailable, then "ACK" is returned in response to the command enabling recording (ON or AUT), prompting you to read the status of the debug data recording using the \$PASHQ,ATL command.

Relevant Query Command \$PASHQ,ATL

See Also \$PASHS,MEM

ATM: Enabling/Disabling ATOM Messages

Function

This command allows you to enable or disable ATOM messages on the specified port. For more details about the ATOM format, please refer to the *AshTech Optimized Messaging (ATOM) Reference Manual.*

Command Format

Syntax

\$PASHS,ATM,s1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range
s1	ATOM message type	MES, PVT, ATR, NAV, DAT, EVT. See table below.
c2	Port routing the ATOM message:	A, B, C, E, F, I, M, R, U, I1- I9
s3	Enable (ON) or disable (OFF) this ATOM message type.	ON, OFF
f4	Output rate, in seconds. (Default value is specific to each message type.)	0.05 or 0.1-0.4 sec with [F] option activated. 0.5-0.9 s 1-999 s
*cc	Optional checksum	*00-*FF

ATOM Messages:

Data	ATOM Number	Description	Default Output Status on Ports A, B, F, I, I1-I9, E	Default Output Status on Ports M, U and R
MES	4095,2	GNSS raw measurements	OFF	ON, at 1 second
PVT	4095,3	Positioning results	OFF	OFF
ATR	4095,4	Receiver attributes	OFF	ON
NAV	4095,5	GNSS navigation data	OFF	ON, at 300 seconds
DAT	4095,6	Raw GNSS data: GPS Raw Subframe (DAT, GPS) GLONASS Raw String (DAT, GLO) SBAS Subframe (DAT, SBA)	OFF	OFF (no output rate)
EVT	4095,14	Event	OFF	OFF

\$PASHS,ATM,ATR is used only to enable or disable the recording or output of ATOM ATR XDR messages. These are generated when a meteorological unit or tiltmeter is used. When the ATOM MES message is enabled, and regardless of the last \$PASHS,ATM,ATR command run, the following messages are always recorded in the G-file:

- ATOM ATR ANM (antenna name)
- ATOM ATR RNM (receiver name)
- ATOM ATR AOP (antenna offset parameter)
- ATOM ATR OCC (occupation)

Example

Enabling ATOM message type PVT on serial port A at a 1-second output rate:

\$PASHS,ATM,PVT,A,ON,1*0E

Relevant Query Commands

\$PASHQ,ATO \$PASHQ,ATM

See also

\$PASHS,ATM,PER \$PASHS,ATM,ALL

ATM, ALL: Disabling All ATOM Messages

Function This command disables all ATOM messages currently enabled

on the specified port.

Command Format Syntax

\$PASHS,ATM,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port related to the ATOM message(s) you want to disable. • A, B, F: Serial port • C: Bluetooth port • I, I1-I9: Ethernet port • E: Modem • M, U: Internal memory (M), USB key (U) • R: Data recording through session	A, B, C, E, F, I, M, U, I1-I9, R
*cc	Optional checksum	*00-*FF

Example

Disabling all ATOM messages on port A:

\$PASHS,ATM,ALL,A,OFF*4E

Relevant Query Command

None.

See also

\$PASHS,ATM

ATM, PER: Setting Unique Output Rate for all ATOM Messages

Function

This command is used to set the same output rate for all ATOM messages. This command will overwrite all the output rates set individually for each message type using \$PASHS,ATM,MES and \$PASHS,ATM,PVT.

Command Format

Syntax

\$PASHS,ATM,PER,f[*cc]

Parameters

Parameter	Description	Range
	Output rate.	0.05 sec or 0.1-0.4 sec if the
f	Setting \$PASHS,POP to "20" is a	[F] option is activated
'	prior condition to operating at	0.5-0.9 sec
	0.05 s (20 Hz).	1-999 sec
*cc	Optional checksum	*00-*FF

Example

Setting the output rate to 1 second:

\$PASHS,ATM,PER,1*5B

Relevant Query Command \$PASHQ,ATM

See also

\$PASHS,ATM

\$PASHS,POP

BAS: Differential Data Type

Function

This command is used in a base to select the type of differential data the base should generate and the port, or two ports, through which this data should be routed.

The command can also be used with the OFF operator to disable the output.

Command Format

Syntax

\$PASHS,BAS,c1,s2[,c3,s4][*cc]
or, to disable the differential data output:
\$PASHS,BAS,OFF[*cc]

Parameters

Parameter	Description	Range
c1	First port ID: • A, B, F: Serial port (A: default) • C: Bluetooth port • I, P, Q: Ethernet port • E: Modem • M, U: Internal memory (M), USB key (U)	A, B, C, E, F, I, P, Q, M, U
s2	Differential data type: RT2: RTCM 2.3 messages RT3: RTCM 3.0 & 3.1 messages (default) CMR: CMR messages CMP: CMR+ messages ATM: ATOM messages DBN: DBEN messages	RT2, RT3, CMR, CMP, ATM, DBN
с3	Second port ID: same as c1 above	A, B, C, E, F, I, P, Q, M, U
s4	Differential data type: same as s2 above.	RT2, RT3, CMR, CMP, ATM, DBN
*cc	Optional checksum	*00-*FF

Examples

Sending RTCM 3.0 message to the external UHF transmitter via port A:

\$PASHS,BAS,A,RT3*51

Sending RTCM 2.3 messages to the external UHF transmitter via port D and CMR+ messages to the GSM modem via port E: $\frac{1}{2}$

\$PASHS,BAS,D,RT2,E,CMP*4E

Disabling the differential data output:

\$PASHS,BAS,OFF*46

Relevant Query Command

\$PASHQ,BAS

See also

\$PASHS,CPD,MOD

\$PASHS,RTC,TYP \$PASHS,RNX,TYP \$PASHS,CMR,TYP

BDS: Setting Differential Data Streams on Ports Ix

Function

This command allows you to define differential data messages you wish to make available on ports I1 to I9 for data streaming through TCP/IP connections.

Command Format

Syntax

\$PASHS,BDS,s1,s2,s3[*cc]

Parameters

Parameter	Description	Range
s1	Differential data type: RT2: RTCM 2.3 messages RT3: RTCM 3.0&3.1 messages CMR: CMR messages CMP: CMR+ messages ATM: ATOM messages DBN: DBEN messages	RT2, RT3, CMR, CMP, ATM, DBN
s2	Data stream port	11-19
s3	Enable/disable control parameter	ON, OFF
*cc	Optional checksum	*00-*FF

The default settings are given in the table below.

	RT2	RT3	CMR	CMP	ATM
11	OFF	ON	OFF	OFF	OFF
12	OFF	OFF	OFF	OFF	ON
13	OFF	OFF	OFF	ON	OFF
14	OFF	OFF	ON	OFF	OFF
15	ON	OFF	OFF	OFF	OFF
16	OFF	OFF	OFF	OFF	OFF
17	OFF	OFF	OFF	OFF	OFF

	RT2	RT3	CMR	CMP	ATM
18	OFF	OFF	OFF	OFF	OFF
19	OFF	OFF	OFF	OFF	OFF

Examples

Enabling RTCM 3 differential data on port I3:

\$PASHS,BDS,RT3,I3,ON*42

Disabling RTCM 2.3 differential data on port I1:

\$PASHS,BDS,RT2,I1,OFF*OF

Relevant Query Command \$PASHQ,BDS

See Also

\$PASHS,DST

\$PASHS,RTC,TYP \$PASHS,ATD,TYP

BEEP: Beeper Setup

Function This command enables or disables the internal beeper.

Command Format

Syntax

\$PASHS,BEEP,s1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) the beeper.	ON, OFF	ON
d2	Timeout, in seconds: 0: No timeout. If an alarm is activated, the beeper will sound indefinitely until the alarm is acknowledged. > >0: If an alarm is activated, the beeper will sound only for a limited period of time (it will go out automatically at the end of the specified timeout).	0-99	30
*cc	Optional checksum	*00-*FF	

Example

Disabling the beeper:

\$PASHS,BEEP,OFF*04

Relevant Query Command

\$PASHQ,BEEP

BRD: Enabling/Disabling the RTC Bridge Function

Function

This command is used to control the RTC Bridge function. Its use is required only in the receiver in charge of forwarding its RTK corrections to other nearby rovers through its licence-free radio transmitter.

Command Format

Syntax

\$PASHS,BRD,s1[,d2,c3,c4][*cc]

Parameters

Parameter	Description	Range	Default
s1	Controls the availability of RTK corrections on the specified output port: OFF: No RTK corrections forwarded to the output port. ON: RTK corrections forwarded to the output port.	ON, OFF	OFF
d2	Enables or disables the use of RTK corrections in the receiver's position computation. • 0: RTK corrections used • 1: RTK corrections not used	0, 1	0
c3	Input port ID (port from which RTK corrections are available in the receiver).	E (modem) P (Ethernet) Q (Ethernet)	E
c4	Output port ID (serial port to which the licence-free radio transmitter is connected).	A, B, F	А
*cc	Optional checksum	*00-*FF	

Examples

Enabling RTC Bridge in the receiver by forwarding RTK corrections from the modem to its port A (to which the license-free radio transmitter is connected):

\$PASHS,BRD,ON,0,E,A*14

Disabling RTC Bridge by preventing RTK corrections from being forwarded to the output port:

\$PASHS.BRD.OFF*42

Comments

To receive data, the \$PASHS,NTR,.. and \$PASHS,DIP commands should be used.

- If the data needs to be sent to an external UHF transmitter, the \$PASHS,RDP command should be used to configure the transmitter.
- The d2 parameter is taken into account only if the Automatic mode is selected for the choice of differential data inputs (see \$PASHS,CPD,REM).

Relevant Query Command

\$PASHQ,BRD

See also

\$PASHS,NTR,.. \$PASHS,DIP \$PASHS,RDP,TYP \$PASHS,RDP,PAR \$PASHS,CPD,REM

Using RTC Bridge

The RTC Bridge function is typically used to allow a rover to forward the RTK corrections it receives from an RTK network through its built-in modem to other rovers operated in the vicinity, using a license-free radio transmitter connected to one of its serial ports. Being a low-power unit (<500 mW),the license-free radio can be powered directly from the receiver, without the need for another external battery.

Starting RTC Bridge is a three-step procedure:

- Mounting the license-free radio onto the range pole or any appropriate support and connecting it to a serial port using the cable supplied.
- Setting the license-free radio, then the GPRS modem, using FAST Survey.
- Activating RTC Bridge through a serial command (\$PASHS,BRD) sent from FAST Survey.

This procedure is detailed below.

Mounting and Connecting the License-Free Radio

In backpack configuration, the following setup is recommended for both the "transmitting" rover and the "receiving" rover(s).

Setting the License-Free Radio

Follow the instructions below. Each step should be executed in the specified order:

- Establish a connection with the receiver from FAST Survey as described in How FAST Survey Interfaces With Your Equipment Via Bluetooth on page 237.
- 2. Select Equip>GPS Rover and then tap on the RTK tab
- 3. In the **Device** field, select "ARF7474.." corresponding to the license-free radio used.
- 4. Tap on 2 and complete the license-free radio settings.
- Still on the RTK tab and in the same Device field, select "Internal GSM".
- 6. Tap on **x** and and complete the GSM settings.
- 7. Tap to complete the receiver setting.

Activating RTC Bridge

- In FAST Survey, select Equip>GPS Utilities and then tap on the Send Command button.
- In the combo box, type the following command, assuming port E is the input port and port A the output port:

\$PASHS,BRD,ON,0,E,A

 Tap on the **Send** button. The RTC Bridge function is activated once the receiver has executed the command and the \$PASHR,ACK*3D line has been returned to FAST Survey.

 Tap window and return to the FAST Survey menu.

NOTE: As for the configuration of the rovers supposed to receive the RTK corrections from this receiver, there is nothing else to be done apart from configuring the licence-free radio connected to each of them. Setting this radio can be done using FAST Survey, from the **RTK** tab of the **GPS Rover** window (select the appropriate radio model in the **Device** field).

BTH, NAME: Bluetooth Device Name

Function This command is used to name the Bluetooth device.

Command Format Syntax

\$PASHS,BTH,NAME,s1[*cc]

Parameters

Parameter	Description	Range
s1	Bluetooth device name	64 characters max.
*cc	Optional checksum	*00-*FF

Example

Naming the Bluetooth device as "My Surveying Unit": \$PASHS,BTH,NAME,My Surveying Unit*60

Relevant Query Command

\$PASHQ,BTH

See also

\$PASHS,BTH,PIN

BTH, PIN: Bluetooth Device Pin Code

Function

This command is used to assign a PIN code to the Bluetooth

device.

Command Format

Syntax

\$PASHS,BTH,PIN,d1[*cc]

Parameters

Parameter	Description	Range
d1	I RILIATOOTH DIN CODA	16 digits max. -1: no PIN code
*cc	Optional checksum	*00-*FF

Example

Assigning PIN code "02" to the Bluetooth device: \$PASHS.BTH.PIN.02*7E

Relevant Query Command \$PASHQ,BTH

See also \$PASHS,BTH,NAME

CMD,LOD: Running a List of \$PASH Commands

Function

This command is used to run the complete list of \$PASH commands stored in a file found in the USB key currently connected to the receiver.

This implies that the file (in text editable format) should have first been saved to that key before connecting the key to the receiver's USB port.

Command Format

Syntax

\$PASHS,CMD,LOD[,s][*cc]

Parameters

Parameter	Description	Range	Default
s	File name. If s is omitted, it is assumed that the file to be run is "autoconfig.cmd".	255 characters max.	autoconfig.cmd
*cc	Optional checksum	*00-*FF	

Examples

Running the serial commands in autoconfig.cmd:

\$PASHS,CMD,LOD*54

Running the serial commands in a file named "myconfig.cmd":

\$PASHS,CMD,LOD,myconfig.cmd*02

Comments

- The file can contain any \$PASHS or \$PAHSQ commands.
- If the file contains the \$PASHS,REC or \$PASHS,INI command, this command will always be run last, whatever its position in the file.
- All data lines returned by the receiver in response to the executed commands are written to a log file named as follows:

<command file name>.log

- To insert an idle wait time of several seconds between any two \$PASH commands, you can insert a specific command named \$PASHS,CMD,WTI between these two commands. The \$PASHS,CMD,WTI command may be inserted as many times as necessary in the file.
- Naming the command file "autoconfig.cmd" or "uploadconfig.cmd" on the USB key will allow the receiver to automatically start the execution of all the commands stored in the file when you plug the USB key to the receiver. 6A6EC3667E000The difference between the two file names is in the need for a user confirmation before running the file: "autoconfig.cmd" will require user confirmation, not "uploadconfig.cmd".

Relevant Query Command

None.

See also

\$PASHS,CMD,WTI

CMD,WTI: Inserting Wait Times

Function

This command can be inserted one or more times in the list of \$PASH commands run with the CMD,LOD command. When running this command, in fact the receiver inserts a wait time of the requested value in the execution of the \$PASH commands.

Command Format

Syntax

\$PASHS,CMD,WTI,d[*cc]

Parameters

Parameter	Description	Range
d	Wait time generated by the command, in seconds.	1-3600
*cc	Optional checksum	*00-*FF

Example

The command line below inserted in a command file will generate a 10-s wait time when executed:

\$PASHS,CMD,WTI,10*74

Comments

This command will be interpreted by the receiver only if found in a command file.

Relevant Query Command

None.

See also

\$PASHS,CMD,LOD

CMR, TYP: CMR Message Type and Rate

Function

This command is used in a base to set the type and rate of CMR message the base will generate and output.

Command Format

Syntax

\$PASHS,CMR,TYP,d1,d2[*cc]

Parameters

Parameter	Description	Range
d1	Message type	0, 1, 2, 3 (See table below)
d2	Output rate in seconds	0, 0.5 or 1-300 (See table below)
*cc	Optional checksum	*00-*FF

Message Type	Description	Output Rate (Range)	Output Rate (Default)
0	Observables	0, 0.5 s or 1-300 s	1 s
1	Base coordinates	0-300 s	30 s
2	Base description	0-300 s	30 s
3	GLONASS observables	0, 0.5 s or 1-300 s	1 s

Examples

Setting a CMR message type 0 (observables) at a 1-second output rate:

\$PASHS,CMR,TYP,0,1*59

Setting a CMR message type 1 (base coordinates) at a 30-second output rate:

\$PASHS,CMR,TYP,1,30*6A

Relevant Query Command

\$PASHQ,CMR,MSI

See also

\$PASHS,BAS

\$PASHS,CPD,MOD,BAS

\$PASHS,BDS

CPD,AFP - CP2,AFP: Setting the Confidence Level of Ambiguity Fixing

Function

This command is used to set the confidence level required of the ambiguity fixing process. The higher the confidence level, the more likely the ambiguities are fixed correctly, but the longer the time it takes to fix them.

Command Format

Syntax

For primary RTK engine:

\$PASHS,CPD,AFP,f1[*cc]

For second RTK engine:

\$PASHS,CP2,AFP,f1[*cc]

Parameters

Parameter	Description	Range	Default
f1	Confidence level, in percent, required of ambiguity fixing process. Choosing "0" means the receiver will not try to fix ambiguities but instead will stay indefinitely in Float mode.	Depending on firmware options installed: • 0, 95.0, 99.0 or 99.9 if either the [K], [L] or [M] option is installed • 0 only otherwise (none of these options installed)	Depending on firmware options installed: • 99.0 if either the (K], [L] or [M] option is installed • 0 necessarily otherwise
*cc	Optional checksum	*00-*FF	-

Example

Setting the confidence level to 99.9% for primary RTK engine:

\$PASHS,CPD,AFP,99.9*62

Relevant Query Commands \$PASHQ,CPD,AFP \$PASHQ,CPD

CPD,FST: RTK Output Mode

Function

This command enables or disables the fast RTK output mode

(Fast CPD mode).

Command Format

Syntax

\$PASHS,CPD,FST,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) the fast RTK output mode	ON, OFF	ON
*cc	Optional checksum	*00-*FF	-

Example

Enabling the fast RTK output mode:

\$PASHS,CPD,FST,ON

Relevant Query Command \$PASHQ,CPD,FST

CPD, MOD: Base/Rover/Backup Mode

Function

This command is used to set the addressed receiver as a base or a rover, thus defining the operating mode for the receiver. In addition the command allows you to specify the satellite constellations that will be used if the receiver is defined as a base. Additionally, this command allows a rover to be set to deliver two independent RTK position solutions. This can be done by activating the backup mode.

Command Format Syntax

\$PASHS,CPD,MOD,s1[,[d2],[d3],[c4]][*cc]

Parameters

Parameter	Description	Range	Default
s1	CPD mode: BAS: Base ROV: Rover BKP: Backup ("Hot Standby RTK")	BAS, ROV, BKP	ROV
d2	Constellations used in the base: 0: GPS, GLONASS, SBAS (default) 1: Only GPS and SBAS 2: Only GPS and GLONASS 3: Only GPS	0-3	0
d3	Position mode. If s1=BAS: O: Base position is a static position (as set through \$PASHS,POS). I: Base position is a moving position: C: "Current position" (the command allocates the currently computed position to the base. The base position is then kept unchanged.) If s1=ROV: Rover operates with static base: Rover operates with moving base	0-2	0
c4	Input port for backup mode: • A, B, F: Serial ports • C: Bluetooth port • I, P, Q: Ethernet port • D: Radio • E: Modem	A, B, C, D, E, F, I, P, Q	А
*cc	Optional checksum	*00-*FF	

Examples

Setting the receiver as a base using all constellations:

\$PASHS,CPD,MOD,BAS,0*28

Setting the receiver as a rover:

\$PASHS,CPD,MOD,ROV*2F

Setting the receiver to operate as a rover in which the backup mode is activated and port A is used for that purpose:

\$PASHS,CPD,MOD,BKP...A*50

Comments

 With s1=BAS (Base mode) and d3=2 ("Current position"), once the current position has been defined as the base position, then the position mode is automatically switched

- to "0". The base position can then be read using the \$PASHQ,CPD,POS command.
- In "Hot Standby RTK" (s1=BKP), the receiver computes two independent positions from the two independent corrections streams entering the receiver. The input port for the correction stream of the primary RTK is defined by the \$PASHS,CPD, REM command. The input port for the correction stream of the backup RTK position is defined by parameter c4 in \$PASHS,CPD,MOD. The receiver checks that the submitted value for c4 is compatible with the settings last performed with \$PASHS,CPD,REM. In "Hot Standby RTK", the position delivered by the receiver through the chosen output messages (ATM, PVT, GGA, etc.) is the best position between the primary RTK and backup RTK. The receiver itself determines which is the best position, based on all the available parameters and indicators. At any time, users can find out which RTK provides the best position by analyzing the Base Station ID field in these messages.
- The backup position is computed only from reference data received at integer seconds of time intervals.
- In "Hot Standby RTK", the Fast CPD mode is always active (ON) whatever the setting last performed with \$PASHS,CPD, FST. In addition, the base is assumed to be static regardless of the current value assigned to parameter d3 in \$PASHS,CPD,MOD.

Relevant Query Command

\$PASHQ,CPD,MOD

See also

\$PASHS,BAS \$PASHS,CPD,REM \$PASHS.CPD.FST

CPD, NET: Network Corrections

Function

This command sets the behavior of the receiver with relation to network corrections, i.e. RTK correction data delivered by a network.

Command Format

Syntax

\$PASHS,CPD,NET,d1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
d1	RTK network operating mode relative to GPS corrections: 0: GPS corrections from network are not used. 1: FKP/MAC GPS corrections from network are used when available and healthy, otherwise they are rejected.	0-1	1
d2	RTK network operating mode relative to GLONASS corrections: 0: GLONASS corrections from network are not used. 1: FKP/MAC GLONASS corrections from network are used when available and healthy, otherwise they are rejected.	0-1	0
*cc	Optional checksum	*00-*FF	

Example

Setting the receiver to process GPS and GLONASS network corrections:

\$PASHS,CPD,NET,1,1*51

Relevant Query Command

\$PASHQ,CPD,NET

CPD, REM: Differential Data Port

Function

This command sets the reception mode for all differential data.

If Automatic is chosen, all received differential data is processed whatever the input ports.

On the contrary, if Manual is chosen, only the data coming in through the specified ports (one or two ports) will be processed.

Command Format

Syntax

\$PASHS,CPD,REM,s1[,c2][,c3][*cc]

Parameters

Parameter	Description	Range	Default
s1	Reception mode:	AUT, MAN	AUT
c2	Input port #1: • A, B, F: Serial port • C: Bluetooth port • I, P, Q: Ethernet port • D: Radio • E: Modem	A, B, C, D, E, F, I, P, Q	
с3	Input port #2: A, B, F: Serial port C: Bluetooth port I, P, Q: Ethernet port D: Radio E: Modem	A, B, C, D, E, F, I, P, Q	
*cc	Optional checksum	*00-*FF	

Examples

Setting the receiver to receive and process differential data in Automatic mode:

\$PASHS,CPD,REM,AUT*38

Setting the receiver to receive and process differential data in Manual mode with the data received on port D:

\$PASHS,CPD,REM,MAN,D*52

Relevant Query Command

\$PASHQ,CPD,REM

See also \$PASHS,CPD,MOD

CPD,RST - CP2,RST: RTK Process Reset

Function This command resets the RTK processing.

Command Format Syntax

In the primary RTK engine: \$PASH\$,CPD,RST[*cc]

In the second RTK engine: \$PASHS,CP2,RST[*cc]

Parameters

None.

Example

Resetting the RTK processing in the primary RTK engine: \$PASHS.CPD.RST*5B

Relevant Query Command

None.

CPD, VRS: VRS Assumption Mode

Function

This command is used specifically to set the receiver (a rover) to operate in the so-called "compulsory VRS mode" through which it is forced to consider that the differential corrections it receives are always VRS corrections (this impacts the way corrections are processed internally).

When not operated in this mode, the receiver will automatically detect whether the received corrections are, or are not, VRS corrections (Automatic detection).

Command Format Syntax

\$PASHS,CPD,VRS,d[*cc]

Parameters

Parameter	Description	Range	Default
d	VRS assumption mode: • 0: Automatic detection • 1: Compulsory VRS mode • 2: Never switches to VRS mode	0, 1, 2	0
*cc	Optional checksum	*00-*FF	

Example

Enabling the compulsory VRS mode:

\$PASHS,CPD,VRS,1*44

Comment

Users working in VRS using the CMR or RT2 format should

activate the compulsory VRS mode (d=1).

Relevant Query Command

\$PASHQ,CPD,VRS

CST,MTP,ADD: Adding/Modifying Mount Points

Function

This command is used to add or modify a mount point in the embedded NTRIP caster. All the information you enter with this command is made available to users through the source table.

Command Format

Syntax

\$PASHS,CST,MTP,ADD,s1[,s2,s3,s4,s5,f6,f7,s8][*cc]

Parameters

Parameter	Description	Range	Default
s1	Mount point name. An abbreviated name is recommended. The identifier field (s3) may be used to enter a more detailed definition of the mount point name.	100 characters max.	-
s2	Mount point identifier	100 characters max.	-
s3	Format of the data available through the mount point (ATOM, RTCM, etc.)	100 characters max.	-

Parameter	Description	Range	Default
s4	Details of the data format (message types, etc.). Comma symbols may be entered as delimiters provided quotation marks are used to encompass the whole string (see example below). The semicolon character is not allowed in the string.	100 characters max	-
s5	Country code.	3 characters	FRA
f6	Latitude, in degrees, with two decimal places.	±90.00	0.00
f7	Longitude, in degrees, with two decimal places.	±180.00	0.00
s8	Fee indicator: Y: Use of the mount point is subject to a fee. N: Use of the mount point is free.	Y, N	N
*cc	Optional checksum	*00-*FF	

Example

Creating the "NAN2" mount point for an NTRIP server delivering RTCM3.0 data, messages 1014 and 1012:

\$PASHS,CST,MTP,ADD,NAN2,Nantes LF2,RTCMV3.0,"1004(1s), 1012(1s), 1006(13s)",FRA,47.17,1.00,N*7A

Relevant Query Command

\$PASHQ,PAR,CST

See Also

\$PASHS,CST,PAR

\$PASHS,CST

\$PASHS,CST,MTP,DEL

CST,MTP,DEL: Deleting a Mount Point

Function This command is used to delete a mount point from the

embedded NTRIP caster source table.

Command Format Syntax

\$PASHS,CST,MTP,DEL,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Name of the mount point you want to delete.	100 characters max.	-
*cc	Optional checksum	*00-*FF	

Example

Deleting the "NAN2" mount point:

\$PASHS,CST,MTP,DEL,NAN2*6A

Relevant Query

\$PASHQ,PAR,CST

Command

See Also \$PASHS,CST,PAR

\$PASHS,CST,MTP,ADD

CST,OFF: Stopping the Embedded NTRIP Caster

Function This command is used to ask the receiver to stop running the

embedded NTRIP caster. By default, the embedded NTRIP

caster is off.

Command Format Syntax

\$PASHS,CST,OFF[*cc]

Parameters

None.

Example

Stopping the embedded NTRIP caster:

\$PASHS,CST,OFF*52

Relevant Query

uery \$PASHQ,CST

Command

See Also \$PASHS,CST,ON

\$PASHS,CST,PAR

CST,ON: Starting the Embedded NTRIP Caster

Function This command is used to launch the embedded NTRIP caster

in the receiver. By default, the embedded NTRIP caster is off.

Command Format Syntax

\$PASHS,CST,ON[*cc]

Parameters

None.

Example

Starting the embedded NTRIP caster:

\$PASHS,CST,ON*1C

Relevant Query

Command

\$PASHQ,CST

See Also \$PASHS,CST,OFF

\$PASHS,CST,PAR

CST,PAR: Embedded NTRIP Caster Parameters

Function This command is used to define the parameters of the

embedded NTRIP caster. All these parameters will appear in

the NTRIP caster source table.

Command Format Syntax

\$PASHS,CST,PAR,d1,s2,s3,s4,s5,s6,f7,f8,s9,d10,s11,s12,

c13,s14,s15,s16[*cc]

Parameters

Parameter	Description	Range	Default
d1	IP port number of the NTRIP caster	100-65535	2101

Parameter	Description	Range	Default
s2	Host domain name or IP address of the NTRIP caster. By default, the address of the NTRIP caster is the receiver's IP address. In this case, s2 does not need to be specified. If another IP address is used, please mention it as s2.	128 characters max.	x.x.x.x
s3	NTRIP caster password. This password is used by NTRIP servers (data sources) to connect to the NTRIP caster.	32 characters max.	
s4	NTRIP caster identifier. Use this field to provide more information describing/ identifying the NTRIP caster.	100 characters max.	ProFlex 500
s5	NTRIP caster operator: Name of the institution, agency or company running the caster.	100 characters max.	Ashtech
s6	Country code	3 characters	FRA
f7	Latitude, in degrees with two decimal places.	±90.00	0.00
f8	Longitude, in degrees with two decimal places.	0.00 to 359.99	0.00
s9	Fallback caster IP address. (Fallback caster: the caster where to connect to in case this one breaks down).	128 characters max	0.0.0.0
d10	Fallback caster IP port number	0, 100-65535	0
s11	Network identifier, e.g. name of a network of GNSS permanent stations.	100 characters max	-
s12	Network operator: Name of the institution, agency or company running the network.	100 characters max	-
c13	Fee indicator: • Y: Usage is charged • N: No user fee	Y, N	N
s14	Web address where network information can be found.	100 characters max	-
s15	Web address where data stream information can be found.	100 characters max	-
s16	Web or email address where registration information can be found.	100 characters max	-
*cc	Optional checksum	*00-*FF	

Example

Entering parameters defining the embedded NTRIP caster:

\$PASHS,CST,PAR,2102,83.165.25.14,NTRIP Caster ProFlex500,Ashtech,FRA,47.10,-1.00,123.12.132.12,2101,My Network,Ashtech,Y,www.ashtech.com, www.ashtech.com, proflex500@ashtech.com*1E Relevant Query Command \$PASHQ,CST

See Also

\$PASHS,CST,ON

\$PASHS,CST,OFF

\$PASHS,CST,USR,ADD \$PASHS,CST,USR,DEL \$PASHS,CST,MTP,ADD \$PASHS,CST,MTP,DEL

CST,RST: Resetting the Embedded NTRIP Caster

Function

This command is used to reset the embedded NTRIP caster

in the receiver.

Resetting the caster means deleting all existing mount points and users and setting the caster definition to its default

values.

Command Format

Syntax

\$PASHS,CST,RST[*cc]

Parameters

None.

Example

Resetting the embedded NTRIP caster:

\$PASHS,CST,RST*48

Relevant Query Command None.

See Also

\$PASHS,CST,PAR

CST, USR, ADD: Adding/Modifying NTRIP Caster Users

Function

This command is used to add or modify a user allowed to connect the embedded NTRIP caster. Up to 100 users may

be defined.

Command Format Syntax

\$PASHS,CST,USR,ADD,s1,s2,s3[,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13][*cc]

Parameters

Parameter	Description	Range	Default
s1	Name of the new user (case sensitive).	32 characters max.	-
s2	User password	32 characters max.	-
s 3	Indicator for user-authorized mount points: ALL: all existing mount points can be accessed by the user. SEL: Only the listed mount points (see s4,,s13 below) can be accessed by the user.	ALL, SEL	ALL
s4,,s13	List of existing mount points the user is allowed to connect to. Mount point name 1, up to mount point name 10	100 characters max. (each)	-
*cc	Optional checksum	*00-*FF	

Examples

Entering a user named "Ashtech" allowed to connect to all the existing mount points managed by the embedded NTRIP caster:

\$PASHS,CST,USR,ADD,Ashtech,password,ALL*16

Modifying the "Ashtech" user so it is only allowed to use only two of the existing mount points:

\$PASHS,CST,USR,ADD,Ashtech,password,SEL,NAN1,NAN2*0E

Relevant Query Command

\$PASHQ,PAR,CST

See Also

\$PASHS,CST,PAR \$PASHS,CST,USR,DEL

CST,USR,DEL: Deleting an NTRIP Caster User

Function

This command is used to delete a user declared as an NTRIP Caster user.

Command Format Syntax

\$PASHS,CST,USR,DEL,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Name of the user you want to delete.	32 characters max.	-
*cc	Optional checksum	*00-*FF	

Example

Deleting the "Ashtech" user: \$PASHS,CST,USR,DEL,Ashtech*44

Relevant Query Command

\$PASHQ,PAR,CST

See Also \$PASHS,CST,PAR

\$PASHS,CST,USR,ADD

CTS: Handshaking

Function

This command enables or disables the RTS/CTS handshaking protocol for the specified port. If no port is specified, the command applies to the port through which the command is routed.

Command Format

Syntax

\$PASHS,CTS,[c1],s2[*cc]

Parameters

Parameter	Description	Range	Default
c1	Port ID	A, B, F	
s2	RTS/CTS control (default: ON)	ON, OFF	ON
*cc	Optional checksum	*00-*FF	

Examples

Disabling RTS/CTS on port A:

\$PASHS,CTS,A,OFF*3F

Disabling RTS/CTS on the current port:

\$PASHS,CTS,,OFF*7E

Relevant Query

\$PASHQ,CTS

Command

See also \$PASHS,PRT

\$PASHS,MDP

DBN,TYP: DBEN Message Type & Output Rate

Function

This command is used in a base to define the type of DBEN message the base should generate (type and rate). Enabling or disabling the output of the DBEN message is made through \$PASHS,BAS or \$PASHS,BDS.

Command Format

Syntax

\$PASHS,DBN,TYP,s1,d2[*cc]

Parameters

Parameter	Description	Range
s1	Message type	See table below
d2	Output rate, in seconds	See table below
*cc	Optional checksum	*00-*FF

Туре	Description	Range	Default Output Rate
RPC	Code & phase measurement	0, 0.1-0.9 s and 1-300 s	1
BPS	Reference station position	0-300 s	30

Examples

Selecting DBEN message type "RPC" at 0.5 second: \$PASHS,DBN,TYP,RPC,0.5*26

Selecting DBEN message type "BPS" at 60 seconds: \$PASHS,DBN,TYP,BPS,60*0B

Relevant Query Command

\$PASHQ,DBN,MSI

See Also

\$PASHS,BAS \$PASHS,BDS

DDN, PAR: Setting the DynDNS Service

Function

This command is used to activate or deactivate a connection to a free service ensuring that the receiver hostname will always be associated with the dynamic IP address your Internet Service Provider has last assigned to the receiver. The successful use of the service requires that you first open

an account on this service.

Command Format

Syntax

PASHS,DDN,PAR[DYN,d1][SYS,s2][USR,s3][PWD,s4][HNM,s5][PER,d6][*cc]

Parameters

Parameter	Description	Range	Default
DYN,d1	Enabling/disabling the use of the service: • 0: Enable • 1: Disable	0, 1	0
SYS,s2	Address of the free service used.	100 characters max.	dyndns@dyn dns.org
USR,s3	Username you chose when creating your personal account on the DynDNS web site.	32 characters max.	-
PWD,s4	Password you chose when creating your personal account on the DynDNS web site.	32 characters max.	-
HNM,s5	Hostname you declared on the DynDNS web site for the receiver.	100 characters max.	-
PER,d6	Update rate, in seconds	60-3600	600
*cc	Optional checksum	*00-*FF	

Example

Enabling the use of the DynDNS service, for a receiver accessible through hostname "ashtech1":

\$PASHS,DDN,PAR,DYN,1,SYS,dyndns@dyndns.org,USR,psmith,PWD,as htech,HNM,ashtech1.dyndns.org,PER,600*0C

Comment

- After running this command with d1=1 to enable the service, the receiver will try to connect to the service. If the connection is successful, the receiver will return \$PASHR,DDN,OK. If it fails, the receiver will return \$PASHR,DDN,FAIL, causing d1 to be reset to "0".
- Running commands \$PASHS,RST and \$PASHS,INI will reset d1 to 0 but will keep all other parameters unchanged.

Relevant Query Command \$PASHQ,PAR

\$PASHQ,DDN

See Also

\$PASHS,ETH,PAR \$PASHS.DDN.SET

DDN,SET: Sending the IP Address Manually to DynDNS

Function

This command is used to force the receiver to send right away its IP address to the DynDNS service. Typically this command may be used when you have noticed that the ISP has just changed the (public) IP address of the receiver. By default, the IP address is sent to the DynDNS server every 10 minutes.

Command Format

Syntax

\$PASHS,DDN,SET[*cc]

Parameters

None.

Example

Sending immediately the IP address to the DynDNS service: \$PASHS,DDN.SET*55 **Relevant Query** \$PASHQ,DDN **Commands** \$PASHQ,PAR

See Also \$PASHS,DDN,PAR

\$PASHS,ETH,PAR

DIP: Server Connection

Function

This command is used to connect the receiver to a base via the base's IP address or host name.

Command Format

Syntax

\$PASHS,DIP,RIP,s1,PRT,d2[,LGN,s3,PWD,s4][,IPP,c5][*cc]

Parameters

Parameter	Description	Range
RIP,s1	IP address (xxx.xxx.xxx) or host name	32 char. max.
PRT,d2	Port number	0-65535
LGN,s3	User name (optional)	32 char. max.
PWD,s4	Password (optional)	32 char. max.
IPP,c5	Internet port used on the receiver to establish the connection with the base (server): E: Internal modem (default) P: Ethernet stream 1 Q: Ethernet stream 2	E, P, Q
*cc	Optional checksum	*00-*FF

Comments

Optional fields s3 and s4 need to be specified when the base used requires a user name and password. In this case, the receiver sends the \$GPUID,s2,s4 command to the base right after the IP connection has been established.

Examples

Connecting the receiver to IP address 134.20.2.100 and port number 6666:

\$PASHS,DIP,RIP,134.20.2.100,PRT,6666*2C

Connecting the receiver to www.MyProFlex.com through port 2100:

\$PASHS,DIP,RIP,www.MyProFlex.com,PRT,2100*6E

Relevant Query Commands

\$PASHQ,MDM \$PASHQ,DIP

\$PASHQ,ETH

See also

\$PASHS,MDM,...

\$PASHS,DIP,ON \$PASHS,DIP,OFF \$PASHS,ETH,...

DIP,OFF: Terminating Direct IP Connection

Function This command is used to terminate the current IP connection

to a server.

Command Format

Syntax

\$PASHS,DIP,OFF[,c1][*cc]

Parameters

Parameter	Description	Range
c1	IP port used for the connection to the server: E: Internal modem P: Ethernet stream 1 Q: Ethernet stream 2	E, P, Q
	When c1 is omitted, the concerned port is the one specified in the last \$PASHS,DIP, PAR or \$PASHS,DIP command run.	
*cc	Optional checksum	*00-*FF

Examples

Terminating the current connection:

\$PASHS,DIP,OFF*4B

Relevant Query Command

\$PASHQ,MDM

See also

\$PASHS,DIP

\$PASHS,DIP,PAR

\$PASHS,DIP,ON

DIP,ON: Establishing the Programmed Direct IP Connection

Function This command is used to establish the programmed Direct IP

connection.

Command Format Syntax

\$PASHS,DIP,ON[,c1][*cc]

Parameters

Parameter	Description	Range
c1	IP port used for the connection to the server: E: Internal modem P: Ethernet stream 1 Q: Ethernet stream 2 When c1 is omitted, the concerned port is the one specified in the last \$PASHS,DIP, PAR or \$PASHS,DIP command run.	E, P, Q
*cc	Optional checksum	*00-*FF

Examples

Establishing the programmed Direct IP connection:

\$PASHS,DIP,ON*05

Relevant Query Command

\$PASHQ,MDM

See also

\$PASHS,DIP

\$PASHS,DIP,PAR \$PASHS,DIP,OFF

DIP,PAR: Setting Direct IP Parameters

Function This command is used to set the different parameters

allowing the receiver to perform a Direct IP connection to an

external server, typically a base.

Command Format Syntax

\$PASHS,DIP,PAR,ADD,s1,PRT,d2[,LGN,s3,PWD,s4][,IPP,c5][*cc]

Parameters

Parameter	Description	Range	Default
ADD,s1	IP address or host name of external server	32 characters max.	
PRT,d2	IP port of external server	0-65535	
LGN,s3	User name (optional)	32 characters max.	
PWD,s4	Password (optional)	32 characters max.	
IPP,c5	Port used in the receiver to establish the IP connection: E: Internal modem P: Ethernet stream 1 Q: Ethernet stream 2	E, P, Q	E
*cc	Optional checksum	*00-*FF	

Comments

When connecting to the specified server requires a user name and password, then the receiver will send the serial command \$GPUID,s3,s4 after the IP connection with the server has been established.

Examples

Entering the parameters of the server the receiver has to connect to (through an IP address):

\$PASHS,DIP,PAR,ADD,192.65.54.1,PRT,2100*74

Entering the parameters of the server the receiver has to connect to (through a host name):

 $\verb|PASHS,DIP,PAR,ADD,www.MyProFlex.com,PRT,2100*0B|$

Relevant Query	
Commands	

\$PASHQ,DIP

\$PASHQ,MDM

\$PASHQ,ETH

See Also

\$PASHS,DIP,ON

\$PASHS,DIP,OFF \$PASHS,MDM \$PASHS,ETH,...

DRI: Raw Data Recording Rate

Function

This command sets the recording rate for all raw data logged in the internal or external memory. This rate can be independent of the data output rate on a serial port.

Command Format

Syntax

\$PASHS,DRI,f[*cc]

Parameters

Parameter	Description	Range	Default
s	Raw data recording rate. Setting \$PASHS,POP to "20" is a prior condition to operating at 0.05 s (20 Hz).	0.05 sec or 0.1-0.4 sec if the [F] option is acti- vated. 0.5-0.9 s 1-999 s	1 s
*cc	Optional checksum	*00-*FF	

Example

Setting the recording rate to 5 seconds:

\$PASHS,DRI,5*33

Relevant Query Command

\$PASHQ,DRI

See also

\$PASHS,ATM \$PASHS,RAW \$PASHS,REC \$PASHS,POP

DST: Data Stream Connection Modes

Function

This command is used to set up the type of TCP/IP connection to be implemented for each available data stream.

Whereas \$PASHS,BDS is used to define the type of data available on each Ix port, the present command allows you to define the conditions in which each available data stream can be acquired from a remote equipment through an IP connection. The different connection modes available are described below.

Connection Modes

Server Mode: When a receiver is used in this mode, one or more rovers can connect to it through a specific IP address and port number to acquire the data stream it generates on the specified Ix port.

Client Mode: When a receiver is used in this mode, it can connect to an external server through a specific IP address and port number for sending to this server the data stream it generates on the specified Ix port.

Command Format

Syntax

Disabling a data stream on a given Ix port: \$PA\$H\$,D\$T,\$1,OFF[*cc]

Setting a data stream with the receiver used in server mode: \$PASHS,DST,s1,ON,1,d4,d5[*cc]

Setting a data stream with the receiver used in client mode: \$PASHS,DST,s1,ON,2,d4,d5,s6[*cc]

Parameters

Parameter	Description	Range	Default
s1	Data stream port	11-19	
s2	Enable/disable control parameter	ON, OFF	OFF
d3	Connection Modes: 1: Server 2: Client	1-2	1
d4	IP mode: • 0: TCP • 1: UDP	0, 1	0

Parameter	Description	Range	Default
d5	IP port number: If d3=1 (Server), specify the number of the receiver's internal port used. If d3=2 (Client), specify the number of the external server's IP port used.	100- 65535	1000- 1009
s6	IP address or host name: • If d3=2 (Client), specify the external server's IP address.	32 char max.	0.0.0.0. 0
*cc	Optional checksum	*00-*FF	

Examples

Disabling data stream on port 13:

\$PASHS,DST,I3,OFF*03

Setting data stream on port I5 to be available in server mode: \$PASHS,DST,I5,ON,1,0,2101*64

Setting data stream on port I2 to be available in client mode: \$PASHS,DST,I2,ON,2,0,2102,154.65.43.12*56

Relevant Query Command

\$PASHQ,DST

See Also

\$PASHS,NME \$PASHS,ATM \$PASHS,BAS

\$PASHS,RAW \$PASHS,BDS

DSY: Daisy Chain

Function

This command is used to redirect all the characters flowing through a given serial port (source port) to another (destination port), without interpreting the flow of redirected data.

Once the daisy chain mode is on, only the command used to discontinue this mode can be interpreted on the source port. Redirection can be in both directions, in which case two DSY commands, instead of one, are required to allow bidirectional data flow.

Command Format

Syntax

Redirecting data from a source port to a destination port: \$PASHS,DSY,c1,c2[,d3][*cc]

Discontinuing the daisy chain mode from a specified source port:

\$PASHS,DSY,c1,OFF[*cc]

Discontinuing the daisy chain mode for all source ports:

\$PASHS,DSY,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Source port ID	A, B, C, D, E, F, G, I, P, Q
c2	Destination port ID	A, B, C, D, E, F, G, I, P, Q
d3	Mode: • 0: Raw (default) • 1: Block	0,1
*cc	Optional checksum	*00-*FF

Examples

Redirecting port D to port A:

\$PASHS,DSY,D,A*3E

Redirecting port D to port A and port A to port D:

\$PASHS,DSY,D,A*3E \$PASHS,DSY,A,D*3E

Discontinuing the daisy chain mode from port A:

\$PASHS,DSY,A,OFF*35

Discontinuing the daisy chain mode from all source ports: \$PASHS.DSY.OFF*58

DYN: Receiver Dynamics

Function

This command allows you to define the receiver dynamics. The chosen number best represents the receiver motion.

Command Format

Syntax

\$PASHS,DYN,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Receiver dynamics: 1: Static 2: Quasi-static 3: Walking 4: Ship 5: Automobile 6: Aircraft 7: Unlimited 8: Adaptive 9: User-defined	1-9	8
*cc	Optional checksum	*00-*FF	

Example

Setting rover dynamics to "Walking":

\$PASHS,DYN,3*39

Comments

In the adaptive mode (8), the receiver analyzes its own motion and automatically chooses one of the dynamic models that is the most suitable. The possible dynamic models are those corresponding to the other choices in the command (i.e. 2 to 7, but not 1 or 9). Using the adaptive mode rejects the possible use of the user-defined dynamic model.

Relevant Query

\$PASHQ,DYN

See Also

\$PASHS,UDP

ECP, OFF: Powering Off Ports B & F

Function

This command is used to power off communication ports B

and F.

Turning off ports B and F may be useful when the receiver is operated from the internal battery. When ports B and F are not used, turning them off will allow you to extend the battery

operating time.

Command Format

Syntax

\$PASHS,ECP,OFF[*cc]

Parameters

None.

Example

Turning off ports B and F: \$PASHS,ECP,OFF*40

Relevant Query

Command

\$PASHQ,ECP

See Also \$PASHS, ECP, ON

ECP, ON: Powering On Ports B & F

Function This command is used to power on communication ports B

and F. By default, ports B and F are on.

Command Format Syntax

\$PASHS,ECP,ON[*cc]

Parameters

None.

Example

Turning on ports B and F:

\$PASHS,ECP,ON*0E

Relevant Query \$

Command

\$PASHQ,ECP

See Also

\$PASHS,ECP,OFF

EFT,ON: Starting Embedded FTP Server

Function This command starts the embedded FTP server, which is

inactive by default.

Command Format Syntax

\$PASHS,EFT,ON[*cc]

Parameters

None.

Example

Starting the embedded FTP server:

\$PASHS,EFT,ON*OF

Relevant Query Command

.

\$PASHQ,EFT

See Also \$PASHS,EFT,OFF

\$PASHS,EFT,PAR

EFT,OFF: Stopping Embedded FTP Server

Function This command stops the embedded FTP server after it has

been started. By default, the embedded FTP server is

inactive.

Command Format Syntax

\$PASHS,EFT,OFF[*cc]

Parameters

None.

Example

Stopping the embedded FTP server:

\$PASHS,EFT,OFF*41

Relevant Query

Command

\$PASHQ,EFT

See Also \$PASHS,EFT,ON

\$PASHS,EFT,PAR

EFT,PAR: Embedded FTP Server Settings

Function This command is used to enter the different parameters of

the embedded FTP server.

Command Format Syntax

\$PASHS,EFT,PAR[,LGN,s1][,PWD,s2][,MEM,d3][,PTH,s4][,PRT,d5][*cc]

Parameters

Parameter	Description	Default	Range
LGN,s1	Administrator login	admin	32 characters max.
PWD,s2	Administrator password	changeme	32 characters max.
MEM,s3	Memory location: 0: Internal memory 2: USB key	0	0, 2
PTH,s4	FTP path		255 characters max.
PRT,d5	FTP port	21	0-65535
*cc	Optional checksum		*00-*FF

Example

Setting the embedded FTP server:

\$PASHS,EFT,PAR,LGN,Smith,PWD,u7Imyt,MEM,2,PTH,pub,PRT,21*47

Relevant Query Command

\$PASHQ,EFT

See Also \$PASHS,EFT,ON

\$PASHS,EFT,PAR

\$PASHS,EFT,USR,ADD \$PASHS,EFT,USR,DEL

EFT, USR, ADD: Adding FTP Server User

Function

This command is used to add or modify the profile of a user allowed to connect to the embedded FTP server.

Command Format

Syntax

\$PASHS,EFT,USR,ADD,s1,s2[*cc]

Parameters

Parameter	Description	Range
s1	User name	32 characters max.
s2	User password	32 characters max.
*cc	Optional checksum	*00-*FF

Example

Setting the embedded FTP server:

\$PASHS,EFT,USR,ADD,smith,213lkio5*78

Relevant Query \$PASHQ,EFT

Command

See Also \$PASHS,EFT,USR,DEL

EFT, USR, DEL: Deleting FTP Server User

Function This command is used to delete a registered FTP server user.

Command Format Syntax

\$PASHS,EFT,USR,DEL,s1[*cc]

Parameters

Parameter	Description	Range
s1	User name	32 characters max.
*cc	Optional checksum	*00-*FF

Example

Deleting the user named "Smith": \$PASHS,EFT,USR,DEL,Smith*5C

Relevant Query

\$PASHQ,EFT

Command

See Also \$PASHS,EFT,USR,ADD

ELM: Setting the Elevation Mask for Raw Data Output

Function This command is used to set the minimum satellite elevation

for raw data recording, raw data and differential data output.

Command Format Syntax

\$PASHS,ELM,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Elevation mask, in degrees.	0-90°	5
*cc	Optional checksum	*00-*FF	

Example

Setting the elevation mask to 10 degrees: **\$PASHS.ELM.10*1C**

EML, PAR: Email Parameters

Function

This command is used to set the parameters that allow the receiver to send emails.

Command Format

Syntax

\$PASHS,EML,PAR[,LVL,d1][,SMT,s2][,PRT,d3][,USR,s4] [,PWD,s5][,SND,s6][,ADD,s7][*cc]

Parameters

Parameter	Description	Range	Default
LVL,d1	Notification level: 0: No notification 1: Standard notification 2: Full notification	0-2	0
SMT,s2	SMTP server address or hostname	32 charac- ters max.	1
PRT,d3	SMTP port number	0-65535	25
USR,s4	Username	32 charac- ters max.	Empty
PWD,s5	Password	32 charac- ters max.	Empty
SND,s6	Email address used to return messages to the receiver if the email address of the recipient is not found.	64 characters max.	no-reply@proflex500.com
ADD,s7	Recipient email address to which the receiver sends messages.	64 charac- ters max.	Empty

Parameter	Description	Range	Default
*cc	Optional checksum	*00-*FF	

Comments

With the notification level (d1) set to 1 or 2, the receiver will automatically send emails whenever the receiver is started up or an external power shutdown is detected. The distinction between d1=1 and d1=2 is the following:

- With d1=1, only high-level alarms will trigger an email.
- With d1=2,both high- and medium-level alarms will trigger an email.

Example

Setting email parameters:

\$PASHS,EML,PAR,LVL,1,SMT,smtp.gmail.com, PRT,25,USR,gmail,PWD,gmail,SND,no-reply@proflex500.com, ADD,johnsmith@ashtech.com*21

Relevant Query Command

\$PASHQ,EML

See Also \$PASHS,EML,TST

EML,TST: Testing Email

Function

This command is used to test the receiver's email function by directly sending an email to the preset recipient. The content of the message is "Test message for email verification".

Command Format

Syntax

\$PASHS,EML,TST[*cc]

Parameters

None.

Example

Sending email for test purposes:

\$PASHS,EML,TST*4E

Relevant Query Command

\$PASHQ.EML

See Also \$PASHS,EML,PAR

ETH, OFF: Powering Off the Ethernet Port

Function This command is used to power off the Ethernet port. By

default, the Ethernet port is on.

Turning the Ethernet port may be useful when the receiver is operated from the internal battery. When the Ethernet port is not used, turning it off will allow you to extend the battery

operating time.

Command Format Syntax

\$PASHS,ETH,OFF[*cc]

Parameters

None.

Example

Turning off the Ethernet port:

\$PASHS,ETH,OFF*4F

Relevant Query

Command

\$PASHQ,ETH

See Also \$PASHS,ETH,ON

\$PASHS,ETH,PAR

ETH, ON: Powering On the Ethernet Port

Function This command is used to power on the Ethernet port. By

default, the Ethernet port is on.

Command Format Syntax

\$PASHS,ETH,ON[*cc]

Parameters

None.

Example

Turning on the Ethernet port:

\$PASHS,ETH,ON*01

Relevant Query Command \$PASHQ,ETH

See Also

\$PASHS,ETH,OFF

\$PASHS,ETH,PAR

ETH, PAR: Ethernet Parameters

Function This command is used to set the Ethernet parameters.

Command Format Syntax

Parameters

Parameter	Description	Range	Default
DHP,s1	DHCP mode: 0: Disabled (static IP address) 1: Enabled (dynamic IP address)	0, 1	1
ADD,s2	IP address when s1=0	0.0.0.0-255.255.255.255	192.168.0.1
MSK,s3	Sub-network mask when s1=0	0.0.0.0-255.255.255.255	255.255.255.0
GTW,s4	Gateway IP address when s1=0	0.0.0.0-255.255.255.255	255.255.255.255
DN1,s5	DNS 1 IP address when s1=0	0.0.0.0-255.255.255.255	255.255.255.255
DN2,s6	DNS 2 IP address when s1=0	0.0.0.0-255.255.255.255	255.255.255.255
*cc	Optional checksum	*00-*FF	

Example

Ethernet configuration with DHCP:

\$PASHS,ETH,PAR,DHP,1*2E

Ethernet configuration without DHCP (static IP address):

\$PASHS,ETH,PAR,DHP,0,ADD,10.20.2.28,MSK,255.255.255.0,GTW, 10.20.2.1,DN1,134.20.2.16,DN2,134.20.2.3*5F

Relevant Query Command

\$PASHQ,ETH

See Also

\$PASHS,ETH,OFF \$PASHS,ETH,ON

FIL,D: Deleting Files

Function

This command allows you to delete files from the selected internal or external memory.

Command Format

Syntax

\$PASHS,FIL,D,d[*cc]

Parameters

Parameter	Description	Range
d	File index number: In the range 0-99: With file index number=n, then file "n+1" will be deleted. Warning! If the deleted file is not the last one in memory, all the files that follow the deleted file will have their index number re-ordered after deletion of the file. The index of a file is as listed when using the \$PASHQ,FLS command. =999: All the files in memory will be deleted, except for the following: G-file in use, D-file in use, ring file buffer, ATL file in use, all directories, all .log files excluding ATL log files not in use.	0-99, 999
*cc	Optional checksum	*00-*FF

Example

Deleting the 6th file from memory:

\$PASHS,FIL,D,5*47

Comments

If the file you want to delete is the only file present in the selected memory and this file is currently being used, the "NAK" message is returned to inform you that the file cannot be deleted.

Relevant Query Command

None.

See also

\$PASHQ,FLS

\$PASHS,MEM to select the memory from which to delete

FIL, DEL: Deleting Files and Directories

Function

This command allows you to delete files and directories from the selected internal or external memory.

Command Format

Syntax

\$PASHS,FIL,DEL,[d1],[s2],s3[,s4[...,sn]][*cc]

Parameters

Parameter	Description	Range
d1	Memory from which to delete files or directories: O: Internal memory. USB key. If d1 is omitted, files or directories are deleted from the memory specified by the last run	0, 2
s2	\$PASHS,MEM command.	255 characters max.
s3	Name of the file or directory you want to delete.	255 characters max.
sn	Name of the file or directory you want to delete.	255 characters max.
*cc	Optional checksum	*00-*FF

Comments

- To delete a file or directory located in a subdirectory, the full path to this file or directory should be specified in the s2 field. You cannot enter a path in the s3 field.
- The "*" character can be used as a wild card to delete several files at the same time. In this case, the complete string should be placed between simple or double quotation marks.

Examples

Deleting a G file:

\$PASHS,FIL,DEL,,,GabcdA09.241*69

Deleting three G files:

\$PASHS,FIL,DEL,,,GabcdA09.241,GabcdB09.242,GabcdC09.242*68

Deleting a G file from a subdirectory located on the USB key: \$PASHS,FIL,DEL,2,2009/241/,GabcdA09.241*67

Deleting all the files from the USB key:

\$PASHS,FIL,DEL,2,,"*.*"*67

Deleting all the files recorded on the USB key on the 241th day of the year:

\$PASHS,FIL,DEL,2,,"*.241"*7A

Relevant Query Command

None.

See also

\$PASHQ,FIL,LST

\$PASHS,MEM

FTP, OFF: Ending Data Transfer with FTP

Function

This command is used to stop the data transfer currently in

progress with an FTP server.

Command Format

Syntax

\$PASHS,FTP,OFF[*cc]

Parameters

None.

Example

Stop data transfer:

\$PASHS,FTP,OFF*54

Relevant Query Command

\$PASHQ,FTP

See Also \$PASHS,FTP,PAR \$PASHS,FTP,PUT

FTP, PAR: FTP Settings

Function This command is used to enter the settings of an external FTP

server.

Command Format Syntax

\$PASHS,FTP,PAR[,ADD,s1][PRT,d2][,LGN,s3][,PWD,s4][,PTH,s5]

[*cc]

Parameters

Parameter	Description	Range	Default
ADD,s1	IP address or host name of the	32 characters	
ADD,ST	FTP server	max.	-
PRT,d2	FTP server port number	0-65535	21
LGN,s3	ETD conver login	32 characters	
LGN,S3	FTP server login	max.	
PWD.s4	FTP server password	32 characters	
F VVD,54	ir ir seivei password	max.	
PTH,s5	Path used on the FTP server	255 characters	
111,33	auruscu on mer ir server	max.	
*cc	Optional checksum	*00-*FF	

Example

\$PASHS,FTP,PAR,ADD,ftp.ashtech.com,PRT,21,LGN,Ashtech,PWD, u6huz8,PTH,/my folder*14

Relevant Query Command \$PASHQ,FTP

See Also \$PASHS,FTP,PUT

FTP, PUT: Uploading Files to FTP

Function

This command is used to send files from the receiver's internal memory or USB key to the FTP server, as defined through the \$PASHS,FTP,PAR command.

Up to 10 files may be transferred through a single command line.

Command Format

Syntax

\$PASHS,FTP,PUT,[d1],[s2],[s3],s4,[s5,]...[,s13][*cc]

Parameters

Parameter	Description	Range	Default
d1	Memory where the files to be transferred can be found: O: Receiver's internal memory If d1 is missing, the memory selected through \$PASHS,MEM is the one where the files should be found.	0,2	-
s2	Subfolder created on the FTP server, in the folder specified in the Path parameter (PTH,s5) of the \$PASHS,FTP,PAR command. If s2 is not specified, files are saved directly in the <path> folder.</path>	255 characters max.	Empty
s3	Remote path on FTP server	255 characters max.	Empty
s4-s13	Names of the files to be uploaded to the FTP server. The "*" character can be used to select several files. In this case, the filename string should be placed between quotation marks (" or ')	255 characters max.	
*cc	Optional checksum	*00-*FF	

Examples

Transferring a single file (G1234A09.134) to the FTP server: \$PASHS,FTP,PUT,,,,G1234A09.134*59

Transferring two files (GabcdA09.134 and GabcB09.134) to the FTP server:

\$PASHS,FTP,PUT,0,,,GabcdA09.134,GabcB09.134*11

Transferring all the files from the internal memory to the FTP server:

\$PASHS,FTP,PUT,0,,,"*.*"*54

Transferring all the files from the USB key collected on day 65 to the FTP server:

\$PASHS,FTP,PUT,2,,,'*.65'*ED

Comments

 Right after submitting a command line, the following response line will be returned if the command syntax is correct:

\$PASHR.ACK*3D

 After a successful file transfer, the following response line is returned:

\$PASHR.FTP.OK*1E

• If the file transfer fails, the following response line is returned:

\$PASHR.FTP.FAIL*18

• If you submit a new command while a file transfer sequence is still in progress, your new command is rejected and the following response line is returned: \$PASHR,FTP,BUSY*07

Relevant Query Command

\$PASHQ.FTP

See Also \$PASHS,FTP,PAR

GLO: GLONASS Tracking

Function This command is used to enable or disable GLONASS

tracking. It is valid only if the GLONASS option has been

activated in the receiver.

Command Format Syntax

\$PASHS,GLO,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) GLONASS tracking.	ON, OFF	ON
*cc	Optional checksum	*00-*FF	

Example

Enabling GLONASS: \$PASHS,GLO,ON*1C

Relevant Query Command

\$PASHQ,GLO

See also \$F

\$PASHS,SBA

GNS,CFG: Selecting a GNSS Mode

 $\textbf{Function} \qquad \text{This command allows you to select the GNSS mode that the} \\$

receiver should use. The GNSS mode refers to the

constellations and frequencies used.

Command Format Syntax

\$PASHS,GNS,CFG,d1[*cc]

Parameters

Parameter	Description	Range
	GNSS mode:	
	• 0: GPS L1	
d1	1: GPS L1 & GLONASS L1	0, 1, 2, 3, 4,
	• 2: GPS L1/L2P	
	• 3: GPS L1/L2C	3
	 4: GPS L1/L2P & GLONASS L1/L2 	
	• 5: GPS L1/L2C & GLONASS L1/L2	
*cc	Optional checksum	*00-*FF

The table below contains the tracked signals depending on the GNSS mode used:

GNSS Mode	GPS			GLOI	NASS	SBAS	
	L1C	L1P (Y)	L2C	L2P(Y)	L1C	L2C	L1C
0	•	•					•
1	•	•			•		•
2	•	•		•			•
3	•		•				•
4	•	•		•	•	•	•
5	•		•		•	•	•

Example

Setting the receiver GNSS mode to GPS L1/L2P & GLONASS L1/L2:

\$PASHS,GNS,CFG,4*59

Comments

- Changing the GNSS mode setting causes GNSS reception to be reset (the number of received/used satellites drops to 0 straight away and then rapidly comes back to normal).
- The default value depends on the installed firmware options ("4" if the GNSS L2 option has been installed, "1" otherwise).
- The command will be NAKed if the firmware option corresponding to the requested change has not been activated.

Relevant Query Command

\$PASHQ,GNS,CFG

See Also \$PASHS,GLO

\$PASHS,SBA

INI: Receiver Initialization

Function

This command resets the receiver memory and then restarts the receiver.

Command Format

Syntax

\$PASHS,INI,d1[*cc]

Parameters

Parameter	Description	Range
d1	Init code:	0, 1, 2, 3
*cc	Optional checksum	*00-*FF

Example

Resetting all and restarting the receiver:

\$PASHS,INI,1*26

Relevant Query Command

None.

See also

\$PASHS,RST

LCS: Enabling/Disabling Use of Local Coordinate System

Function

This command is used to enable or disable the use of the local coordinate system in the receiver. Having the receiver using a local coordinate system requires that it receives RTCM 3.1 message type 1021, 1022 or 1023 from the base.

Command Format Syntax

\$PASHS,LCS,s1[*cc]

Parameters

Parameter	Description	Range	Default
	ON: Local coordinate system used if RTCM 3.1 messages received. OFF: Coordinate system used is WGS84.	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	-

Example

Enabling the use of the local coordinate system in the receiver:

\$PASHS,LCS,ON*04

Relevant Query \$PASHQ,LCS **Commands** \$PASHQ,PAR

LOG, DEL: Deleting Log Files

Function This command is used to delete log files.

Command Format

Syntax

\$PASHS,LOG,DEL,d[*cc]

Parameters

Parameter	Description	Range
d	Index of the log file you want to delete. Use the \$PASHQ,LOG, LST command to read the index associated with each existing log file. Use d=999 to delete all the log files, but the current one.	limit
*cc	Optional checksum	*00-*FF

Example

Deleting all log files:

\$PASHS,LOG,DEL,999*45

Relevant Query Command

\$PASHQ,LOG,LST

See Also

\$PASHQ,LOG

LOG,PAR: Log File Settings

Function

This command is used to set the log file. A log file keeps track of the different connections performed in a day (one file created per day).

Command Format

Syntax

\$PASHS,LOG,PAR,s1,d2,d3[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enabling/disabling the log file: ON: Enable OFF: Disable	ON, OFF	ON
d2	Maximum size, in Mbytes, allowed for a log file.	1-90	1
d3	Number of days during which log files are kept in memory. After this delay, they are automatically deleted.	1-100	10
*cc	Optional checksum	*00-*FF	

Example

Enabling the log file with a maximum size of 2 Mbytes and 10 days of backup:

\$PASHS,LOG,PAR,ON,2,10*40

Relevant Query Command

\$PASHQ,LOG

See Also

\$PASHS,LOG,DEL \$PASHS,LOG,LST

LTZ: Time Zone

Function This command is used to set the local time zone.

Command Format Syntax

\$PASHS,LTZ,d1,d2[*cc]

Parameters

Parameter	Description	Range	Default
d1	Local time zone (hours).	-13 to +13	0
d2	Local time zone (minutes)	0-59	0
*cc	Optional checksum	*00-*FF	

Example

Setting local time to UTC+2:

\$PASHS,LTZ,2,0*35

Relevant Query \$PASHQ,ZDA

Command

See also \$PASHS,ZDA

MDM,DAL: Dialing and Hanging up

Function This command is used to dial the phone number stored in

memory or to hang up the modem.

Command Format Syntax

\$PASHS,MDM,DAL,d[*cc]

Parameters

Parameter	Description	Range
Id	Dials the phone number. Hangs up the modem.	0-1
[*cc]	Optional checksum	*00-*FF

Examples

Dialing the stored phone number:

\$PASHS,MDM,DAL,1*49

Hanging up:

\$PASHS,MDM,DAL,0*48

Relevant Query Command \$PASHQ,MDM

See also \$PASHS,MDM,PAR

\$PASHS,MDM,INI

MDM, INI: Initializing the Modem

Function This command is used to initialize the modem.

Command Format

Syntax

\$PASHS,MDM,INI[*cc]

Parameters

None.

Example

Initializing the modem:

\$PASHS,MDM,INI

If modem initialization is successful, you will get the following answer:

\$PASHR,MDM,INI,OK*7A

If modem initialization failed, you will get the following answer:

\$PASHR,MDM,INI,FAIL*7C

Relevant Query \$P.

Command

\$PASHQ,MDM

See also

\$PASHS,MDM,PAR

MDM, OFF: Powering Off the Internal Modem

Function This command is used to power off the internal modem. By

default, the modem is off.

Command Format Syntax

\$PASHS,MDM,OFF[*cc]

Parameters

None.

Example

Turning off the internal modem:

\$PASHS,MDM,OFF*52

Relevant Query

Command

\$PASHQ,MDM

See also \$PASHS,MDM,ON

MDM,ON: Powering On the Internal Modem

Function This command is used to power on the internal modem. By

default, the modem is off.

Command Format Syntax

\$PASHS,MDM,ON[*cc]

Parameters

None.

Example

Turning on the internal modem:

\$PASHS,MDM,ON*1C

Relevant Query Command

\$PASHQ,MDM

See also \$PASHS,MDM,OFF

MDM, PAR: Setting the Modem Parameters

Function This command is used to set the modem parameters.

Command Format Syntax

\$PASHS,MDM,PAR[,PWR,s1][,PIN,s2][,BND,d3][,PTC,d4][,CBS,d5]
[,APN,s6][,LGN,s7][,PWD,s8][,IPT,d9][PHN,s10][,ADL,c11],[RNO,d12][*cc]

Parameters

Parameter	Description	Range	Default
PWR,s1	Power mode: • AUT: Automatic • MAN: Manual	AUT, MAN	MAN
PIN,s2	PIN code	4-8 digits	Empty
BND,d3	Band:	0-2	0
PTC,d4	Protocol: • 0: CSD • 1: GPRS	0-1	1
CBS,d5	CSD mode:	0-1	0
APN,s6	Access Point Name (GPRS)	32 char. max.	Empty
LGN,s7	Login (GPRS)	32 char. max.	Empty
PWD,s8	Password (GPRS)	32 char. max.	Empty
IPT,d9	Internet Protocol: • 0: TCP • 1: UDP	0-1	0
PHN,s10	Phone number (CSD)	20 digits max.	Empty

Parameter	Description	Range	Default
ADL,c11	Auto-dial mode. When this parameter is set to Yes (Y), the receiver will do the following when next turned on: • if d4=0, the phone number that the receiver was last communicating with will be re-dialed automatically. • if d4=1, a connection to the mount point or IP server to which the receiver was last connected will be initiated automatically.	Y, N	Υ
RNO,d12	Maximum number of re-dials (CSD)	0-15	2
*cc	Optional checksum	*00-*FF	

Examples

Setting GPRS Configuration:

\$PASHS,MDM,PAR,PWR,AUT,PIN,1234,BND,0,PTC,1,APN,orange.fr,LGN, orange,PWD,orange,IPT,0*18

Setting GSM data configuration:

\$PASHS,MDM,PAR,PWR,AUT,PIN,1234,BND,1,PTC,0,CBS,1,PHN,0228093 838,ADL,Y,RNO,5*54

Relevant Query Command

\$PASHQ,MDM

See also

\$PASHS,DAL

\$PASHS,DIP \$PASHS,NTR \$PASHS,MWD

MDP: Setting Port A to RS232 or RS422

Function This command is used to set port A as an RS232 or RS422

serial port.

Command Format Syntax

\$PASHS,MDP,A,c[*cc]

Parameters

Parameter	Description	Range	Default
С	Port setting (RS232 or RS422)	232, 422	232
*cc	Optional checksum	*00-*FF	

Example

Setting port A to RS422:

\$PASHS,MDP,A,422

Relevant Query Command \$PASHQ,MDP

See also \$PASHS,PRT

\$PASHS,CTS

MEM: Selecting Memory Device Used

Function

This command is used to select the memory used by the receiver for data storage.

Command Format

Syntax

\$PASHS,MEM,d[*cc]

Parameters

Parameter	Description	Range	Default
d	Memory used: • 0: Internal memory (NAND Flash) • 2: USB mass storage key	0, 2	0
*cc	Optional checksum	*00-*FF	

Example

Selecting internal memory as the memory used by the receiver:

\$PASHS,MEM,0*2C

Relevant Query Command

\$PASHQ,MEM

See also \$PASHS,FIL,D

\$PASHQ,FLS \$PASHQ,FIL,LST

MET, CMD: Trigger String Querying Meteorological Unit

Function

This command is used to define the character string that will query the meteorological unit. The command also specifies the ID of the receiver port used to communicate with the meteorological unit.

The trigger string is in the form "*xxxxxx" and the default one is *0100P9.

Command Format

Syntax

\$PASHS,MET,CMD,c1,s2[*cc]

Parameters

Parameter	Description	Range
c1	Receiver serial port connected to the meteorological unit.	A, B, F
s2	Trigger string (not including the leading "*" character)	20 characters max.
*cc	Optional checksum	*00-*FF

Example

Setting trigger string to "*0100P9":

\$PASHS,MET,CMD,A,0100P9*66

Relevant Query

Command

\$PASHQ,MET

See Also

\$PASHS,MET,INIT \$PASHS,MET,INTVL \$PASHS,OUT,x,MET

MET,INIT: Initialization String for Meteorological Unit

Function

This command is used to define the character string that will initialize the meteorological unit. The command also specifies the ID of the receiver port used to communicate with the meteorological unit.

The initializing string is in the form "*xxxxxx". There is no initialization string defined by default.

Command Format

Syntax

\$PASHS,MET,INIT,c1,s2[*cc]

Parameters

Parameter	Description	Range
c1	Receiver serial port connected to the meteorological unit.	A, B, F
s2	Initialization string (not including the leading "*" character)	20 characters max.
*cc	Optional checksum	*00-*FF

Example

Setting initialization string to "*9900ID":

\$PASHS,MET,INIT,A,9900ID*53

Relevant Query Command

\$PASHQ,MET

See Also

\$PASHS,MET,CMD \$PASHS,MET,INTVL \$PASHS,OUT,x,MET

MET,INTVL: Query Time Interval for Meteo Data

Function

This command is used to define the time interval through which the receiver will regularly ask the meteorological unit to return the current values of meteo data. The command also specifies the ID of the receiver port used to communicate with the meteorological unit.

By default, the receiver will query the meteorological unit every 5 seconds once the receiver has notified the meteorological unit, through the \$PASHS,OUT,x,MET,ON command,to start operating.

Command Format

Syntax

\$PASHS,MET,INTVL,c1,d2[*cc]

Parameters

Parameter	Description	Range	Default
c1	Receiver serial port connected to the meteorological unit.	A, B, F	
d2	Query interval, in seconds	5-9999	5
*cc	Optional checksum	*00-*FF	

Example

Setting query interval to 10 seconds:

\$PASHS.MET.INTVL.A.10*0C

Relevant Query

Command

\$PASHQ,MET

See Also

\$PASHS,MET,CMD \$PASHS,MET,INIT \$PASHS,OUT,x,MET

MET, PAR: Setting the Meteorological Unit

Function

This command is used to define all the parameters needed to communicate with the meteorological unit.

Following the execution of this command, and then that of \$PASHS,OUT,x,MET,ON, the receiver will regularly query the meteorological unit by sending the trigger string every x seconds of query interval.

Command Format

Syntax

\$PASHS,MET,PAR,c1,s2,s3,d4[*cc]

Parameters

Parameter	Description	Range	Default
c1	Receiver serial port connected to the meteorological unit.	A, B, F	
s2	Initialization string	20 characters max.	
s3	Trigger string	20 characters max.	
d4	Query interval, in seconds. "0" means no query.	0; 5-9999	5
*cc	Optional checksum	*00-*FF	

Comments

- This command overwrites all the settings previously performed with the following commands:
 - PASHS,MET,INIT
 - *PASHS,MET,INTVL
 - \$PASHS,MET,CMD
- In fact, the \$PASHS,MET,PAR command is used for the same purpose as, and is more convenient than, the above three commands, which are maintained only for the sake of compatibility with the Ashtech iCGRS reference station.

Example

Setting the meteorological unit:

\$PASHS,MET,PAR,A,*9900ID,*0100P9,5*57

Relevant Query Command

\$PASHQ,MET

See Also \$PASHS,MET,CMD

\$PASHS,MET,INIT \$PASHS,MET,PAR \$PASHS,OUT,x,MET

MWD: Setting the Modem Timeout

Function

This command is used to set the modem watchdog timeout. This parameter refers to the time during which the modem connection is active but no data is sent or received through the modem port. In case of timeout, the modem will hang up automatically.

Command Format

Syntax

\$PASHS,MWD,d[*cc]

Parameters

Parameter	Description	Range	Default
d	Timeout setting: • 1-99: Modem timeout in minutes. • 0: No timeout	0-99	0
*cc	Optional checksum	*00-*FF	

Example

Setting the timeout to 5 minutes:

\$PASHS,MWD,5*32

Relevant Query Command \$PASHQ,MWD

See also

\$PASHS,MDM,PAR

\$PASHQ,FLS

NME: Enabling/Disabling NMEA Messages

Function

This command is used to enable or disable NMEA messages and Ashtech NMEA-like messages.

Command Format

Syntax

\$PASHS,NME,s1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range
s1	Data message type	See tables below
c2	Port routing the message: • A, B, F: Serial port • C: Bluetooth • I, P, Q, I1-I9: Ethernet • E: Modem • M, U: Internal memory (M), USB key (U) • R: Automatic recording session	A, B, C, E, F, I, M, P, Q, R, U, I1-I9
s3	Enables (ON) or disables (OFF) the message	ON, OFF
f4	Output rate: Output rate: Omitted: The message output rate will be as defined with \$PASHS,NME,PER Setting \$PASHS,POP to "20" is a prior condition to operating at 0.05 s (20 Hz). If is not applicable to messages TTT, PTT and XDR.	0.05 s or 0.1-0.4 s if [F] option acti- vated. 0.5-0.9 s 1-999 s
*cc	Optional checksum	*00-*FF

NMEA messages:

Data	Description
ALM	GPS almanac data
DTM	Datum Reference
GGA	GPS fix data
GLL	Geographic position - Latitude / Longitude
GRS	GNSS range residual
GSA	GNSS DOP and active satellites
GST	GNSS pseudo-range error statistics
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
VTG	Course over ground and ground speed
XDR	Transducer measurements

Data	Description
ZDA	Time and date

Ashtech NMEA-like messages:

Data	Description
ATT	Heading
CRT	Cartesian coordinates
DCR	Delta Cartesian
DPO	Delta position
LTN	Latency
POS	Position
PTT	1 PPS time tag
RRE	Residual error
SAT	Satellite status
SGL	GLONASS satellite status
SGP	GPS and SBAS satellite status
TTT	Event marker
VEC	Baseline vector

Example

\$PASHS,NME,GGA,C,ON,1*01

Comments

- For ALM messages, the f4 parameter can only take an integer value of seconds (by default 3600) and refers to the interval between messages related to the same satellite and with the same content.
- For a given satellite, the ALM messages are therefore renewed every "x" seconds (x=f4), or following a change in the message content ("on change"), whichever occurs first.
- ALM messages cannot be output more than once over a given period of 1 second.

Relevant Query Command

\$PASHQ,NMO

See also \$PASHS,NME,PER

NME, ALL: Disabling All NMEA and NMEA-Like Messages

Function

This command is used to disable all NMEA messages and Ashtech NMEA-like messages currently enabled on the

specified port.

Command Format

Syntax

\$PASHS,NME,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID: A, B, F: Serial port C: Bluetooth port I, P, Q, I1-I9: Ethernet port E: Modem M, U: Memory R: Data recording through session	A, B, C, E, F, I, M, P, Q, R, U, 11-19
*cc	Optional checksum	*00-*FF

Example

Disabling all NMEA and NMEA-like messages on port A: \$PASHS,NME,ALL,A,OFF*50

NME, PER: Setting Unique Output Rate for all NMEA Messages

Function

This command is used to set the same output rate for all NMEA and Ashtech NMEA-like messages. This command will overwrite all the output rates set individually for each message type using \$PASHS,NME,xxx.

Command Format

Syntax

\$PASHS,NME,PER,f[*cc]

Parameters

Parameter	Description	Range	Default
f	Output rate. Setting \$PASHS,POP to "20" is a prior condition to operat- ing at 0.05 s (20 Hz).		1 s
*cc	Optional checksum	*00-*FF	

Example

Setting the output rate to 1 second:

\$PASHS,NME,PER,1*45

Relevant Query Command

\$PASHQ,NMO

See also

\$PASHS,NME

\$PASHS,POP

NPT: Tagging SBAS Differential Positions in NMEA & NMEA-Like Messages

Function

This command allows you to define the code the receiver will insert in each of its NMEA-like or NMEA messages to tell that the position solution inserted in the message is of the SBAS Differential type.

Command Format

Syntax

\$PASHS,NPT,d1,d2[*cc]

Parameters

Parameter	Description	Range	Default
d1	Code assigned to SBAS differential position solution in NMEA-like messages (CRT, DCR, DPO, POS, VEC): • 0: Code "1" • 1: Code "9"	0,1	0

Parameter	Description	Range	Default
d2	Code assigned to SBAS differential position solution in NMEA messages (GGA): • 0: Code "2" • 1: Code "9"	0, 1	0
*cc	Optional checksum	*00-*FF	

Example

Tagging SBAS Differential position solutions in NMEA-like and NMEA messages with code "9":

\$PASHS,NPT,1,1*3F

Relevant Query Commands

\$PASHQ,NPT \$PASHQ,PAR

NTR,LOD: Loading the NTRIP Caster Source Table

Function

This command is used to load the source table from the NTRIP caster.

Command Format

Syntax

\$PASHS,NTR,LOD[,c1][*cc]

Parameters

None.

Parameter	Description	Range
c1	Internet port used to connect to the caster: E: Internal modem P: Ethernet stream 1 Q: Ethernet stream 2 If c1 is omitted, the port used is the port defined through the last \$PASHS,NTR,PAR command run.	E, P, Q
*cc	Optional checksum	*00-*FF

Example

Loading the source table:

\$PASHS,NTR,LOD

If the source table is downloaded successfully, the following response line will be returned:

\$PASHR,NTR,OK*14

If the receiver fails to download the source table, the following response line will be returned:

\$PASHR,NTR,FAIL*12

Relevant Query Command None.

See also

\$PASHQ,NTR,TBL

\$PASHS,NTR,PAR

NTR, MTP: Connecting Receiver to NTRIP Caster Mount Point

Function This

This command allows you to connect the receiver to a NTRIP

caster mount point.

Command Format

Syntax

\$PASHS,NTR,MTP,s1[,c2][*cc]

Parameters

Parameter	Description	Range
s1	Name of the NTRIP mount point, or OFF command	100 characters
51	(ending the connection to the current mount point).	max., or OFF
c2	Internet port used to connect to the caster: E: Internal modem P: Ethernet stream 1 Q: Ethernet stream 2 If c2 is omitted, the port used is the port defined through the last \$PASHS,NTR,PAR command run.	E, P, Q
*cc	Optional checksum	*00-*FF

Example

Connecting to mount point MUWFO:

\$PASHS,NTR,MTP,MUWF0*4D

If the connection is successful, the following response line will be returned:

\$PASHR,NTR,OK*cc

If the connection failed, the following response line will be returned:

\$PASHR,NTR,FAIL*12

Relevant Query Command

None.

See also

\$PASHQ,NTR,TBL

NTR, PAR: NTRIP Settings

Function This command allows you to set all the NTRIP parameters.

Command Format Syntax

\$PASHS,NTR,PAR[,ADD,s1][,PRT,d2][,LGN,s3][,PWD,s4][,TYP,d5]
[,IPP,c6][*cc]

Parameters

Parameter	Description	Range
ADD,s1	Caster IP address or host	000.000.000.000-255.255.255.255
ופ,טטא	name	or www
PRT,d2	Caster port number	0-65535
LGN,s3	Login	32 characters max.
PWD,s4	Password	32 characters max.
TYP,d5	Caster type: • 0: Client • 1: Server	0-1
IPP,c6	Internet port used on the receiver to connect it to the caster: E: Internal modem (default) P: Ethernet stream 1 Q: Ethernet stream 2	E, P, Q
*cc	Optional checksum	*00-*FF

Example

Entering NTRIP settings for a client caster by specifying its IP address, port number, login and password:

\$PASHS,NTR,PAR,ADD,192.34.76.1,PRT,2100,LGN,Ashtech,PWD, u6huz8,TYP,0*52

Relevant Query \$PASHQ,NTR Commands \$PASHQ,PAR

See Also \$PASHS,NTR,MTP

\$PASHS,NTR,LOD

OCC: Writing Occupation Data to Raw Data File

Function This command is used to write information about the current

occupation to the raw data file being logged.

Command Format Syntax

\$PASHS,OCC,d1,d2,s3[,s4][*cc]

Parameters

Parameter	Description	Range
d1	Occupation type: 0: Static 1: Quasi-static 2: Dynamic 3: Event 4: On kinematic bar, 20 cm long	0-4
d2	Occupation event: • 0: Begin • 1: End	0-1
s3	Occupation name	255 characters max.
s4	Occupation description	255 characters max.
*cc	Optional checksum	*00-*FF

Examples

Starting a static occupation on point "SITE01":

\$PASHS,OCC,0,0,SITE01,Park_Entrance*63

Ending the static occupation on point "SITE01":

\$PASHS,OCC,0,1,SITE01,Park_Entrance*62

Relevant Query

\$PASHQ,OCC

Command

See also \$PASHS,REC

\$PASHS,ATM

OPTION: Receiver Firmware Options

Function

This command is used to install the receiver firmware options that have been purchased after the initial receiver purchase. Options purchased at the time of receiver purchase are factory pre-loaded.

Command Format

Syntax

\$PASHS,OPTION,c1,h2[*cc]

Parameters

Parameter	Description	Range	
c1	Option ID	K, F, Z, S, P, M, L, N, C, R (See table below)	
h2	Hexadecimal unlock code	13 characters max.	
*cc	Optional checksum	*00-*FF	

Option ID	Label	Description
К	RTK	Enables RTK processing. Corrections generated in RTCM2.3, RTCM3.0, CMR or CMR+ format.
F	FASTOUTPUT	Enables data output at 20 Hz
Z	MODEM	Enables the GSM/GPRS modem
S	GLONASS	Enables GLONASS
Р	GNSSL2	Enables L2 tracking
М	RTK2	Enables RTK using proprietary data formats (ATOM, DBEN or LRK)
L	RTK3	Enables limited RTK range
N	STA	Enables RTK base
С	CASTER	Enables the embedded NTRIP caster
R	FLYING RTK	Enables RTK computation (Flying RTK mode only) with RTCM2.3, RTCM3.0, CMR, CMR+, LRK, DBEN, ATOM. Generates RTCM2.3, RTCM3.0, CMR, CMR+, ATOM

NOTE: Options K, M and L are also relevant to a base.

Comments

- When activating GLONASS or GNSSL2, it is essential that you modify the receiver configuration, using \$PASHS,GNS, CFG to enable the tracking of the new signals. Alternatively, you can run \$PASHS,RST to update the default configuration, taking into account all the activated firmware options.
- Firmware options may be activated for limited periods of time, depending on the type of unlock code generated for each of them. Several validity times are possible:
 - Permanent
 - 26 weeks
 - 13 weeks
 - 5 weeks
 - 30 days
 - 15 days
 - 8 days

Example

Enabling the RTK option: \$PASHS,OPTION,K,878A8874*48

Relevant Query Command

\$PASHQ,OPTION

See also \$PASHQ,RID

OUT,x,MET: Starting Meteo Data Acquisition

Function

This command is used to start the data processing in the meteorological unit. The command also specifies the ID of the receiver port used to communicate with the meteorological unit.

By executing the command, the meteorological unit is first initialized, and then the receiver is allowed to send queries at regular intervals of time, based on the preset value of query interval.

Command Format

Syntax

\$PASHS,OUT,c1,MET,s2[*cc]

Parameters

Parameter	Description	Range
c1	Receiver serial port connected to the meteorological unit.	A, B, F
s2	Enable/disable processing in meteorological unit	ON, OFF
*cc	Optional checksum	*00-*FF

Example

Starting the meteorological unit connected to port A: \$PASHS,OUT,A,MET,ON*0B

Relevant Query Command

\$PASHQ,MET

See Also

\$PASHS,MET,CMD \$PASHS,MET,INIT \$PASHS,MET,PAR \$PASHS,MET,INTVL

OUT,x,TLT: Starting Tiltmeter Data Acquisition

Function

This command is used to start the data processing in the tiltmeter. The command also specifies the ID of the receiver port used to communicate with the tiltmeter.

By executing the command, the tiltmeter is first initialized, and then the receiver is allowed to send queries at regular intervals of time, based on the preset value of query interval.

Command Format

Syntax

\$PASHS,OUT,c1,TLT,s2[*cc]

Parameters

Parameter	Description	Range
c1	Receiver serial port connected to the tiltmeter.	A, B, F
s2	Enable/disable processing in tiltmeter	ON, OFF
*cc	Optional checksum	*00-*FF

Example

Starting the tiltmeter connected to port A:

\$PASHS,OUT,A,TLT,ON*1B

Relevant Query Command

\$PASHQ,TLT

See Also

\$PASHS,TLT,CMD \$PASHS,TLT,INIT \$PASHS,TLT,PAR \$PASHS,TLT,INTVL

PEM: Setting the Position Elevation Mask

Function This command is used to set the elevation mask used in the

position processing.

Command Format Syntax

\$PASHS,PEM,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Elevation mask angle, in degrees	0-90°	5
*cc	Optional checksum	*00-*FF	

Example

Setting the elevation mask for position processing to 15 degrees:

\$PASHS,PEM,15*05

Relevant Query Command

\$PASHQ,PEM

See also \$PASHS,ELM

PHE: Setting the Active Edge of the Event Marker Pulse

Function

This command is used to set the active edge (rising or falling) of the event marker pulse used in photogrammetry time-

tagging.

Command Format Syntax

\$PASHS,PHE,c1[*cc]

Parameters

Parameter	Description	Range	Default
c1	Active edge code: • "R" for rising edge • "F" for falling edge	R, F	R
*cc	Optional checksum	*00-*FF	

Example

Making the falling edge active:

\$PASHS,PHE,F*42

Relevant Query Command

\$PASHQ,PHE

See Also \$PASHS,NME,TTT

POP: Setting Internal Update Rate for Measurements and PVT

Function

This command allows you to set the updates rate used internally in the measurements and position processing.

Command Format

Syntax

\$PASHS,POP,d[*cc]

Parameters

Parameter	Description	Range	Default
d	Internal update rate, in Hz, for measurements and PVT.	10, 20	20
*cc	Optional checksum	*00-*FF	

Example

Setting the update rate to 10 Hz:

\$PASHS,POP,20*17

Comments

 Outputting data at 20 Hz through \$PASHS,NME, \$PASHS,ATM and \$PASHS,RAW requires that the present update rate stays at 20 Hz (default value). Changing the update rate causes GNSS reception to be reset (the number of received/used satellites drops to 0 straight away and then rapidly comes back to normal).

Relevant Query Command

\$PASHQ,POP

See Also

\$PASHS,NME \$PASHS,ATM \$PASHS.RAW

POS: Setting the Antenna Position

Function

This command allows you to enter the geographic coordinates of the GNSS antenna. It is usually used to enter the position of a base. If there is no computed position available from the receiver when the command is applied, then the entered position is used to initialize the receiver position in order to speed up satellite tracking.

Depending on the last \$PASHS,ANR command applied to the receiver, the antenna position you enter will be either that of the phase center, the ARP or the ground mark.

Command Format

Syntax

\$PASHS,POS,m1,c2,m3,c4,f5[*cc]

Parameters

Parameter	Description	Range
m1	Latitude in degrees and minutes with 7 decimal places (ddmm.mmmmmmm)	0-90
c2	North (N) or South (S)	N, S
m3	Longitude in degrees, minutes with 7 decimal places (ddmm.mmmmmmm)	0-180
c4	West (W) or East (E)	W, E
f5	Height in meters	±0-9999.9999
*cc	Optional checksum	*00-*FF

Example

Setting the antenna position to 37°22.2912135'N, 121°59.7998217'W and 15.25 m:

\$PASHS,POS,3722.2912135,N,12159.7998217,W,15.25*1F

Relevant Query

\$PASHQ,CPD,POS

Command

See also \$PASHS,CPD,MOD,BAS

\$PASHS,RT3 \$PASHS,ANH \$PASHS,ANR

PPS: Setting PPS Pulse Properties

Function This command is used to set the period, offset and GPS

synchronized edge (rising or falling) of the PPS pulse.

Command Format Syntax

\$PASHS,PPS,f1,f2,c3[*cc]

Parameters

Parameter	Description	Range	Default
f1	PPS time period, a multiple or fraction of 1 second. • 0: 1 PPS disabled	0 to 1, with 0.1-sec increments 1 to 60, with 1-sec increments	0
f2	Time offset in milliseconds.	± 999.9999	0
c3	GPS-synchronized edge code: • "R" for rising edge • "F" for falling edge	R, F	R
*cc	Optional checksum	*00-*FF	

Example

Setting the PPS signal to a period of 2 seconds, with an offset of 500 ms and a GPS-synchronized rising edge:

\$PASHS,PPS,2,+500,R*74

Relevant Query Command \$PASHQ,PPS

See Also \$PASHS,NME (PTT)

PRT: Setting Baud Rates

Function

This command is used to set the baud rate of any of the serial ports used in the receiver (except port C).

Command Format

Syntax

\$PASHS,PRT,c1,d2[*cc]

Parameters

Parameter	Description	Range	
c1	Port ID	A, B, D, F	
d2	Baud rate	0-15 (see table below)	
*cc	Optional checksum	*00-*FF	

Code	Baud Rate	Code	Baud Rate
0	300	7	38400
1	600	8	57600
2	1200	9	115200
3	2400	10	230400
4	4800	11	480600
5	9600	12	921600
6	19200	13	1428571

Port A can operate in RS422 mode up to 1 428 571 Bd with any particular precaution. For higher speeds, shorter connections should be used. This is also true for all RS232 ports (A, B and F) for speeds higher than 115 200 Bd.

Example

Setting port A to 19200 Bd:

\$PASHS,PRT,A,6

Relevant Query Command

\$PASHQ,PRT

See also

\$PASHS,CTS \$PASHS,MDP

PWR,OFF: Powering Off the Receiver

Function This command is used to power off the receiver.

Command Format Syntax

\$PASHS,PWR,OFF[*cc]

Parameters

None.

Example

Turning off the receiver \$PASHS,PWR,OFF*43

Relevant Query Command

None.

PWR,PAR: Power Management

Function This command is used to set the voltage thresholds triggering

low-power alarms.

Command Format Syntax

\$PASHS,PWR,PAR,f1,f2[*cc]

Parameters

Parameter	Description	Range	Default
f1	ling a low-battery alarm	6.7-8.4	6.8
f2	External power voltage threshold, in volts, triggering a low-power alarm	9.0-36.0	9.1
*cc	Optional checksum	*00-*FF	-

Example

Setting the thresholds to respectively 7 and 9 V:

\$PASHS,PWR,PAR,7,9*41

Relevant Query Command \$PASHQ,PWR

RAW: Enabling/Disabling Raw Data Messages in Legacy Ashtech Format

Function

This command is used to enable or disable the standard, continuous output of raw data in legacy Ashtech format.

Command Format

Syntax

\$PASHS,RAW,s1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range	Default
s1	Raw data message type	See table below	
c2	Port routing the raw data message: Serial ports: A, B, F Bluetooth port: C Ethernet port: I, I1-I9 Memory: M (internal), U (USB) R: Automatic recording session (internal or external memory)	A, B, C, F, I, M, R, U, 11-19	-
s3	Enables (ON) or disables (OFF) the raw data message	ON, OFF	OFF
f4	Output rate in seconds. Keeping \$PASHS,POP at "20" is the necessary condition to operating at 0.05 s (20 Hz).	0.05 s or 0.1-0.4 s with [F] option acti- vated. 0.5-0.9 s, 1-999 s	1
*cc	Optional checksum	*00-*FF	

Raw data message types:

Data	Description
MPC	GPS/GLONASS/SBAS measurements
DPC	Compact GPS raw data
PBN	Position information
SNV	GPS ephemeris data
SNG	GLONASS ephemeris data
SNW	SBAS ephemeris data
SAL	GPS almanac data
SAG	GLONASS almanac data
SAW	SBAS almanac data
ION	Ionospheric parameters

Data	Description	
SBD	SBAS data message	

Examples

Enabling output of MPC message type on port A to 1 second: \$PASHS.RAW.MPC.A.ON.1*1E

Enabling output of SNV message type on port A to 300 seconds:

\$PASHS,RAW,SNV,A,ON,300*09

Comments

occurs first.

For each of the SNV, SNG, SNW, SAL, SAG, SAW and ION messages, the f4 parameter can only take an integer value of seconds and refers to the interval between messages related to the same satellite and with the same content.
 For a given satellite, each of these messages is therefore renewed every x seconds (where x=f4), or following a change in the message content ("on change"), whichever

Each of these messages cannot be output more than once over a given period of 1 second.

• By default, f4 is set as follows:

Output message	f4 Default Value
SNV, SNG, ION	900
SAL, SAG	3600
SNW	120
SAW	300

 The SBD message output rate is always 1 second (as decoded). Parameter f4 is ignored.

Relevant Query Command

\$PASHQ,RAW \$PASHQ,RWO

See also

\$PASHS,RAW,PER \$PASHS,RAW,ALL \$PASHS,POP

RAW, ALL: Disabling All Raw Data Messages

Function

This command is used to disable all the currently active raw data messages on the specified port.

Command Format

Syntax

\$PASHS,RAW,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID: Serial ports: A, B, F Bluetooth port: C Ethernet port: I, I1-I9 Memory: M, U R: Data recording through session	A, B, C, F, I, M, U, I1-I9, R
*cc	Optional checksum	*00-*FF

Example

Disabling all raw data messages on port A:

\$PASHS,RAW,ALL,A,OFF*52

Relevant Query

Command

None.

See Also

\$PASHS,RAW

RAW, PER: Setting Unique Output Rate for Raw Data

Function

This command is used to set the same output rate for raw data messages MPC, DPC and PBN. This command will overwrite the output rates set individually for each of these message types using \$PASHS,RAW,xxx. Setting this rate does not affect the data recording rate (set with \$PASHS,DRI).

Command Format

Syntax

\$PASHS,RAW,PER,f[*cc]

Parameters

Parameter	Description	Range	Default
f	Output rate, in seconds. Setting \$PASHS,POP to "20" is a prior condition to operat- ing at 0.05 s (20 Hz).		1 s
*cc	Optional checksum	*00-*FF	

Example

Setting the data output rate to 2 seconds:

\$PASHS,RAW,PER,2*44

Relevant Query Command

\$PASHQ,RAW

See also \$PASHS,RAW

\$PASHS,RAW,ALL \$PASHS,POP

RCP,GBx: GLONASS Carrier Phase Biases for User-Defined Receiver

Function

This set of two commands is used to define GLONASS carrier phase biases for a given receiver. One command deals with the GLONASS L1 band and the other with the GLONASS L2 band.

Command Format

Syntax

For the L1 band:

\$PASHS,RCP,GB1,s1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17[*c c]

For the L2 band:

\$PASHS,RCP,GB2,s1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17[*c c]

Parameters

Parameter	Description	Range
s1	Name of user-defined receiver for which GLONASS biases must be defined (case sensitive)	31 characters max.
f2	When a linear pattern is assumed for GLONASS biases, f2 represents the delta bias between two adjacent GLONASS frequency numbers.	Full range of Real variables allowed
f3-f16	When an arbitrary pattern is assumed for GLONASS biases, f3-f16 represent biases for GLONASS frequency numbers from -7 to 6	Full range of Real variables allowed
f17	Pseudo-range bias (in meters) between GPS and GLONASS constellations	
*cc	Optional checksum	*00-*FF

Comments

- Only fractional parts of GLONASS carrier phase biases are of practical importance.
- Running one of these commands on a receiver already stored in the list of user-defined receivers will save all the submitted parameters to permanent memory and keep all the others unchanged.
- You may not run the two commands (GB1 and GB2) for a given user-defined receiver. If you run just one of them, then the parameters corresponding to the other command will all be assumed to be invalid (i.e unknown). All userdefined receivers created from this receiver will also inherit these invalid parameters.
- The board will interpret any missing parameter in a command as a parameter for which there is currently no known valid value for this parameter.

Relevant Query Command

\$PASHQ,RCP

See Also \$PASHS,RCP,DEL

RCP, DEL: Deleting User-Defined Receiver Name

Function

This command is used to delete a user-defined receiver name.

Command Format Syntax

\$PASHS,RCP,DEL,s1[*cc]

Parameters

Parameter	Description	Range
s1	Receiver name you want to delete (case sensi-	31 characters
31	tive)	max.
*cc	Optional checksum	*00-*FF

Example

Deleting receiver name "MyReceiver":

\$PASHS,RCP,DEL,MyReceiver*74

Relevant Query Command

\$PASHQ,RCP

See Also \$PASHS,RCP,GB1

\$PASHS,RCP,GB2

RCP, REF: Naming Reference Receiver

Function This command is used to enter the reference receiver name.

Command Format

Syntax

\$PASHS,RCP,REF,s1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
s1	Receiver name (case-sensitive).	31 characters max.	Empty
d2	Receiver name preference: 0: s1 is ignored if the incoming reference data contain the reference receiver name 1: s1 is always used and the decoded reference receiver name is ignored.	0 or 1	0
*cc	Optional checksum	*00-*FF	

Comment

The supported receiver models are listed below (these are case-sensitive names):

ASHTECH

ProMark500

ProFlex500

MB500

PM5

MMapper100 ProMark100

MB100

NOVATEL

TRIMBLE

SEPTENTRIO

TOPCON

Example

Entering "Ashtech" as the name of the reference receiver: \$PASHS,RCP,REF,Ashtech*25

Relevant Query Commands

\$PASHQ,RCP,REF \$PASHQ,RCP

See Also \$PASHS,ANP,REF

RDP, OFF: Powering Off the Internal Radio

Function This command is used to power off the internal radio.

Command Format Syntax

\$PASHS,RDP,OFF[*cc]

Parameters

None.

Example

Turning off the internal radio:

\$PASHS,RDP,OFF*50

Relevant Query

Command

\$PASHQ,RDP,PAR,D

See also \$PASHS,RDP,ON

\$PASHS,RDP,PAR

RDP,ON: Powering On the Internal Radio

Function This command is used to power on the internal radio.

Command Format Syntax

\$PASHS,RDP,ON[*cc]

Parameters

None.

Example

Turning on the internal radio:

\$PASHS,RDP,ON*1E

Relevant Query Command

\$PASHQ,RDP,PAR,D

See also \$PASHS,RDP,OFF

\$PASHS,RDP,PAR

RDP, PAR: Setting the Radio

Function This command is used to set the radio connected to the

specified port.

Command Format Syntax

\$PASHS,RDP,PAR,c1,s2,d3,[s4],[c5],[d6],[s7],[c8],[c9][s10][*cc]

Parameters

Parameter	Description	Range
c1	ID of the port connected to the radio you want to set.	A, B, D, F

Parameter	Description	Range
s2	 Radio Model: PDL: Pacific Crest PDL RXO, Pacific Crest PDL HPB/LPB ADL: Pacific Crest ADL Vantage, Pacific Crest ADL Foundation MGL: Radio transmitter P/N 800986 MDL: U-Link LFE: License-free radio, Europe (ARF7474B) LFA: License-free radio, North America (ARF7474A) 	PDL, MGL, MDL, LFE, LFA, ADL (port A) PDL, LFE, LFA (Ports B, F) PDL, MDL (port D)
d3	Channel number	0-15 (PDL, MDL, MGL) 1-32 (ADL) 0-2 (LFE) 0-49 (LFA)
s4	Power management (if port D is used) AUT: Automatic MAN: Manual	AUT, MAN
c5	Protocol used: 0: Transparent (PDL, MDL or ADL) 1: TRIMTALK (PDL or ADL) or not used (MDL) 2: DSNP (PDL, MDL or ADL) 3: SATEL (ADL)	0-3
d6	Air link speed. For PDL: • 4800: 4800 Bd, GMSK modulation • 9600: 9600 Bd, GMSK or four-level FSK modulation • 19200: 19200 Bd, four-level FSK modulation For MDL: 4800, 7600 or 9600 For ADL: • 9600: 9600 Bd, four-level FSK modulation • 19200: 19200 Bd, four-level FSK modulation • 4800: 4800 Bd, GMSK modulation • 8000: 8000 Bd, GMSK modulation • 9600: 9600 Bd, GMSK modulation • 16000: 16000 Bd, GMSK modulation • 19200: 19200 Bd, GMSK modulation	4800, 7600, 9600, 19200
s7	Radio sensitivity (PDL, ADL and MDL only)	LOW, MED, HIG, OFF
c8	Scrambler (PDL and ADL only): • 0: Off • 1: On	0, 1

Parameter	Description	Range
s2	 Radio Model: PDL: Pacific Crest PDL RXO, Pacific Crest PDL HPB/LPB ADL: Pacific Crest ADL Vantage, Pacific Crest ADL Foundation MGL: Radio transmitter P/N 800986 MDL: U-Link LFE: License-free radio, Europe (ARF7474B) LFA: License-free radio, North America (ARF7474A) 	PDL, MGL, MDL, LFE, LFA, ADL (port A) PDL, LFE, LFA (Ports B, F) PDL, MDL (port D)
d3	Channel number	0-15 (PDL, MDL, MGL) 1-32 (ADL) 0-2 (LFE) 0-49 (LFA)
s4	Power management (if port D is used) AUT: Automatic MAN: Manual	AUT, MAN
c5	Protocol used: 0: Transparent (PDL, MDL or ADL) 1: TRIMTALK (PDL or ADL) or not used (MDL) 2: DSNP (PDL, MDL or ADL) 3: SATEL (ADL)	0-3
d6	Air link speed. For PDL: • 4800: 4800 Bd, GMSK modulation • 9600: 9600 Bd, GMSK or four-level FSK modulation • 19200: 19200 Bd, four-level FSK modulation For MDL: 4800, 7600 or 9600 For ADL: • 9600: 9600 Bd, four-level FSK modulation • 19200: 19200 Bd, four-level FSK modulation • 4800: 4800 Bd, GMSK modulation • 8000: 8000 Bd, GMSK modulation • 9600: 9600 Bd, GMSK modulation • 16000: 16000 Bd, GMSK modulation • 19200: 19200 Bd, GMSK modulation	4800, 7600, 9600, 19200
s7	Radio sensitivity (PDL, ADL and MDL only)	LOW, MED, HIG, OFF
с8	Scrambler (PDL and ADL only): • 0: Off • 1: On	0, 1

Parameter	Description	Range
c9	Forward Error Correction (PDL and ADL only): • 0: FEC Off • 1: Hamming FEC On	0,1
s10	Modulation format (for ADL only) • 4FSK • GMSK	4FSK, GMSK
*cc	Optional checksum	*00-*FF

Comments

The command will be NAKed if the receiver has not been told the radio is on the port specified by command \$PASHS,RDP,TYP.

If a PDL radio is used:

- The air link speed depends on the type of modulation used (GMSK or four-level FSK) as well as the channel spacing used.
- If the system can detect the channel spacing used, then the choice of modulation is done automatically as indicated in the table below.

Channel Spacing is:	You set c6 to:	Then modulation will be:
12.5 kHz	4800	GMSK
12.5 kHz	9600	4-level FSK
12.5 kHz	19200	Irrelevant, NAK message returned
25 kHz	4800	GMSK
25 kHz	9600	GMSK
25 kHz	19200	4-level FSK

 If the system fails to detect the channel spacing used, then the system tries to set the radio as indicated below.
 A NAK message will be returned if the the radio cannot respond properly to the request.

You set c6 to:	Then modulation will be:	
4800	GMSK	
9600	GMSK	
19200	4-level FSK	

 If an MDL radio is used and the DSNP protocol is selected, only the 4800 Bd baud rate can be used. The relationship between channel number and frequency in an LDE radio is summarized in the table below.

Channel Number	Frequency (MHz)	
0	869.450 (manufacturer's channel 19)	
1	869.525 (manufacturer's channel 84)	
2	869.600 (manufacturer's channel 85)	

Examples

Setting the internal Pac Crest radio receiver: \$PASHS,RDP,PAR,D,PDL,2,AUT,0,9600,LOW,0,0*75

Setting the internal U-Link Rx: \$PASHS,RDP,PAR,D,MDL,0,AUT,0,9600,LOW*6A

Setting the external U-Link TRx: \$PASHS,RDP,PAR,A,MGL,1*46

Relevant Query Command \$PASHQ,RDP,PAR

See also \$PASHS,RDP,ON

\$PASHS,RDP,OFF \$PASHS,RDP,TYP \$PASHQ,RDP, CHT

RDP, TYP: Defining the Type of Radio Used

Function

This command is used to set manually the type of radio connected to the specified port. Normally, the type of internal radio (typically connected to port D) is detected automatically.

Command Format

Syntax

\$PASHS,RDP,TYP,c1,s2[*cc]

Parameters

Parameter	Description	Range
c1	ID of port connected to the radio you want to set.	A, B, D, F
s2	Radio Model: UNKNOWN: Auto-detection (port D only) NONE: No radio PDL: Pacific Crest PDL RXO ADL: Pacific Crest ADL Vantage, Pacific Crest ADL Foundation MGL: Radio transmitter P/N 800986 MDL: U-Link LFE: License-free radio, Europe (ARF7474B) LFA: License-free radio, North America (ARF7474A)	Port A: NONE, PDL, MGL, MDL, LFE, LFA, ADL. Port D: UNKNOWN, NONE, PDL or MDL. Ports B, F: NONE, PDL, LFE or LFA.
*cc	Optional checksum	*00-*FF

Examples

Auto-detecting the internal radio receiver:

\$PASHS,RDP,TYP,D,UNKNOWN*4E

Setting the external radio as an Ashtech U-Link TRx:

\$PASHS,RDP,TYP,A,MGL*45

Relevant Query Command

\$PASHQ,RDP,TYP

See also \$PASHS,RDP,PAR \$PASHS,RDP,ON \$PASHQ,RDP, OFF

REC: Enable/Disable, Start/Stop Raw Data Recording

Function

This command allows you to enable, disable, start or stop raw data recording. Raw data is recorded in the memory you selected with the \$PASHS,MEM command.

Command Format

Syntax

\$PASHS,REC,c[*cc]

Parameters

Parameter	Description	Range
С	 Control character: Y: Yes. The receiver will immediately start recording data. This option also enables data recording at receiver power-up, i.e. recording will start every time you turn the receiver on, even if you stopped recording before the end of the previous session. N: No. The receiver will immediately stop recording data. This option also disables data recording at receiver power up, i.e. the receiver won't resume data recording when you next turn it on. This is the default mode. S: Stop. The receiver will immediately stop recording raw data. This option does not affect the way the receiver operates at power-up. R: Restart. The receiver will immediately start recording raw data. This option does not affect the way the receiver operates at power-up. 	Y, N, S, R
*cc	Optional checksum	*00-*FF

Examples

Starting raw data recording:

\$PASHS,REC,Y*54

Stopping raw data recording:

\$PASHS,REC,N*43

Relevant Query Command

\$PASHQ,REC

See also

\$PASHS,MEM \$PASHS,ATM \$PASHS,NME \$PASHS,RFB (Ring File Buffer)

REF: Enabling/Disabling External Reference Clock

Function This command is used to enable or disable the external

reference clock mode.

Command Format Syntax

\$PASHS,REF,s1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) the external reference clock mode.	ON, OFF	OFF
d2	Frequency, in MHz, of the external reference clock	5, 10, 20	20
*cc	Optional checksum	*00-*FF	-

Examples

Enabling a 20-MHz external reference clock:

\$PASHS,REF,ON,20*27

Disabling the external reference clock:

\$PASHS,REF,OFF*47

Relevant Query Command

\$PASHQ,REF

RFB: Enabling/Disabling Ring File Buffering

Function

This command is used to enable or disable the buffering of the ring file. This means allowing the receiver to continuously feed the ring file buffer with the last "d2" minutes of data available.

Whether the receiver is actually recording the data is still under the control of the \$PASHS,REC command or the Log button on the receiver front panel.

Command Format

Syntax

\$PASHS,RFB,s1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
s1	Enable/disable command: • Y: Enable ring file buffering • N: Disable ring file buffering	Y, N	N
d2	File duration, in minutes	1-120	5
*cc	Optional checksum	*00-*FF	

Example

Enabling ring file buffering for one hour:

\$PASHS,RFB,Y,60*7C

Relevant Query Command

\$PASHQ,RFB

See Also

\$PASHS,REC \$PASHS,MEM

RFT: Choosing File Format for Meteorological & Tiltmeter Data

Function

This command is used to choose the format in which the meteorological and tiltmeter data files will be recorded.

Command Format

Syntax

\$PASHS,RFT,d[*cc]

Parameters

Parameter	Description	Range	Default
	File format:		
d	0: G-file	0, 1	0
	1: D-file and G-file		
*cc	Optional checksum	*00-*FF	

Comments

D-files are structured as follows:

C <GPS seconds of week>,<GPS week> \$GPXDR,...

Example

Choosing D-file format:

\$PASHS,RFT,1*28

Relevant Query Command

\$PASHQ,RFT

See Also \$PASHS,REC

RNX,TYP: ATOM RNX Differential Message

Function

This command is used in a receiver used as a base to define the type and output rate of the ATOM RNX message generated by the base.

This command is now used as a replacement to the \$PASHS, ATD,TYP command, which was made obsolete in May 2010.

Command Format Syntax

 ${\tt \$PASHS,RNX,TYP,d1,d2[,d3][*cc]}$

Parameters

Parameter	Description	Range	Default
d1	Scenario number	See table below	4
d2	Output rate for observations, in seconds.	0.1-0.4 if [F] option activated. 0.5-0.9 1-1800	1
d3	Output rate for attributes (receiver and antenna names), in seconds.	0:Disabled 1-1800	31
*cc	Optional checksum	*00-*FF	

Scenario Number	Description
0	All available raw data in full presentation, full computed reference position follows at each epoch. This scenario is not recommended for use as differential protocol.
1	L1 pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs.
2	L1 SNR, pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs.
3	L1&L2 pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs.
4	L1 &L2 SNR, pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs.
100	L1&L2 compact pseudo-range and full carrier phase, extended fixed position follows each 12 epochs, all the data are decimated in 5 times compared to L1 carrier phase.
101	L1&L2 compact pseudo-range and compact carrier phase, extended fixed position follows every 12 epochs, all the data are decimated in 5 times compared to L1 carrier phase. This scenario cannot be used with a moving receiver.
201	Same as scenario 1, but extended computed reference position follows each epoch.
202	Same as scenario 2, but extended computed reference position follows each epoch.
203	Same as scenario 3, but extended computed reference position follows each epoch.
204	Same as scenario 4, but extended computed reference position follows each epoch.

Scenario Number	Description
300	Same as scenario 100, but extended computed reference position follows each epoch.

Example

Choosing scenario 4 with 1 sec and 30 sec for the output rates:

\$PASHS,RNX,TYP,4,1,30*6A

Relevant Query Command

\$PASHQ,RNX,MSI

See Also

\$PASHS,BAS

\$PASHS,CPD,MOD,BAS

RST: Default Settings

Function

This command is used to reset the receiver parameters to their default values.

Command Format

Syntax

\$PASHS,RST[*cc]

Parameters

None.

Example

Resetting the receiver:

\$PASHS,RST*20

Comments

The following GSM parameters are not affected by the \$PASHS,RST command:

- PIN code
- Band
- Access Point Name (GPRS)
- Login (GPRS)
- Password (GPRS)

The following Ethernet parameters are not affected by the \$PASHS,RST command:

DHCP setting

- IP address
- Sub-network mask
- Gateway IP address
- DNS 1 IP address
- DNS 2 IP address

•

Relevant Query Command

None.

See also \$PASHS,INI

RTC, MSG: Defining a User Message

Function

This command is used to input a user message that a base will be able to forward to a rover through RTCM message type 16, 36 or 1029. This command can only be applied to a base receiver with message type 16 or 1029 enabled in the receiver.

Command Format

Syntax

\$PASHS,RTC,MSG,s[*cc]

Parameters

Parameter	Description	Range
s	User message	90 characters max.
*cc	Optional checksum	*00-*FF

Example

Submitting a user message:

\$PASHS,RTC,MSG,<user message 90 characters max>

Relevant Query Command

None.

See also

\$PASHS,RTC,TYP

\$PASHS,BAS

\$PASHS,CPD,MOD,BAS

RTC, TYP: RTCM Message Type

Function

This command is used to choose the RTCM messages type that will be generated and broadcast by a base receiver as well as its output rate. This command can only be applied to a base receiver.

Command Format

Syntax

\$PASHS,RTC,TYP,d1,d2[*cc]

Parameters

Parameter	Description	Range
d1	Message type	0-36, 1000-1033, see tables below
d2		0, 0.1-0.4 (with [F] option activated 0.5-0.9, 1-1800
*cc	Optional checksum	*00-*FF

RTCM 2.3 messages:

Parameter	Description	Default
0	Disables all RTCM 2.3 messages	-
1	Differential GPS corrections	0
3	GPS reference station parameters	0
9	GPS partial correction set	0
16	GPS special message	0
18	RTK uncorrected carrier phase (18) RTK uncorrected pseudoranges (19)	1
20	RTK carrier phase correction (20) RTK high-accuracy, pseudorange corrections (21)	0
22	Extended reference station parameter	0
23	Antenna type definition record	31 s
24	Antenna reference point	13 s
31	Differential GLONASS corrections	0
32	Differential GLONASS reference station parameters	0
34	GLONASS partial correction set	0
36	GLONASS special message	0

RTCM 3.0 & 3.1 messages:

Parameter	Description	Default
1000	Disables all RTCM 3.0 messages	-

Parameter	Description	Default
1001	L1-only GPS RTK observables	0
1002	Extended L1-only GPS RTK observables	0
1003	L1 & L2 GPS RTK observables	0
1004	Extended L1 & L2 GPS RTK observables	1 s
1005	Stationary RTK reference station ARP	0
1006	Stationary RTK reference station ARP with antenna height	13 s
1007	Antenna descriptor	0
1008	Antenna descriptor & serial number	0
1009	L1-only GLONASS RTK observables	0
1010	Extended L1-only GLONASS RTK observables	0
1011	L1 & L2 GLONASS RTK observables	0
1012	Extended L1 & L2 GLONASS RTK observables	1 s
1013	System parameter	0
1019	GPS ephemeris data	0
1020	GLONASS ephemeris data	0
1029	Unicode text string	0
1033	Receiver and antenna descriptors	31 s

Examples

Setting RTCM message types 18 and 19 (output rate: 1 s): \$PASHS,RTC,TYP,18,1

Disabling all RTCM 3.x messages:

\$PASHS,RTC,TYP,1000*6C

Comments

- RTCM2.3 and RTCM 3.x messages can coexist. The \$PASHS,BAS command will finally determine which of the existing messages should be broadcast.
- \$PASHS,RTC,TYP,O will disable all enabled RTCM2.3 messages.
- \$PASHS,RTC,TYP,1000 will disable all enabled RTCM3.x messages.

Relevant Query Command

\$PASHQ,RTC,MSI

See also

\$PASHS,BAS

\$PASHS,CPD,MOD,BAS

\$PASHS,BDS

RXC,PAR: Embedded RINEX Converter

Function

This command is used to set the header the receiver will generate in every single RINEX file it will deliver.

Command Format

Syntax

\$PASHS,RXC,PAR[,AGY,s1][,OBN,s2][,MNM,s3][,MNB,s4][,OBS,s5][,GPS,s6][,GLO,s7][SBS,s8][,MET,s9][,SSM,s10][,SST,s11][,APR,f12][,ATD,f13] [,AHR,f14][*cc]

Parameters

Parameter	Description	Range	Default
AGY,s1	Agency name	20 characters max.	
OBN,s2	Observer name	20 characters max.	
MNM,s3	Antenna marker name	60 characters max.	
MNB,s4	Antenna marker number	20 characters max.	
OBS,s5	Observation file comments	255 characters max.	
GPS,s6	GPS Navigation file comments	255 characters max.	
GLO,s7	GLONASS Navigation file comments	255 characters max.	
SBS,s8	SBAS Navigation file comments	255 characters max.	
MET,s9	Meteo file comments	255 characters max.	
SSM,s10	Sensor model	20 characters max.	
SST,s11	Sensor type	20 characters max.	
APR,f12	Accuracy of PR (pressure in mbar)	0.0-100.0	0.0
ATD,f13	Accuracy of TD (dry temperature in degrees Celsius	0.0-100.0	0.0
AHR,f14	Accuracy of HR (relative humidity in percent)	0.0-100.0	0.0
*cc	Optional checksum	*00-*FF	

Comments

The "comments" fields (s5-s9) may consist of several lines each. The line separator in this case is composed of two characters: \n. Each line may contain up to 60 characters.

Example

Setting the RINEX header as follows:

\$PASHS,RXC,PAR,AGY,Ashtech,OBN,Peter Smith,MNM,CARQ, MNB,1005M00*44

Relevant Query Command

\$PASHQ,PAR,RXC

See Also

\$PASHS,SES,PAR \$PASHS,RXC,RUN

SBA: Enabling/Disabling SBAS Tracking

Function This command is used to enable or disable SBAS tracking.

Command Format Syntax

\$PASHS,SBA,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) SBAS tracking	ON, OFF	ON
*cc	Optional checksum	*00-*FF	

Example

Enabling SBAS tracking: \$PASH\$,\$BA,ON*08

Relevant Query Command \$PASHQ,SBA

See also \$PASHS,GLO

SES, AUT: Setting a Series of Sessions Automatically

Function

This command is used to set a series of sessions through an automatic procedure. Sessions will have similar duration and common recording rate. They will take place one after the other with no idle time in between.

Command Format

Syntax

\$PASHS,SES,AUT,d1,d2,d3,f4[*cc]

Parameters

Parameter	Description	Range	Default
d1	Session start time (hhmmss)	000000-235959	000000
d2	Number of sessions.	1-96	24
d3	Session duration (hhmm)	0005-2400	0100
f4	Data recording rate used during sessions, in seconds.	0.05 or 0.1-0.4 if [F] option activated. 0.5-0.9 1-999	30
*cc	Optional checksum	*00-*FF	

Comments

- The command is NAKed if the number of sessions multiplied by the session duration is greater than 24 hours.
- The command will overwrite all the previously defined sessions with the new ones.

Example

Setting 24 sessions of one hour each (continuous, round-theclock operation) with 1-second recording rate:

\$PASHS,SES,AUT,000000,24,0100,1*6A

Relevant Query Command

\$PASHQ,SES

See Also

\$PASHS,SES,PAR \$PASHS,SES,DEL \$PASHS,SES,AUT

SES, DEL: Deleting One or All Sessions

Function

This command is used to delete one or all of the currently defined sessions. Individual deletion of sessions is achieved by specifying the name allotted to the session, according to the session naming convention used.

Command Format

Syntax

\$PASHS,SES,DEL,s1[*cc]

Parameters

Parameter	Description	Range
	Session name. If s1 is omitted all the ses-	A-X (sessions 1-24)
s1	sions are deleted.	AB-XB (sessions 49-72)
		AC-XC (sessions 73-96)
*cc	Optional checksum	*00-*FF

Comments

If the session you want to delete is currently in progress, then in addition to deleting that session, the command will also stop it immediately.

Examples

Deleting all sessions:

\$PASHS,SES,DEL*51

Deleting 20th session:

\$PASHS,SES,DEL,T*29

Deleting 96th session:

\$PASHS,SES,DEL,XC*66

Relevant Query Command

\$PASHQ,SES

See Also

\$PASHS,SES,SET

\$PASHS,SES,AUT

SES,FTP,PAR: Setting FTP Server for Record Files

Function

This command is used to define the parameters of the FTP server where the receiver will automatically upload all the data files recorded during sessions (primary FTP server). A backup FTP server can also be defined through this command.

Command Format

Syntax

\$PASHS,SES,FTP,PAR[,ADD,s1][PRT,d2][,LGN,s3][,PWD,s4][,PTH,s5] [,SUB,s6][,BKP,d8][,AD2,s9][,PR2,d10][,LG2,s11][,PW2,s12] [,PT2,s13][*cc]

Parameters

Parameter	Description	Range	Default
ADD,s1	IP address or hostname	32 char. max.	
PRT,d2	Port number	0-65535	21
LGN,s3	Login	32 char. max.	
PWD,s4	Password	32 char. max.	
PTH,s5	Path on FTP server	255 char. max.	
SUB,s6	Subdirectory format, used for automatic uploading. See table below.	14 char. max.	Empty
BKP,d8	Operating mode assigned to backup FTP server: • 0: Not used • 1: Used only when primary FTP server is inaccessible • 2: Used in parallel to primary FTP	0-2	0
AD2,s9	IP address or hostname of backup FTP server	32 char. max.	
PR2,d10	IP port number of backup FTP server	0-65535	21
LG2,s11	Login	32 char. max.	
PW2,s12	Password	32 char. max.	
PT2,s13	Path on backup FTP server	255 char. max.	
*cc	Optional checksum	*00-*FF	

The following case-sensitive codes should be used to define the subdirectory format (applicable to both primary and backup FTP servers).

Character	Description	
S or s	4-character sitename	
Υ	4-digit year (2010= 2010)	

Character	Description	
у	2-digit year (10= 2010)	
m	2-digit month (01= January)	
М	3-character month (Jan= January)	
d	2-digit day in month (1-31)	
D	3-digit day in year (1-366)	

Comments

- Data files will be uploaded automatically to the FTP server only if the \$PASHS,SES,PAR command allows it ("Automatic FTP transfer" must be enabled).
- If the receiver fails to connect to the primary FTP server, it will try again every 60 seconds until it succeeds. After a certain number of unsuccessful retries, depending on the time still to go before the current session ends (see table below), the receiver will either give up, or, if a valid backup FTP server has been set up for this purpose, it will send its data files to that FTP server.

Time ("t") to go before current session ends	Number of retries, no backup FTP server	Number of retries, backup FTP server ready for use
More than 60 min	45	22
15min-60 min	t-15	(t-15)/2
5 min-15 min	t-5	(t-5)/2
Less than 5 min	2	1

Example

Defining a primary FTP server and a backup FTP server:

\$PASHS,SES,FTP,PAR,ADD,MyPrimaryFTP.com,PRT,21,LGN,Myusernam e,PWD,Mypassword,PTH,/Myfolder,SUB,Y/D/s,BKP,1,AD2, MybackupFTP.com,PR2,21,LG2,Myusername2,PW2,Mypassword2, PT2,/Myfolder*68

Relevant Query Command

\$PASHQ,SES

See Also

\$PASHS,SES,PAR

SES,ON: Starting Sessions

Function This command is used to start the execution of the

programmed sessions. By default all the sessions are

stopped.

Command Format Syntax

\$PASHS,SES,ON[*cc]

Parameters

None.

Example

Starting the programmed sessions:

\$PASHS,SES,ON*1D

Relevant Query

Command

\$PASHQ,SES

See also \$PASHS,SES,OFF

\$PASHS,SES,PAR

SES,OFF: Stopping Sessions

Function This command is used to stop the execution in progress of the

programmed sessions. By default all the sessions are

stopped.

Command Format Syntax

\$PASHS,SES,OFF[*cc]

Parameters

None.

Example

Stopping the programmed sessions immediately:

\$PASHS,SES,OFF*53

Relevant Query

\$PASHQ,SES

Command

See also \$PASHS,SES,ON \$PASHS,SES,PAR

SES,PAR: Session Recording Parameters

Function

This command is used to define all the parameters you want the receiver to use when running the programmed recording sessions.

Command Format

Syntax

\$PASHS,SES,PAR[,DAY,d1][,OFS,d2][,SIT,s3][,MEM,d4][,RNX,d5] [,CMP,d6][,DEL,d7][,MOV,d8][,DST,d9][,PTH,s10][,FTP,d11][RFM,c12][*cc]

Parameters

Parameter	Description	Range	Default
DAY,s1	Session reference day	1-366	1
OFS,d2	Session offset (mmss)	0000-5959	0
SIT,s3	Sitename (from which the G-file name is derived)	4 characters	0000
MEM,d4	Memory location: 0: Internal memory 2: USB key	0, 2	0
RNX,d5	RINEX conversion: O: No conversion: I: Conversion to RINEX v2.11: Conversion to RINEX v2.11, Hatanaka RINEX conversion will fail if the ratio "File duration, in hours / Recording rate, in seconds" is less than or equal to 2.	0-2	2
CMP,d6	File Compression: O: No file compression 1: tarZ	0-1	1
DEL,d7	G-file deletion: 0: Keep G-file after RINEX conversion 1: Delete G-file after RINEX conversion	0-1	1
MOV,d8	File moved to subdirectory: O: No move 1: Move converted files only 2: Move original and converted files	0-2	0
DST,d9	Memory where to move the files: O: Internal memory 2: USB key	0, 2	0

Parameter	Description	Range	Default
PTH,s10	Format of the subdirectory where files are moved (see comments below).		Y/D
FTP,d11	Automatic FTP transfer 0: No transfer 1: Automatic transfer to FTP server 2: Automatic transfer to FTP server, followed by deletion of the file if d8=1 or 2 See \$PASHS,SES,FTP,PAR for FTP settings.	0, 1, 2	0
RFM,c12	Ring file memory management: N (No): Sessions stopped when memory full Y (Yes): Oldest file removed when free memory is less than 15 Mbytes.	Y, N	N
*cc	Optional checksum	*00-*FF	

Comments

About the Session Reference Day: This is a mandatory
parameter that determines the start day of data collection
through session programming. It is also used with the
Offset parameter to modify the session start and end times
for a fixed number of minutes per day.

The Session Reference Day is the three-digit day of the year (DOY) where January 1 is day 001 and December 31 is day 365 (or day 366 in leap years).

The Session Reference Day must be equal to or less than the current day for session programming to run. For example, if today is day 191 and the Session Reference Day is set to 195, the receiver will not begin activating valid sessions for 4 days, or until the current day is equal to the Session Reference Day.

 About the Session Offset: This optional parameter was designed specifically for users who wish to collect data from the identical GPS satellite window every day. The GPS satellite window moves backwards 4 minutes per day. The format of this parameter is in minutes and seconds (mmss), so by setting the Session Offset to 0400, the activated sessions will start and end 4 minutes earlier each day.

This parameter is used with the Session Reference Day to determine the offset from the given start time. The receiver will multiply the difference between the current day and the Session Reference Day, and multiply this times the Session Offset. The session start and end times will then be moved this amount of time backwards.

For example, assume the Session Reference Day is set to 201, the current day of the year is 204, and the Session Offset is set to 0400 (4 minutes). The receiver will multiply 3 (days) times 4 (minutes/day), and then subtract 12 minutes from the session start and end times. If the "set" session start time for day 201 is 01:30, then the actual start time on day 204 will be 01:18.

- The command will be NAKED if you attempt to change the memory location (d4) while a session is in progress.
- Parameter s10 defines the naming convention for the subdirectories holding the record files.

For example if the subdirectory format used is "s/Y/D", then the files recorded in 2010, the day 125 for the site CARQ will be moved to the selected memory, in the subdirectory named "/CARQ/2010/125/".

The following case-sensitive codes should be used to define the subdirectory format.

Character	Description
S or s	4-character sitename
Υ	4-digit year (2010= 2010)
у	2-digit year (10= 2010)
m	2-digit month (01= January)
М	3-character month (Jan= January)
d	2-digit day in month (1-31)
D	3-digit day in year (1-365)

Example

\$PASHS,SES,PAR,DAY,120,0400,SIT,DD23,MEM,0,RNX,2*54

Relevant Query Command

\$PASHQ,SES

See Also

\$PASHS,SES,ON

\$PASHS,SES,OFF

\$PASHS,SES,SET

\$PASHS,SES,DEL

\$PASHS,SES,FTP,PAR

SES,SET: Setting Sessions Manually

Function

This command is used to set the duration and recording rate of each session in a day, and taking place every day.

Command Format

Syntax

\$PASHS,SES,SET,s1,c2[*cc]
or
\$PASHS,SES,SET,s1,c2,d3,d4,f5,d6[*cc]

Parameters

Parameter	Description	Range	Default
s1	Session name	A-X (sessions 1-24) AA-XA (sessions 25-48) AB-XB (sessions 49-72) AC-XC (sessions 73-96)	
c2	Session recording flag: Y: Recording is allowed during the session. N: No data recording is allowed during the session.	Y, N	N
d3	Session start time (hhmmss)	000000-235959	000000
d4	Session end time (hhmmss)	000000-235959	000000
f5	Session recording rate, in seconds.	0.05 or 0.1-0.4 if [F] option activated. 0.5-0.9 1-999	30
*cc	Optional checksum	*00-*FF	

Example

Setting 2nd session, with flag on, starting at 10:00 am and finishing at 11:00 am, with a recording rate of 1 second:

\$PASHS,SES,SET,B,Y,1000,1100,1*59

Relevant Query Command

\$PASHQ,SES

See Also

\$PASHS,SES,PAR \$PASHS,SES,DEL \$PASHS,SES,AUT

SIT: Defining a Site Name

Function

This command is used to define a site name that will be used in the naming of the next logged raw data file.

Command Format

Syntax

\$PASHS,SIT,s[*cc]

Parameters

Parameter	Description	Range	
s	Site name (or site ID), a 4-character string where "*", ".", "/" and "\" are not allowed.		
*cc	Optional checksum	*00-*FF	

Example

Defining site name "ECC1":

\$PASHS,SIT,ECC1*63

Relevant Query Command \$PASHQ,SIT

See also \$P

\$PASHS,REC

SNM: Signal-To-Noise Ratio Mask

Function

This command is used to mask the signal observations that do not meet the minimum C/A code signal-to-noise ratio you specify. This means that only the observations meeting this requirement will be used in the PVT computation (all the others will be rejected).

Command Format

Syntax

\$PASHS,SNM,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	SNR mask, in dB.Hz	0-60	0
*cc	Optional checksum	*00-*FF	

Example

Setting the SNR mask to 45 dB.Hz: \$PASHS,SNM,45*08

Relevant Query \$PASHQ,SNM Command

SOM: Masking Signal Observations

Function

The SOM command is used to apply masks on the following data:

- Cumulative tracking time (CTT), in seconds
- Navigation data (NAV)
- Signal-to-Noise Ratio (SNR), in dBHz
- Channel warnings (WRN)

As a result of the presence of these masks, only the signal observations meeting the required level of quality will be made available by the receiver through the relevant output messages.

Command Format

Syntax

\$PASHS,SOM,d[*cc]

Parameters

Parameter	Description	Range	Default
d	Observation mask index	See table below.	4
*cc	Optional checksum	*00-*FF	

Observation mask Index		
d	Description	
0	No masking	
1	Reference station	
2	Static base	
3	Moving base	
4	Rover (default)	
9	User-defined	

Comments

"Masking" signal observations therefore means definitively rejecting those observations not meeting the level of quality requested by the different masks set through the SOM command.

"SOM" stands for "Signal Observations Masks".

Example

Setting masks for a reference station:

\$PASHS.SOM.1*39

Relevant Query \$PASHQ,PAR Command \$PASHQ.SOM

See Also \$PASHS,SOM,SNR

\$PASHS,SOM,NAV \$PASHS,SOM,WRN \$PASHS,SOMM,CTT

SOM,CTT: Cumulative Tracking Time Mask

Function

This command is used to mask the signal observations that do not meet the minimum continuous tracking time you specify. This means that only the observations meeting this requirement will be output (all the others will be rejected). This mask is enabled only after the "User-defined" option (9) has been selected with the \$PASHS.SOM command.

Command Format

Syntax

\$PASHS,SOM,CTT,d1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
d1	ial data, in seconds. "0" means no mask.		10
d2	Minimum continuous tracking time for raw data, in seconds. If d2 is omitted, then the receiver will assume d2=d1. "0" means no mask.	0-255	10
*cc	Optional checksum	*00-*FF	

Raw Data Masked by d2	Differential Data Masked by d1
MPC	
DPC	All other measures
ATM,MES	All other messages
ATM,RNX,SCN,0	

Comments

- "Continuous" tracking means tracking "without cycle slips".
- This command can only mask some particular signal data.
 If however at the same time the L1CA data are disabled,

then ALL the satellite observations, and not only the masked ones, will be rejected.

• This command equally affects all GNSS and their signals.

Examples

Setting CTT masks for differential and raw data to 20 s: \$PASHS,SOM,CTT.20*65

Enabling all signal observations to be output regardless of the continuous tracking time requirement (no CTT mask):

\$PASHS.SOM.CTT.0*57

Relevant Query Command

\$PASHQ,PAR

\$PASHQ.SOM,CTT

See Also

\$PASHS,SOM

\$PASHS,SOM,SNR \$PASHS,SOM,NAV \$PASHS,SOMM,WRN

SOM, NAV: Navigation Data Mask

Function

This command is used to mask the signal observations that are not consistent with the relevant navigation data. This means that only the observations meeting this requirement will be output (all the others will be rejected).

This mask is enabled only after the "User-defined" option (9) has been selected with the \$PASHS,SOM command.

Command Format

Syntax

\$PASHS,SOM,NAV,s1[,s2][*cc]

Parameters

Parameter	Description	Range	Default
s1	Differential data mask	ON, OFF	ON
s2	Raw data mask. If s2 is omitted, then the receiver will assume s2=s1	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	

Raw Data Masked by s2	Differential Data Masked by s1
MPC	
DPC	All other recessors
ATM,MES	All other messages
ATM,RNX,SCN,0	

Comments

- Stating that signal observations are consistent with the corresponding navigation data means the following:
 - GNSS time, receiver position and receiver clock offsets are available and valid.
 - L1CA pseudo-range for a given satellite is measured and valid.
 - The corresponding satellite navigation data are available and valid.
 - The L1CA pseudo-range and computed range are in agreement with each other.
 - Elevation and azimuth angles are available and valid.

If at least one of the above requirements is not met, then signal observations are found to be not consistent with navigation data.

- The \$PASHS,SOM,NAV command will mask all signals (all observables) corresponding to a given satellite, even if some other pseudo-ranges (e.g. L2C) can be consistent with the navigation data.
- The \$PASHS,SOM,NAV command equally affects all GNSS systems.

Examples

Setting NAV masks for both differential and raw data:

\$PASHS,SOM,NAV,ON*7C

Enabling all signal observations to be output regardless of whether they are consistent with navigation data or not (no NAV mask):

\$PASHS,SOM,NAV,OFF*32

Relevant Query Command \$PASHQ,PAR

\$PASHQ,SOM,NAV

See Also \$PASHS.SOM

\$PASHS,SOM,SNR \$PASHS,SOM,CTT

\$PASHS,SOM,WRN

SOM, SNR: Signal-to-Noise Ratio Mask

Function

This command is used to mask the signal observations that do not meet the minimum signal-to-noise ratio you specify. This means that only the observations meeting this requirement will be output (all the others will be rejected). This mask is enabled only after the "User-defined" option (9) has been selected with the \$PASHS,SOM command.

Command Format

Syntax

\$PASHS,SOM,SNR,f1[,f2][*cc]

Parameters

Parameter	Description	Range	Default
f1	Differential data mask. "0" means no mask.	0-60 dBHz	28
f2	Raw data mask. If s2 is omitted, then the receiver will assume s2=s1. "0" means no mask.	0-60 dBHz	28
*cc	Optional checksum	*00-*FF	

Raw Data Masked by f2	Differential Data Masked by f1
MPC	
DPC	All other conservation
ATM,MES	All other messages
ATM,RNX,SCN,0	

Comments

- The \$PASHS,SOM,SNR command can only mask particular signal data for which the SNR does not meet your requirement. If however at the same time the L1CA data are disabled, then all the satellite observations will also be masked.
- The \$PASHS,SOM,SNR command equally affects all GNSS systems and their signals, except GPS L1P(Y) and L2P(Y). For these two signals, a hard-coded SNR threshold is applied.

Examples

Setting SNR masks for both differential and raw data to 30 dBHz:

\$PASHS,SOM,SNR,30*68

Enabling all signal observations to be output regardless of the signal-to-noise ratio:

\$PASHS,SOM,SNR,0*5B

Relevant Query

\$PASHQ,PAR

Command

\$PASHQ,SOM,SNR

See Also

\$PASHS,SOM

\$PASHS,SOM,NAV \$PASHS,SOM,CTT \$PASHS,SOMM,WRN

SOM, WRN: Channel Warnings Mask

Function

This command is used to mask the signal observations for those signals flagged with channel warnings (MPC warning bits are counted from 1 to 8). This means that only the observations from non-flagged signals will be output (all the others will be rejected).

This mask is enabled only after the "User-defined" option (9) has been selected with the \$PASHS,SOM command.

Command Format

Syntax

\$PASHS,SOM,WRN,s1[,s2][*cc]

Parameters

Parameter	Description	Range	Default
s1	Differential data mask	ON, OFF	ON
s2	Raw data mask. If s2 is omitted, then the receiver will assume s2=s1	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	

Raw Data Masked by s2	Differential Data Masked by s1
MPC	
DPC	All other recessors
ATM,MES	All other messages
ATM,RNX,SCN,0	

Comments

- A signal is considered as flagged in at least one of the following cases:
 - Carrier phase tracking is not stable (Bit 3 of MPC/MCA) warning is set).
 - Pseudo-range data quality is bad (Bit 5 of MPC/MCA) warning is set).
 - Polarity is not resolved (MPC/MCA Phase Tracking) Polarity flag is set to 0).
 - The L1CA pseudo-range and computed range are in agreement with each other.
 - Elevation and azimuth angles are available and valid.
- The \$PASHS,SOM,WRN command will mask only some particular signal data (e.g. L1CA or L2P) corresponding to a given satellite. If at the same time the L1CA data are disabled, then ALL the satellite observations, and not only those masked, will be rejected.
- The \$PASHS,SOM,WRN command equally affects all GNSS systems.

Examples

Setting WRN masks for both differential and raw data:

\$PASHS,SOM,WRN,ON*6E

Enabling all signal observations to be output regardless of whether some signals are flagged or not (no WRN mask):

\$PASHS.SOM.WRN.OFF*20

Relevant Query

\$PASHQ,PAR

Command

\$PASHQ.SOM.WRN

See Also

\$PASHS,SOM

\$PASHS,SOM,SNR \$PASHS,SOM,CTT \$PASHS,SOM,NAV

STI: Defining a Station ID

Function

This command is used to define the station ID the base receiver will broadcast in its differential messages to the rover.

Command Format

Syntax

\$PASHS,STI,d[*cc]

Parameters

Parameter	Description	Range
d	Station ID	0-1023 (RTCM 2.3) 0-4095 (RTCM 3.x and ATOM) 0-31 (CMR & CMR+)
*cc	Optional checksum	*00-*FF

Examples

Defining station ID "150" for use in RTCM messages: \$PASHS,STI,150*23

Note

If the chosen station ID is beyond the upper limit in the applicable range, then the value "31" is chosen instead (i.e. "31" instead of "56" for example if CMR/CMR+ messages are broadcast, or "31" instead of "1041" for example if RTCM 2.3 messages are broadcast).

Relevant Query Command \$PASHQ,STI

See also

\$PASHS,BAS

\$PASHS,MOD,BAS

SVM: Setting the Maximum Number of Observations in the PVT

Function:

This function is used to set the maximum number of code and

doppler observations used in the PVT calculation.

Command Format Syntax

\$PASHS,SVM,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Maximum number of observations	0-26	14
*cc	Optional checksum	*00-*FF	-

Example

Setting the number of observations to 25:

\$PASHS,SVM,25*16

Comments

This setting affects all the positioning modes, except for the time-tagged RTK mode for which this limit is hardware coded

and set to 14 satellites.

Relevant Query Command

\$PASHQ,SVM \$PASHQ,PAR

TCP,PAR: TCP/IP Server Settings

Function

This command is used to set the TCP/IP server.

Command Format

Syntax

\$PASHS,TCP,PAR[,MOD,s1][,LGN,s2][,PWD,s3][,PRT,d4][*cc]

Parameters

Parameter	Description	Range
MOD,s1	TCP/IP connection mode: 0: Disabled 1: Enabled with authentication 2: Enabled without authentication (default)	0-2
LGN,s2	Login	32 characters max.
PWD,s3	Password	32 characters max.
PRT,d4	Port number. Default is "8888"	100-65535
*cc	Optional checksum	*00-*FF

Example

Enabling TCP/IP connection with authentication (login: BX312, password: xwsead):

\$PASHS,TCP,PAR,MOD,1,LGN,BX312,PWD,xwsead*1A

Comments

- When the TCP/IP server is enabled (s1=1 or 2) and the receiver is connected to a network via the Ethernet cable, an external device can open the port specified as d4 and communicate with the receiver. In this case, the current port is port "I" in the receiver.
- When s1=1, the receiver does not accept any incoming data or commands until it receives the login and the password (see \$PASHS,TCP,UID). It will however output those messages that are programmed on port "I" even if it has not received authentication yet.
- The default login is "ashtech" and the default password is "password".
- Both login and password are case sensitive.

Relevant Query Command

\$PASHQ,TCP

See also

\$PASHS,TCP,UID

\$PASHS.ETH

TCP,UID: TCP/IP Authentication

Function

This command is used to enter the login and a password allowing a TCP/IP connection (requiring authentication) to be established.

Command Format

Syntax

\$PASHS,TCP,UID,s1,s2[*cc]

Parameters

Parameter	Description	Range	
s1	Login	32 characters max.	
s2	Password	32 characters max.	
*cc	Optional checksum	*00-*FF	

Example

Entering authentication parameters (login: BX312, password: xwsead):

\$PASHS,TCP,UID,BX312,xwsead*70

Comments

- The \$PASHS,TCP,UID command should always be sent first every time a user tries to connect to a remote receiver through a secure TCP/IP connection (see \$PASHS,TCP).
 Only after providing authentification parameters will the user be allowed to send commands or data to that receiver.
- When the login and password are correct, or no authentication is required, the receiver will return the following reply:

\$PASHR.TCP.OK*1B

 If authentication is required and the login or password is wrong, the receiver will return the following reply:

\$PASHR,TCP,FAIL*1D

Relevant Query Command

None.

See also \$PASHS,TCP,PAR

\$PASHS,ETH

TLT,CMD: Defining the Trigger String Used to Query the Tiltmeter

Function

This command is used to define the character string that will query the tiltmeter. The command also specifies the ID of the receiver port used to communicate with the tiltmeter.

The trigger string is in the form "*xxxxxx" and the default one is *0100XY.

Command Format

Syntax

\$PASHS,TLT,CMD,c1,s2[*cc]

Parameters

Parameter	Description	Range
c1	Receiver serial port connected to the tiltmeter.	A, B, F
s2	Trigger string (not including the leading "*" character)	20 characters max.
*cc	Optional checksum	*00-*FF

Example

Setting trigger string to "*0100XY", tiltmeter connected to port F:

\$PASHS,TLT,CMD,F,0100XY*19

Relevant Query Command

\$PASHQ,TLT

See Also

\$PASHS,TLT,INIT \$PASHS,TLT,INTVL \$PASHS,OUT,x,TLT

TLT,INIT: Defining the String Used to Initialize the Tiltmeter

Function

This command is used to define the character string that will initialize the tiltmeter. The command also specifies the ID of the receiver port used to communicate with the tiltmeter.

The initializing string is in the form "*xxxxxx". There is no initialization string defined by default.

Command Format

Syntax

\$PASHS,TLT,INIT,c1,s2[*cc]

Parameters

Parameter	Description	Range
c1	Receiver serial port connected to the tiltmeter.	A, B, F
s2	Initialization string (not including the leading "*" character)	20 characters max.
*cc	Optional checksum	*00-*FF

Example

Setting initialization string to "*9900ID", tiltmeter connected to port F:

\$PASHS,TLT,INIT,F,9900ID*44

Relevant Query Command

\$PASHQ,TLT

See Also

\$PASHS,TLT,CMD \$PASHS,TLT,INTVL \$PASHS,OUT,x,TLT

TLT,INTVL: Defining the Time Interval to Acquire Tiltmeter Data

Function

This command is used to define the time interval through which the receiver will regularly ask the tiltmeter to return its data. The command also specifies the ID of the receiver port used to communicate with the tiltmeter.

By default, the receiver will query the tiltmeter every second once the receiver has notified the tiltmeter, through the \$PASHS,OUT,x,TLT,ON command, to start operating.

Command Format

Syntax

\$PASHS,TLT,INTVL,c1,d2[*cc]

Parameters

Parameter	Description	Range	Default
c1	Receiver serial port connected to the tiltmeter.	A, B, F	
d2	Query interval, in seconds	1-86400	1
*cc	Optional checksum	*00-*FF	

Example

Setting query interval to 10 seconds, tiltmeter on port F: \$PASHS,TLT,INTVL.F,10*1B

Relevant Query Command

\$PASHQ,TLT

See Also

\$PASHS,TLT,CMD \$PASHS,TLT,INIT \$PASHS,OUT,x,TLT

TLT,PAR: Setting the Tiltmeter

Function

This command is used to define all the parameters needed to communicate with the tiltmeter.

Following the execution of this command, and then that of \$PASHS,OUT,x,TLT,ON, the receiver will regularly query the tiltmeter by sending the trigger string every x seconds of query interval.

Command Format

Syntax

\$PASHS,TLT,PAR,c1,s2,s3,d4[*cc]

Parameters

Parameter	Description	Range	Default
c1	Receiver serial port connected to the tiltmeter.	A, B, F	
s2	Initialization string	20 characters max.	
s3	Trigger string	20 characters max.	0100XY
d4	Query interval, in seconds. "0" means no query.	0; 1-68400	1
*cc	Optional checksum	*00-*FF	

Comments

- This command overwrites all the settings previously performed with the following commands:
 - PASHS,TLT,INIT
 - \$PASHS,TLT,INTVL
 - \$PASHS,TLT,CMD
- In fact, the \$PASHS,TLT,PAR command is used for the same purpose as, and is more convenient than, the above three commands, which are maintained only for the sake of compatibility with the Ashtech iCGRS reference station.

Example

Setting the tiltmeter connected to port F:

\$PASHS,TLT,PAR,F,*9900ID,*0100XY,10*1C

Relevant Query

\$PASHQ,TLT

See Also \$PASHS,OUT,x,TLT

UDP: User-Defined Dynamic Model Parameters

Function This command is used to set the upper limits of the dynamic

model (velocity, acceleration).

Command Format Syntax

\$PASHS,UDP,f1,f2,f3,f4[*cc]

Parameters

Parameter	Description	Range	Default
f1	Maximum expected horizontal velocity in m/s.	0-100 000	100 000
f2	Maximum expected horizontal acceleration in m/s/s.	0-100	100
f3	Maximum expected vertical velocity in m/s.	0-100 000	100 000
f4	Maximum expected vertical acceleration in m/s/s.	0-100	100
*cc	Optional checksum	*00-*FF	-

Example

Setting the dynamic model:

\$PASHS,UDP,10,1,2,0.5*1D

Comments

The user-defined dynamic model is activated by the \$PASHS,DYN,9 command. Note that when the adaptive dynamic mode (DYN,8) is selected, the user-defined model is automatically excluded from the possible models that could best describe the current receiver dynamics.

Relevant Query Command

\$PASHQ,UDP

See Also \$PASHS,DYN

UNT: Distance Unit Used on Display Screen

Function: This function is used to choose the distance unit you want the

receiver to use when providing coordinates on its display

screen.

Command Format Syntax

\$PASHS,UNT,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Desired distance unit: M: Meters F: US Survey Feet IF: International Feet	M, F, IF	М
*cc	Optional checksum	*00-*FF	-

Example

Choosing US Survey Feet:

\$PASHS,UNT,F*50

Relevant Query Command

\$PASHQ,UNT

UPL,PAR: Setting the FTP Server Providing Firmware Upgrades

Function This command allows you to set the FTP server used to

provide the receiver with firmware upgrades.

Command Format Syntax

 $PASHS, UPL, PAR, [,ADD, s1][PRT, d2][, LGN, s3][, PWD, s4][, PTH, s5][^*cc]$

Parameters

Parameter	Description	Range	Default
ADD,s1	IP address or host name	32 characters max.	
PRT,d2	Port number	0-65535	21
LGN,s3	Login	32 characters max.	
PWD,s4	Password	32 characters max.	
PTH,s5	Path used on the FTP server	255 characters max.	
*cc	Optional checksum	*00-*FF	

Example

\$PASHS,UPL,PAR,ADD,ftp.ashtech.com,PRT,21,LGN,Ashtech, PWD,u6huz8,PTH,/my folder*1F

Relevant Query Command

\$PASHQ,UPL

See Also

\$PASHS,UPL,UPG \$PASHQ,UPL,LST

UPL, UPG: Upgrading the Receiver Firmware from FTP

Function

This command is used to download a firmware upgrade from the FTP server declared with \$PASHS,UPL,PAR, and then perform the upgrade.

Command Format

Syntax

\$PASHS,UPL,UPG[,s1]*cc

Parameters

Parameter	Description	Range
s1	Name of the upgrade file that will be first downloaded to the receiver and then used to perform the firmware upgrade. The file name can contain a relative path to the path defined BY \$PASHS,UPL,PAR. If s1 is missing or only consists of a path, then "p_500_upgrade_********tar.bz2 is downloaded, provided there is only one of these files available on the FTP server, otherwise the command will be NAKed.	255 characters max.
*cc	Optional checksum	*00-*FF

Example

Upgrading from file "p_500_upgrade_\$607Gs23.tar.bz2" found on the FTP server:

\$PASHS,UPL,UPG,p_500_upgrade_S607Gs23.tar.bz2*0E

After successful completion of the file to the receiver, the following response line is returned:

\$PASHR,UPL,UPL,REBOOT,p_500_upgrade_S607Gs23.tar.bz2*29

Then, communication with the receiver is suspended until upgrade installation is complete.

Should the file transfer fail, the following response line will appear:

\$PASHR,UPL,FAIL,p_500_upgrade_S607Gs23.tar.bz2*4F

Relevant Query Command

\$PASHQ,UPL

See Also \$PASHS,UPL,PAR

\$PASHQ,UPL,LST

UTS: Synchronizing Onto GPS Time

Function:

This function is used to enable or disable a clock steering mechanism that synchronizes measurements and coordinates with the GPS system time rather than with the local (receiver) clock.

Command Format Syntax

\$PASHS,UTS,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enabling (ON) or disabling (OFF) syn- chronization with GPS time	ON, OFF	ON
*cc	Optional checksum	*00-*FF	-

Example

Enabling synchronization:

\$PASHS,UTS,ON*0A

Comments

- All output data, except for legacy MPC, DPC and RPC, are always clock steered.
- Legacy MPC, DPC and RPC data appear as steered or not steered depending on the last \$PASHS,UTS command run.
- The PBN message contains internal clock and clock drift estimates when UTS is OFF and reports zeros for these estimates when UTS is ON.
- The ATOM,RNX message with scenario 0 contains original clock and clock drift estimates that can be used on decoding side to restore the original (not steered) observables, if needed.

Relevant Query Command

\$PASHQ,UTS \$PASHQ,PAR

WAK: Acknowledging Alarms

Function

This command is used to acknowledge all alarms. This will also turn off the beeper (if previously set to beep on occurrence of an alarm). After sending the command, all alarms will switch from the "current" to the acknowledged ("pending") status.

Command Format

Syntax

\$PASHS,WAK[*cc]

Parameters

None.

Example

Acknowledging all alarms:

\$PASHS,WAK*28

Relevant Query Command \$PASHQ,WARN

WEB,OWN: Setting Owner Information

Function This command is used to define the owner information

displayed on the home page of the ProFlex 500 Web Server.

Command Format Syntax

\$PASHS,WEB,OWN,s1,s2,s3,s4[*cc]

Parameters

Parameter	Description	Range
s1	Company name	255 characters max.
s2	Administrator name	255 characters max.
s3	Administrator email	255 characters max.
s4	Administrator phone number	255 characters max.
*cc	Optional checksum	*00-*FF

Example

\$PASHS,WEB,OWN,Ashtech,Peter Smith,psmith@ashtech.com, 0228093800*5C

Relevant Query Command \$PASHQ,WEB

See Also \$PASHS,WEB,PAR

WEB, PAR: Web Server Control & Administrator Profile

Function

This command is used to enable or disable the use of the ProFlex 500 Web Server and define the profile of the receiver administrator. There is necessarily one –and just one–administrator profile per receiver.

Command Format

Syntax

\$PASHS,WEB,PAR,s1[,s2,s3[,d4]][*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) the ProFlex 500 Web Server	ON, OFF	ON
s2	Administrator login	32 characters max.	admin
s3	Administrator password	32 characters max.	changeme
d4	httpd port	0-65535	80
*cc	Optional checksum	*00-*FF	

Comments

- The login and password are set to their default values after the \$PASHS,RST or \$PASHS,INI command has been run.
- The httpd port is used to access the Web Server through the network.

If for example the IP address of the receiver is 10.20.2.18 and d4=2500, you should enter the following in the address bar of your web browser to open the Web Server: 10.20.2.18:2500

Example

Enabling the use of the Web Server with specific login and password on httpd port 2500:

\$PASHS,WEB,PAR,ON,Smith,u7Imyt,2500*69

Relevant Query Command

\$PASHQ,WEB

See Also \$PASHS, WEB, PAR

WEB, USR, ADD: Adding/Modifying User Profiles

Function

This command is used to add or modify user profiles. A user profile is needed for a user to be able to access and use the receiver status section of the ProFlex 500 Web Server.

Modifying a user profile means changing its password. This is obtained by simply running the \$PASHS,ADD,USR command in which the existing user login is mentioned, followed by the new password.

Command Format Syntax

\$PASHS,WEB,USR,ADD,s1,s2[*cc]

Parameters

Parameter	Description	Range	Default
s1	User login	32 characters max.	user
s2	User password	32 characters max.	pf500
*cc	Optional checksum	*00-*FF	

Examples

Entering a new user profile:

\$PASHS,WEB,USR,ADD,smith,213lkio5*7F

Modifying the "smith" user profile:

\$PASHS,WEB,USR,ADD,smith,newpassword*38

Comments

There is no limit in the number of user profiles you can create but only five of them can be connected to the receiver at the same time. By default, the receiver contains a single user profile, as defined in the table above (Default column).

Relevant Query Command

\$PASHQ,WEB

See Also \$PASHS, WEB, USR, DEL

WEB, USR, DEL: Deleting a User Profile

Function

This command is used to delete user profiles. All the user profiles can be deleted.

Deleting all the user profiles means only the administrator profile, which can't be deleted, will remain in the receiver Deleting a user profile will prevent any user, who has been using this profile until now, to log in again as a ProFlex 500 Web Server user.

Command Format Syntax

\$PASHS,WEB,USR,DEL,s1[*cc]

Parameters

Parameter	Description	Range
s1	User login	32 characters max.
*cc	Optional checksum	*00-*FF

Example

Deleting user profile whose login is "smith":

\$PASHS,WEB,USR,DEL,smith*77

Relevant Query Command

\$PASHQ,WEB

See Also \$PASHS, WEB, USR, ADD

ZDA: Setting Date & Time

Function This command is used to set the date and time in the

receiver.

Command Format Syntax

\$PASHS,ZDA,m1,d2,d3,d4[*cc]

Parameters

Parameter	Description	Range
m1	UTC time (hhmmss.ss)	000000.00-235959.99
d2	Current day	01-31
d3	Current month	01-12
d4	Current year	0000-9999
*cc	Optional checksum	*00-*FF

Example

\$PASHS,ZDA,151145.00,13,03,2008*0A

Relevant Query Command

\$PASHQ,ZDA

See also \$PASHS,LTZ

Chapter 14. Query Command Library

AGB: Reading GLONASS Bias Setting

Function This command tells you whether L1 & L2 GLONASS carrier

biases are currently processed in the receiver or not.

Command Format Syntax

\$PASHQ,AGB[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,AGB,s1*cc

Parameters

Parameter	Description	Range
s1	ON: Processing enabled OFF: Processing disabled	ON, OFF
*cc	Checksum	*00-*FF

Example

\$PASHQ,AGB*33 \$PASHR,AGB,ON*1D

Relevant Set Command \$PASHS,AGB

ALM: Almanac Message

Function

This command allows you to output the latest GPS almanac data. Each response line describes the almanac data from a given GPS satellite.

Command Format

Syntax

\$PASHQ,ALM[*cc]

Response Format

Syntax

\$GPALM,d1,d2,d3,d4,h5,h6,h7,h8,h9,h10,h11,h12,h13,h14,h15*cc

Parameters

Parameter	Description	Range
d1	Total number of messages	01-32
d2	Number of this message	01-32
d3	Satellite PRN number	01-32
d4	GPS week	4 digits
h5	SV health (in ASCII hex)	2 bytes
h6	e: Excentricity (in ASCII hex)	4 bytes
h7	toe: Almanac reference time, in seconds (ASCII hex)	2 bytes
h8	lo: Inclination angle, in semicircles (ASCII hex)	4 bytes
h9	OMEGADOT: Rate of ascension, in semicircles/second (ASCII hex)	4 bytes
h10	A1/2: Square root of semi-major axis, in meters 1/2 (ASCII hex)	6 bytes
h11	OMEGA: Argument of perigee, in semicircles (ASCII hex)	6 bytes
h12	OMEGA0: Longitude of ascension mode, in semicircles (ASCII hex)	6 bytes
h13	Mo: Mean anomaly, in semi-circles (ASCII hex)	6 bytes
h14	af0: Clock parameter, in seconds (ASCII hex)	3 bytes
h15	af1: Clock parameter, in seconds/second (ASCII hex)	3 bytes
*cc	Checksum	*00-*FF

Example

\$PASHQ,ALM

\$GPALM,31,1,01,65535,00,39A8,4E,1FEA,FD65,A10C8C,B777FE,935A86,C 994BE,0C6,001*73

\$GPALM,31,2,02,65535,00,4830,4E,00D9,FD49,A10D24,64A66D,3B6857,E 6F2A3,0BA,001*7A

\$GPALM,31,3,03,65535,00,552B,4E,F572,FD3B,A10CE1,20E624,0CD7E1,D 10C32.0CA,001*0D

\$GPALM,31,4,04,65535,00,4298,4E,0069,FD46,A10D5C,0EE3DC,3C2E3E,5 1DDF9.FF0.FFF*0A

...

Automatic Output of ALM Messages

This is a reminder on how to output ALM messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,ALM,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output ALM messages on port A at a rate of 15 seconds:

\$PASHS,NME,ALM,A,ON,15

ANH: Antenna Height

Function This command allows you to read the entered antenna height

as well as the measurement type used.

Command Format Syntax

\$PASHQ,ANH[*cc]

Response Format Syntax

\$PASHR,ANH,f1,c2*cc

Parameters

Parameter	Description	Range
f1	Antenna height.	0-6.553 m
c2	Antenna height measurement type: V: Vertical measurement S: Slant measurement	V, S
*cc	Checksum	*00-*FF

Example \$PASHQ,ANH

\$PASHR,ANH,1.568,S*44 (slant measurement, H=1.568 m)

Relevant Set \$PASHS,ANH Command

See also \$PASHQ,ANR

ANP: Antenna Parameters

Function

This command allows you to read the antenna parameters of the specified antenna name, or of the complete antenna database if no antenna name is specified.

Command Format

Syntax

\$PASHQ,ANP[*cc]

OI

\$PASHQ,ANP,s1[*cc]

Parameters

Parameter	Description	Range
s1	Antenna name (case sensitive)	31 characters max.
*cc	Optional checksum	*00-*FF

Response Formats

(Through examples)

\$PASHQ,ANP

LIST OF PREDEFINED ANTENNAS (d1):

ANT1 ANT2 ANT3 ANT4

LIST OF USERDEFINED ANTENNAS (d2):

ANT10 ANT11 ANT12 ANT13

OWN ANTENNA: MAG990596
REFERENCE ANTENNA: UNKNOWN
OUT ANTENNA: NULLANTENNA
RECEIVED ANTENNA: MAG990596

(Where d1 is the number of predefined antennas and d2 is the number of userdefined antennas.)

\$PASHQ,ANP,MAG990596

MAG990596

L1 N: -000.80 E: -001.40 U: +101.80

L1 PAE:+000.0 +000.9 +001.9 +002.8 +003.7 +004.7 +005.4 +006.0 +006.4 +006.5

+006.3 +005.8 +004.8 +003.2 +001.1 -001.6 -005.1 +000.0 +000.0

L2 N: +000.80 E: -001.10 U: +086.20

L2 PAE:+000.0 -000.9 -001.1 -000.6 +000.2 +001.1 +002.0 +002.7 +003.0

+003.0

+002.6 +001.7 +000.5 -001.1 -003.0 -004.9 -006.8 +000.0 +000.0

Relevant Set \$PASHS,ANP,OWN **Commands** \$PASHS,ANP,REF

\$PASHS,ANP,PCO

ANP, OUT: Virtual Antenna

Function This command returns the name of the virtual antenna

currently selected in the receiver.

Command Format Syntax

\$PASHQ,ANP,OUT[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,ANP,OUT,s1*cc

Parameters

Parameter	Description	Range
s1	Name of the virtual antenna. If "OFF" is returned, this means no virtual antenna is selected.	31 characters max.
*cc	Checksum	*00-*FF

Example \$PASHQ,ANP,OUT

\$PASHR,ANP,OUT,ADVNULLANTENNA*72

Relevant Set \$PASHS,ANP,OUT Command

ANP,OWN: Local Antenna Used

Function This command returns the name of the GNSS antenna

currently used by the receiver.

Command Format Syntax

\$PASHQ,ANP,OWN[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,ANP,OWN,s1,s2,s3*cc

Parameters

Parameter	Description	Range
s1	Name of the local antenna	31 characters max.
s2	Antenna serial number	31 characters max.
	Antenna setup ID	0-255
*cc	Checksum	*00-*FF

Example \$PASHQ,ANP,OWN

\$PASHR,ANP,OWN,ASH111661,,*27

Relevant Set Command

\$PASHS,ANP,OWN

ANP, REF: Antenna Used at the Base

Function This command returns the name of the GNSS antenna

assumed to be used by the base currently sending data to the

interrogated receiver (a rover).

Command Format Syntax

\$PASHQ,ANP,REF[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,ANP,REF,s1,d2*cc

Parameters

Parameter	Description	Range
s1	Name of the antenna used at the base	31 characters max.
d2	Antenna name preference: 0: s1 is ignored if incoming reference data include base antenna name 1: s1 is always used; decoded base antenna name is ignored	0, 1
*cc	Checksum	*00-*FF

Example \$PASHQ,ANP,REF

\$PASHR,ANP,REF,ASH111661,1*3D

Relevant Set Command \$PASHS,ANP,REF

ANR: Antenna Reduction Mode

Function This command is used to read the current setting for the

antenna reduction mode. This setting defines the physical location on the system for which the position is computed.

Command Format Syntax

\$PASHQ,ANR[*cc]

Response Format Syntax

\$PASHR,ANR,s1*cc

Parameters

Parameter	Description	Range
s1	Antenna reduction mode: OFF: The computed position is assumed to be the location of the antenna's L1 phase center. ON: The computed position is assumed to be the location of the ground mark. ARP: The computed position is assumed to be the location of the Antenna Reference Plane (ARP).	OFF, ON, ARP
*cc	Checksum	*00-*FF

Example \$PASHQ,ANR

\$PASHR,ANR,ON*04

Relevant Set Command

\$PASHS,ANR

See also \$PASHS,ANH

ANT: Antenna Height

Function This command is used to read the current setting for the

antenna height.

Command Format Syntax

\$PASHQ,ANT[*cc]

Response Format Syntax

\$PASHR,ANT,f1,f2,f3,m4,f5*cc

Parameters

Parameter	Description	Range
f1	Slant height measurement, from ground mark to antenna edge (SHMP)	0-6.553 m
f2	Antenna radius: horizontal distance from the geometrical center to the antenna edge.	0-6.553 m
f3	Antenna vertical offset: Offset between SHMP and ARP if both slant height measurement and antenna radius are different from zero. Offset between ground mark and ARP if either slant height measurement or radius is zero.	± 0-6.553 m
m4	Horizontal azimuth [dddmm.mm], in degrees, for the horizontal line connecting the ground mark to the surveyed point, measured with respect to the Geographical North. Currently NOT processed.	0-35959.99
f5	Horizontal offset from the ground mark to the surveyed point. Currently NOT processed.	0-6.553 m
*cc	Checksum	*00-*FF

Example \$PASHQ,ANT

\$PASHR,ANT,0,0,2.000,0,0*49 (vertical, 2.000 m)

Relevant Set Command \$PASHS,ANT

See also \$PASHQ,ANR

\$PASHQ,ANH

ATD, MSI: ATOM Differential Message Status

This command has been made obsolete to be replaced with \$PASHQ,RNX,MSI (May 2010). For compatibility reasons, this command is still supported but you must be aware that the output rate reported in the status of message type "10" (position) is incorrect as this rate is now hard-coded.

Function

This command queries a base receiver for the current ATOM differential message status.

Command Format

Syntax

\$PASHQ,ATD,MSI[*cc]

Response Format

Syntax

\$PASHR,ATD,MSI,d1,n(d2,d3)*cc

Parameters

Parameter	Description	Range
d1	Number of ATOM data types in the ATOM differential message	5
d2	ATOM message type	1, 2, 3, 10, 11
d3	Message output rate, in seconds (0.0 if disabled)	0-1800
*cc	Checksum	*00-*FF

Example

\$PASHQ,ATD,MSI

\$PASHR,ATD,MSI,5,1,1.0,2,0.0,3,0.0,10,13.0,11,31.0*59

See also

\$PASHS,ATD,TYP for the description of the ATOM data types.

ATL: Debug Data Recording

Function

This command queries the receiver for the current status of the data recording function used for debugging.

Command Format

Syntax

\$PASHQ,ATL[*cc]

Response Format Syntax

\$PASHR,ATL,s1,d2,c3,f4,d5*cc

Parameters

Parameter	Description	Range
s1	ON/OFF/AUT status: ON: Debug data recording is enabled but will not re-start after a power cycle. OFF: Debug data recording is disabled. AUT: Debug data recording is enabled and will re-start after a power cycle.	ON, OFF, AUT
d2	Indicates which data are recorded: 0: Only data from GNSS board to system board are recorded. 1: Only data from system board to GNSS board are recorded. 2: Data flowing in both directions are recorded.	0-2
c3	Recording status: R: The receiver is currently recording data for debugging. S: No debug data currently recorded.	R, S
f4	Output rate, in seconds (default: 1 sec.)	0.05, 0.1, 0.2,0.5, 1
d5	Configuration index	0, 1
*cc	Checksum	*00-*FF

Examples

Data recording disabled:

\$PASHQ,ATL*2E

\$PASHR,ATL,OFF,0,S,1,0*2C

Data recording enabled and in progress:

\$PASHQ,ATL*2E

\$PASHR,ATL,ON,0,R,0.5,0*79

Data recording is enabled but for some reason (no SD card, etc.), no data is being recorded:

\$PASHQ,ATL*2E

\$PASHR,ATL,ON,0,S,0.5,0*78

ATM: ATOM Data Parameters

Function

Command Format Syntax

\$PASHQ,ATM[*cc]

Response format Syntax

(Through an example)

\$PASHQ,ATM

PER:020.00 ELM:10

DRI:001.00 SIT:abcd REC:Y MEM:M

ANH:02.132 ANT:SLANT ANR:ON

ATOM: MES PVT ATR NAV DAT EVT BAUD

PRTA: OFF OFF OFF OFF OFF 6

PRTB: OFF OFF OFF OFF OFF 6

PRTC: OFF OFF OFF OFF OFF 1

PRTE: OFF OFF OFF OFF OFF 1

PRTF: OFF OFF OFF OFF OFF 6 PRTI: OFF OFF OFF OFF OFF 1

MEMM: OFF OFF OFF OFF OFF 1

MEMR: OFF OFF OFF OFF OFF 1 MEMU: OFF OFF OFF OFF OFF 0

11: OFF OFF OFF OFF OFF 0

12: OFF OFF OFF OFF OFF 0

13: OFF OFF OFF OFF OFF 0

14: OFF OFF OFF OFF OFF 0

15. OFF OFF OFF OFF OFF 0

16: OFF OFF OFF OFF OFF 0 17: OFF OFF OFF OFF OFF 0

18: OFF OFF OFF OFF OFF 0

19: OFF OFF OFF OFF OFF 0

Parameters

Parameter	Description	Range
PER	ATOM output rate	0.00-999.0 s
ELM	Elevation mask used in data recording & data output	0-90
DRI	Recording rate	0.00-999.0 s
SIT	Site ID	4 characters
REC	Data recording: Y: Data recording enabled N: Data recording disabled S: Data recording enabled but stopped	Y, N, S
MEM	Selected memory: • M: Internal memory • U: USB memory	M, U
ANH	Antenna height	0.000-99.999
ANT	Height measurement type (slant/vertical)	SLANT, VERT
ANR	Antenna reduction mode	ON, OFF, ARP

Parameter	Description	Range
ATOM	ATOM message type	MES, PVT, ATR, NAV, DAT, EVT
PRTA PRTB PRTF	Labels for serial ports A, B and F	ON, OFF
PRTC	Label for Bluetooth	ON, OFF
PRTE	Label for Modem	ON, OFF
PRTI	Label for Ethernet	ON, OFF
MEMM MEMU MEMR	Labels for memories M, U and R	ON, OFF
11-19	Data streaming port	ON, OFF
BAUD	If serial port used, then baud rate If memory used, "0" if not available, else "1"	0-15 (see table below)

Code	Baud Rate	Code	Baud Rate
0	300	8	57600
1	600	9	115200
2	1200	10	230400
3	2400	11	480600
4	4800	12	921600
5	9600	13	1428571
6	19200	14	2500000
7	38400	15	5000000

Relevant Set Command

\$PASHS,ATM

See also

\$PASHQ,ATM

\$PASHQ,ATO

ATO: ATOM Message Output Settings

Function

This command allows you to read the different parameters of the ATOM message, as currently set on the specified port or memory. The receiver will return the response on the port through which the query command is sent.

Command Format Syntax

\$PASHQ,ATO,c[*cc]

Parameters

Parameter	Description	Range
С	Port ID for which you need to know the ATOM message settings: A, B, F: Serial ports C: Bluetooth port I, I1-I9: Ethernet port E: Modem M, U: Memory R: Data recording through session	A, B, C, E, F, I, M, R, U, I1-I9
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,ATO,c1,d2,f3,d4,6(s5,f6)*cc

Parameters

Parameter	Description	Range
c1	The port ID mentioned in the query command is replicated in this field.	A, B, C, E, F, I, M, R, U, I1-I9
d2	Baud rate code, 0 if not available	0-15
f3	PER setting	0-999.0
d4	Number of ATOM messages	6
s5	ATOM message type	MES, PVT, ATR, NAV, DAT, EVT
f6	Output rate (0 if message disabled)	0-999.0
*cc	Checksum	*00-*FF

Example

Querying ATOM message parameters as currently set on port

\$PASHQ,ATO,A

\$PASHR,ATO,A,6,001.00,6,MES,0.00,PVT,0.00,ATR,0.00,NAV,0.00,DAT, 0.00,EVT,0.00*71

See also \$PASHS,ATM

\$PASHQ,ATM

BAS: Differential Data Type

Function This command is used to list the message types generated

and sent by a base.

Command Format Syntax

\$PASHQ,BAS[*cc]

Response Format Syntax

\$PASHR,BAS,c1,s2[,c3,s4]*cc

Parameters

Parameter	Description	Range
c1	First port ID: • A, B, F: Serial port • C: Bluetooth port • I, P, Q: Ethernet port • E: Modem • M, U: Memory • N: Undefined port	A, B, C, E, F, I, P, Q, M, U, N
s2	Differential data type: RT2: RTCM 2.3 messages RT3: RTCM 3.0 & 3.1 messages (default) CMR: CMR messages CMP: CMR+ messages ATM: ATOM messages DBN: DBEN messages NONE: Undefined	RT2, RT3, CMR, CMP, ATM, DBN, NONE
c3	Second port ID: same as c1 above	A, B, C, E, F, I, P, Q, M, U
s4	Differential data type: same as s2 above.	RT2, RT3, CMR, CMP, ATM, DBN, NONE
*cc	Checksum	*00-*FF

Examples

The response line below reports RTCM 3.x messages sent on port A:

\$PASHQ,BAS

\$PASHR,BAS,A,RT3*50

The response line below reports RTCM 2.3 messages sent on port A and CMR+ messages on port E:

\$PASHQ,BAS

\$PASHR,BAS,A,RT2,E,CMP*4A

Relevant Set Command

\$PASHS,BAS

See also

\$PASHQ,CPD,MOD

\$PASHQ,RTC

\$PASHQ,ATD,MSI \$PASHQ,CMR,MSI \$PASHQ,RTC,MSI

BDS: Differential Data Streaming

Function

This command allows you to list the types of differential data messages currently enabled on the nine I ports (I1-I9).

Command Format

Syntax

\$PASHQ,BDS[*cc]

Response format

Syntax

DIF: RT2 RT3 CMR CMP ATM DBN

I1: ON OFF OFF OFF OFF

12: OFF OFF OFF OFF OFF

13: OFF OFF OFF OFF OFF

14: OFF OFF OFF OFF OFF

15: OFF OFF OFF OFF OFF

16: OFF OFF OFF OFF OFF

17: OFF OFF OFF OFF OFF

18: OFF OFF OFF OFF OFF

19: OFF OFF OFF OFF OFF

Parameters

Parameter	Description	Range
DIF (heading row)	CMR: CMR	RT2, RT3, CMR, CMP,
	CMP: CMR+ATM: ATOMDBN: DBEN	ATM, DBN
Ix (leftmost column)	Data stream port	11-19

Parameter	Description	Range
Message Status cells	Each cell indicates whether the corresponding message type on the corresponding Ix port is currently enabled (ON) or not (OFF)	ON, OFF

Relevant Set \$PASHS,BDS Command

BEEP: Beeper State

Function This command is used to read the current state of the internal

beeper.

Command Format Syntax

\$PASHQ,BEEP[*cc]

Response Format Syntax

\$PASHR,BEEP,s1,d2*cc

Parameters

Parameter	Description	Range
s1	Beeper enabled (ON) or disabled (OFF)	ON, OFF
d2	Timeout, in seconds:	0-99
*cc	Checksum	*00-*FF

Example \$PASHQ,BEEP

\$PASHR,BEEP,OFF*05

Relevant Set Command

\$PASHS,BEEP

BRD: RTC Bridge

Function This command allows you to list the current settings of the

RTC Bridge function.

Command Format Syntax

\$PASHQ,BRD[*cc]

Response format Syntax

\$PASHR,BRD,s1,d2,c3,c4*cc

Parameters

Parameter Description		Range	
s1	Availability of RTK corrections on the specified output port: OFF: No RTK corrections forwarded to the output port. ON: RTK corrections forwarded to the output port.		
d2	0: RTK corrections used 1: RTK corrections not used Input port ID (port from which RTK corrections are		
c3			
c4 Output port ID (serial port to which the licence-free radio transmitter is connected).		A, B, F	
*cc	Checksum		

Example

\$PASHQ,BRD

\$PASHR,BRD,ON,0,E,A*15

Relevant Set Command

\$PASHS,BRD

BTH: Bluetooth Settings

Function This command is used to read the current Bluetooth settings.

Command Format Syntax

\$PASHQ,BTH[*cc]

Response Format Syntax

\$PASHR,BTH,s1,s2,d3*cc

Parameters

Parameter	Description	Range
s1	Bluetooth address (xx:xx:xx:xx:xx)	17 characters
s2	Bluetooth name	64 characters max.
d3	Bluetooth PIN code	0 to 16 digits max. -1: no PIN code
*cc	Checksum	*00-*FF

Example \$PASHQ,BTH

\$PASHR,BTH,00:07:80:83:91:86,PM_743109,-1*68

See also \$PASHS,BTH,NAME

\$PASHS,BTH,PIN

CMR,MSI: CMR Message Status

Function This command is used in a base receiver to read the current

settings of the CMR messages the base currently generates

and outputs.

Command Format Syntax

\$PASHQ,CMR,MSI[*cc]

Response Format Syntax

\$PASHR,CMR,MSI,d1,d2,d3,d4,d5,d6,d7,d8,d9*cc

Parameters

Parameter	Description	Range
d1	Number of CMR messages currently output	4
d2	Message type "0" label	0
d3	Message type "0" output rate, in seconds	0-300
d4	Message type "1" label	1
d5	Message type "1" output rate, in seconds	0-300

Parameter	Description	Range
d6	Message type "2" label	2
d7	Message type "2" output rate, in seconds	0-300
d8	Message type "3" label	3
d9	Message type "3" output rate, in seconds	0-300
*cc	Checksum	*00-*FF

Example

The response line below reports four enabled CMR messages, type "0" and "3" at 1 second, and types "1" and "2" at 30 seconds:

\$PASHQ,CMR,MSI

\$PASHR,CMR,MSI,4,0,1.0,1,30.0,2,30.0,3,1.0*50

See also \$PASHS,CMR,TYP

\$PASHQ,BAS

\$PASHQ,CPD,MOD

CP2,AFP: Ambiguity Fixing Parameter, Second RTK Engine

Function This command is used to read the current setting of the

ambiguity fixing parameter used in the second RTK engine.

Command Format Syntax

\$PASHQ,CP2,AFP[*cc]

Response Format Syntax

\$PASHR,CP2,AFP,f*cc

Parameters

Parameter	Description	Range
f	Ambiguity fixing value. "0" means the receiver will stay in Float mode.	0, 95.0, 99.0, 99.9
*cc	Checksum	*00-*FF

Example \$PASHQ,CP2,AFP

\$PASHR,CP2,AFP,99.0*1C

See also \$PASHS,CP2,AFP

CPD, AFP: Ambiguity Fixing Parameter

Function This command is used to read the current setting for the

ambiguity fixing parameter.

Command Format Syntax

\$PASHQ,CPD,AFP[*cc]

Response Format Syntax

\$PASHR,CPD,AFP,f*cc

Parameters

Pa	rameter	Description	Range
f		Ambiguity fixing value. "0" means the receiver will stay in Float mode.	0, 95.0, 99.0, 99.9
*cc		Checksum	*00-*FF

Example \$PASHQ,CPD,AFP

\$PASHR,CPD,AFP,99.0*6A

See also \$PASHS,CPD,AFP

CPD,ANT: Base Antenna Height

Function This command is used to read the current parameters of the

base antenna height, as received by the rover.

Command Format Syntax

\$PASHQ,CPD,ANT[*cc]

Response Format Syntax

\$PASHR,CPD,ANT,f1,f2,f3,m4,f5*cc

Parameters

Parameter	Description	Range
f1	Antenna height, in meters	0-99.999
f2	Antenna radius, in meters	0-9.9999
f3	Vertical offset, in meters	0-99.999
m4	Horizontal azimuth, in degrees, minutes (dddmm.mm)	0-35959.99
f5	Horizontal distance, in meters	0-99.999
*cc	Checksum	*00-*FF

Example \$PASHQ,CPD,ANT

\$PASHR,CPD,ANT,1.893,0.0980,0.040,0.0000,0.000*50

See also \$PASHS,ANH

\$PASHS,ANR

\$PASHQ,CPD,POS

CPD,FST: Fast RTK Output Mode

Function This command is used to read the current setting for fast RTK

output mode.

Command Format Syntax

\$PASHQ,CPD,FST[*cc]

Response Format Syntax

\$PASHR,CPD,FST,s*cc

Parameters

Parameter	Description	Range
S	Fast RTK mode (fast CPD)	ON, OFF
*cc	Checksum	*00-*FF

Example \$PASHQ,CPD,FST

\$PASHR,CPD,FST,ON*63

Relevant Set Command

\$PASHS,CPD,FST

See also \$PASHQ,CPD

CPD, MOD: Base/Rover/Backup Mode

Function This command is used to query the operating mode of the

receiver, and the satellite constellations used if the receiver

is operated as a base.

Command Format Syntax

\$PASHQ,CPD,MOD[*cc]

Response Format Syntax

\$PASHR,CPD,MOD,s1,d2,d3,c4*cc

Parameters

Parameter	Description	Range
s1	Current operating mode: • BAS: Base • ROV: Rover • BKP: "Hot Standby RTK", also called "Backup mode" (rover computing two RTK positions)	BAS, ROV, BKP
d2	Constellations currently used if the receiver is defined as a base: • 0: GPS, GLONASS, SBAS (default mode) • 1: Only GPS and SBAS • 2: Only GPS and GLONASS • 3: Only GPS	0-3
d3	Position mode. If BAS is the selected operating mode: 0: Static position 1: Moving position If ROV is the selected operating mode: 0: means rover works with a static base 1: means rover works with a moving base	0-1
c4	Input port for backup mode:	A, B, C, D, E, F, I, P, Q
*cc	Checksum	*00-*FF

Example

The response line below indicates that the receiver is configured as a base, uses the GPS and GLONASS constellations, and the base has a static position:

\$PASHQ,CPD,MOD

\$PASHR,CPD,MOD,BAS,2,0,A*5A

Relevant Set Command

\$PASHS,CPD,MOD

See also \$PASHQ,CPD

CPD,NET: RTK Network Operation Mode

Function This command is used to read the current setting of the RTK

network operation mode.

Command Format Syntax

\$PASHQ,CPD,NET[*cc]

Response Format Syntax

\$PASHR,CPD,NET,d1,d2*cc

Parameters

Parameter	Description	Range
d1	RTK network operating mode relative to GPS corrections: 0: GPS corrections from network are not used. 1: FKP/MAC GPS corrections from network are used when available and healthy, otherwise they are rejected.	0-1
d2	RTK network operating mode relative to GLONASS corrections: 0: GLONASS corrections from network are not used. 1: FKP/MAC GLONASS corrections from network are used when available and healthy, otherwise they are rejected.	0-1
*cc	Checksum	*00-*FF

Example

\$PASHQ,CPD,NET

\$PASHR,CPD,NET,1,0*51

The response line reports that the receiver will process network corrections, if available and healthy.

Relevant Set Command

\$PASHS,CPD,NET

See also \$PASHQ,CPD

CPD, POS: Base Position

Function

If applied to a base, this command allows you to read the geographic coordinates previously entered for the base position.

Depending on the last \$PASHS,ANR command applied to the base, the position you get will be either that of the phase center, the ARP or the ground mark.

If applied to a rover, this command allows you to read the position of the base the rover receives from the base. The coordinates will all be "O" if the rover does not receive the base position.

Command Format

Syntax \$PASHQ,CPD,POS[*cc]

Response Format Syntax

\$PASHR,CPD,POS,m1,c2,m3,c4,f5*cc

Parameters

Parameter	Description	Range
m1	Latitude in degrees and minutes with 7 decimal places (ddmm.mmmmmmm)	0-90
c2	North (N) or South (S)	N, S
m3	Longitude in degrees, minutes with 7 decimal places (ddmm.mmmmmmm)	0-180
c4	West (W) or East (E)	W, E
f5	Height in meters	±9999.9999
*cc	Checksum	*00-*FF

Examples

\$PASHQ,CPD,POS

\$PASHR,CPD,POS,4717.959483,N,00130.500968,W,70.229*59

\$PASHQ,CPD,POS

\$PASHR,CPD,POS,0000.000000,N,00000.000000,E,00.000*7A

See also \$PASHS,POS

\$PASHQ,CPD,ANT \$PASHQ,ANR \$PASHQ,ANH

CPD,REM: Differential Data Port

Function This command allows you to read the port IDs that route

differential data to a rover as well as the port selection mode.

Command Format Syntax

\$PASHQ,CPD,REM[*cc]

Response Format Syntax

\$PASHR,CPD,REM,s1[,c2][,c3]*cc

Parameters

Parameter	Description	Range
s1	Reception mode:	AUT, MAN
c2	Input port #1: A, B, F: Serial port C: Bluetooth port I, P, Q: Ethernet port E: Modem D: Radio	A, B, C, D, E, F, I, P, Q
c3	Input port #2: A, B, F: Serial port C: Bluetooth port I, P, Q: Ethernet port E: Modem D: Radio	A, B, C, D, E, F, I, P, Q
*cc	Checksum	*00-*FF

Examples

(Automatic selection of the input port:)

\$PASHQ,CPD,REM

\$PASHR,CPD,REM,AUT*39

(Manual selection, port D (radio) expected to receive the data:)

\$PASHQ,CPD,REM

\$PASHR,CPD,REM,MAN,D*53

(Manual selection, ports D and E (radio + GSM) expected to receive the data:)

\$PASHQ,CPD,REM

\$PASHR,CPD,REM,MAN,D,E*3A

Relevant Set \$PASHS,0

Command

\$PASHS,CPD,REM

See also \$PASHQ,CPD,MOD

CPD,VRS: VRS Assumption Mode

Function This command allows you to read the current setting of the

VRS assumption mode.

Command Format Syntax

\$PASHQ,CPD,VRS[*cc]

Response format Syntax

\$PASHR,CPD,VRS,d*cc

Parameters

Parameter	Description	Range
d	VRS assumption mode: • 0: Automatic detection • 1: Compulsory VRS mode • 2: Never switches to VRS mode	0-2
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,CPD,VRS \$PASHR,CPD,VRS,1*45

Relevant Set Command

\$PASHS,CPD,VRS

CRT: Cartesian Coordinates of Position

Function

This command allows you to get the message containing the absolute ECEF coordinates of the last computed position as well as other information on the position solution.

Command Format Syntax

\$PASHQ,CRT[*cc]

Response Format Syntax

\$PASHR,CRT,d1,d2,m3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,s16*cc

Parameters

Parameter	Description	Range
d1	Position mode: 0: Autonomous 1: RTCM (or SBAS differential) 2: RTK float 3: RTK fixed 9: SBAS Differential. See comment.	0-3, 9
d2	Count of SVs used in position computation	3-27
m3	UTC time (hhmmss.ss)	000000.00- 235959.99
f4	ECEF X coordinate, in meters	±9999999.999
f5	ECEF Y coordinate, in meters	±9999999.999
f6	ECEF Z coordinate, in meters	±9999999.999
f7	Receiver clock offset, in meters	±300000
f8	Velocity vector, X component, in m/s	±9.999
f9	Velocity vector, Y component, in m/s	±9.999
f10	Velocity vector, Z component, in m/s	±9.999
f11	Receiver clock drift, in m/s	± 2000
f12	PDOP	0.0-99.9
f13	HDOP	0.0-99.9
f14	VDOP	0.0-99.9
f15	TDOP	0.0-99.9
s16	Firmware version ID (GNSS board fw)	4-char string
*cc	Checksum	*00-*FF

Example

\$PASHQ,CRT

\$PASHR,CRT,3,07,130452.50,4331844.177,-114063.156,4664458.677, -0.023,-0.002,0.002,0.001,-0.023,2.1,1.2,1.7,1.3,G010*6C

Comment

The code allotted to a position solution of the SBAS differential type is either "1" or "9", depending on the last \$PASHS,NPT command run.

See also \$PASHS,NME \$PASHS,NPT

CST: NTRIP Caster Parameters

Function This command is used to query the receiver for the current

NTRIP caster settings.

Command Format Syntax

\$PASHQ,CST[*cc]

Response Format Syntax

\$PASHR,CST,s1,s2,d3,s4,s5,s6,s7,f8,f9,s10,d11,s12,s13,c14,s15,s16,s17*cc

Parameters

Parameter	Description	Range
s1	NTRIP caster status	ON, OFF
s2	IP address of the NTRIP caster.	100 characters max
d3	IP port number of the NTRIP caster	100-65535
s4	NTRIP caster password. This password is used by NTRIP servers (data sources) to connect to the NTRIP caster.	32 characters max.
s5	NTRIP caster identifier. Use this field to provide more information describing/identifying the NTRIP caster.	100 characters max
s6	NTRIP caster operator: Name of the institution, agency or company running the caster.	100 characters max.
s7	Country code	3 characters
f8	Latitude in degrees.	±90.00
f9	Longitude in degrees.	0.00 to 359.99
s10	Fallback caster IP address. (Fallback caster: the caster where to connect to in case this one breaks down).	128 characters max
d11	Fallback caster IP port number	100-65535
s12	Network identifier, e.g. name of a network of GNSS permanent stations.	100 characters max
s13	Network operator: Name of the institution, agency or company running the network.	100 characters max
c14	Fee indicator: • Y: Usage is charged • N: No user fee	Y, N
s15	Web address where network information can be found.	100 characters max

Parameter	Description	Range
s16	Web address where data stream information can be found.	100 characters max
s17	Web or email address where registration information can be found.	100 characters max
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,CST

\$PASHS,CST,ON,124.65.65.12,2102,NTRIP Caster ProFlex500, Ashtech,FRA,47.10,-1.00,123.12.132.12,2101,My Network,Ashtech, Y,www.ashtech.com, www.ashtech.com, proflex500@ashtech.com*53

See also

\$PASHS,CST

\$PASHS,CST,USR,ADD \$PASHS,CST,USR,DEL

CTS: Handshaking

Function

This command allows you to query the handshaking (RTS/CTS) protocol status. If no port is specified in the command, the response message is sent back to the port that issued the query command.

Command Format

Syntax

\$PASHQ,CTS[,s1][*cc]

Response Format

Syntax

\$PASHR,CTS,s2*cc

Parameters

Parameter	Description	Range
s1	Queried port	A, B, F
s2	Current status of RTS/CTS handshaking protocol	ON, OFF
*cc	Checksum	*00-*FF

Example

\$PASHQ,CTS

\$PASHR,CTS,ON*1D

Relevant Set \$

Command

\$PASHS,CTS

See also \$PASHQ,PRT

\$PASHQ,MDP

DBN,MSI: DBEN Message Status

Function This command is used in a base receiver to read the current

settings of the DBEN messages the base currently generates

and outputs.

Command Format Syntax

\$PASHQ,DBN,MSI[*cc]

Response Format Syntax

\$PASHR,DBN,MSI,d1,RPC,d2,BPS,d3*cc

Parameters

Parameter	Description	Range
d1	Number of DBEN messages currently output (always 2)	2
RPC,d2	"RPC" message type output rate, in seconds	0-300
BPS,d3	"BPS" message type output rate, in seconds	0-300
*cc	Checksum	*00-*FF

Example \$PASHQ,DBN,MSI

\$PASHR,DBN,MSI,2,RPC,1.0,BPS,30.0*6B

See also \$PASHS,DBN,TYP

\$PASHQ,BAS

\$PASHQ,CPD,MOD

DCR: Cartesian Coordinates of Baseline

Function This command allows you to output the DCR message

containing the ECEF components of the baseline for the last

computed position as well as other information on the position solution.

Command Format Syntax

\$PASHQ,DCR[*cc]

Response Format Syntax

\$PASHR,DCR,d1,d2,m3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,s16*cc

Parameters

Parameter	Description	Range
d1	Position mode: O: Autonomous I: RTCM (or SBAS differential) RTK float RTK fixed S: SBAS Differential. See comment.	0-3, 9
d2	Count of SVs used in position computation	3-27
m3	UTC time (hhmmss.ss)	000000.00- 235959.99
f4	ECEF X component of baseline, in meters	± 99999.999
f5	ECEF Y component of baseline, in meters	±99999.999
f6	ECEF Z component of baseline, in meters	±9999.999
f7	Receiver clock offset, in meters	±300000.000
f8	Velocity vector, X component, in m/s	±9.999
f9	Velocity vector, Y component, in m/s	±9.999
f10	Velocity vector, Z component, in m/s	±9.999
f11	Receiver clock drift, in m/s	±2000.000
f12	PDOP	0.0-99.9
f13	HDOP	0.0-99.9
f14	VDOP	0.0-99.9
f15	TDOP	0.0-99.9
s16	Firmware version ID (GNSS board fw)	4-char string
*cc	Checksum	*00-*FF

Example

\$PASHQ,DCR

\$PASHR,DCR,3,09,130924.00,-37.683,55.081,17.925,0.109,0.001, 0.002,0.001,0.047,1.9,1.0,1.6,1.1,G010*71

Comment

The code allotted to a position solution of the SBAS differential type is either "1" or "9", depending on the last \$PASHS,NPT command run.

See also \$PASHS,NME \$PASHS,NPT

DDN: DynDNS Parameters

Function This command is used to query the receiver for the current

DynDNS settings.

Command Format Syntax

\$PASHQ,DDN[*cc]

Response Format Syntax

\$PASHR,DDN,DYN=d1,SYS=s2,USR=s3,PWD=s4,HNM=s5,PER=d6*cc

Parameters

Parameter	Description	Range
	Current DynDNS service status:	
DYN=d1	d1=0: Enabled	0, 1
	d1=1: Disabled	
SYS=s2	Address of the free service used.	100 characters max.
USR=s3	Username chosen when creating an account	32 characters max.
0011 00	on the DynDNS web site.	oz onaractoro max.
PWD=s4	Password chosen when creating an account	32 characters max.
1 115 01	on the DynDNS web site.	or orial actors max.
HNM=s5	Hostname declared on the DynDNS web site	100 characters max.
T II VIVI — 35	for the receiver.	100 characters max.
PER=d6	Update rate, in seconds.	60-3600
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,DDN

\$PASHR,DDN,DYN=1,SYS=dyndns@dyndns.org,USR=psmith,PWD=ashtec h,HNM=ashtech1.dyndns.org,PER=600*62

See also \$PASHS,DDN,PAR

DIP: Direct IP Parameters

Function

This command is used to query the parameters used for a Direct IP connection. When c6 is omitted in the query command, the returned Direct IP settings are those for the port defined through the \$PASHS,DIP,PAR or \$PASHS,DIP command last run.

Command Format

Syntax

\$PASHQ,DIP[,c6][*cc]

Response Format

Syntax

\$PASHR,DIP,RIP,s1,PRT,d2[,LGN,s3,PWD,s4],IPP,c6*cc

Parameters

Parameter	Description	Range
RIP,s1	IP address (xxx.xxx.xxx.xxx) or host name	IP address: 000.000.000.000 to 255.255.255.255 or host name
PRT,d2	Port number	0-65535
LGN,s3	User name (optional)	20 char. max.
PWD,s4	Password (optional)	20 chars max.
IPP,c6	Internet port used on the receiver to establish the connection with the base (server): • E: Internal modem (default) • P: Ethernet stream 1 • Q: Ethernet stream 2	E, P, Q
*cc	Checksum	*00-*FF

Examples

\$PASHQ,DIP

\$PASHR,DIP,RIP,192.65.54.1,PRT,80,IPP,P*xx

\$PASHQ,DIP

\$PASHR,DIP,RIP,www.ashtech.com,PRT,8080,IPP,Q*xx

Relevant Set Command

\$PASHS,DIP

See also \$PASHQ,MDM

DPO: Delta Position

Function This command is used to output a DPO message containing

the components of the last computed vector (baseline) as well as other information about the position solution.

Command Format Syntax

\$PASHQ,DPO[*cc]

Response Format Syntax

\$PASHR,DPO,d1,d2,m3,f4,c5,f6,c7,f8,c9,f10,f11,f12,f13,f14,f15,f16,s17*cc

Parameters

Parameter	Description	Range	
d1	Position mode: O: Autonomous I: RTCM (or SBAS differential) RTK float RTK fixed SBAS Differential. See comment.	0-3, 9	
d2	Count of SVs used in position computation	3-27	
m3	UTC time (hhmmss.ss)	000000.00- 235959.99	
f4	Northing coordinate difference, in meters	±9999999.999	
c5	North label	N	
f6	Easting coordinate difference, in meters	± 9999999.999	
с7	East label	E	
f8	Ellipsoid height difference, in meters	± 99999.999	
с9	Reserved	±9.999	
f10	COG: Course Over Ground, in degrees	0-359.9	
f11	SOG: Speed Over Ground, in m/s	0-9.999	
f12	Vertical velocity, in m/s	± 999.9	
f13	PDOP	0.0-99.9	
f14	HDOP	0.0-99.9	
f15	VDOP	0.0-99.9	
f16	TDOP	0.0-99.9	
s17	Firmware version ID	4-character string	
*cc	Checksum	*00-*FF	

Example

\$PASHQ,DPO

\$PASHR,DPO,3,09,131143.50,40.910,N,54.072,E,-13.363,,0.0,0.0,-0.0,1.9, 1.0,1.6,1.2,G010*5B

Comment

The code allotted to a position solution of the SBAS differential type is either "1" or "9", depending on the last \$PASHS,NPT command run.

See also \$PASHS,NME

\$PASHS,NPT

DRI: Raw Data Recording Rate

Function This command queries the current recording rate for all raw

data logged in the internal or external memory.

Command Format Syntax

\$PASHQ,DRI[*cc]

Response Format Syntax

\$PASHR,DRI,f1*cc

Parameters

Parameter	Description	Range
f1	Current raw data recording rate	0.05 s 0.1-0.9 s 1-999 s
*cc	Checksum	*00-*FF

Example

\$PASHQ,DRI \$PASHR,DRI,1.00*18

Relevant Set

Command

\$PASHS,DRI

See also \$PASHQ,ATM

\$PASHQ,REC

DST: Connection Modes for the Different Data Streams Available

Function This command allows you to read the current settings for

each of the Ix ports on which data streams have potentially

been enabled.

Command Format Syntax

\$PASHQ,DST[,s][*cc]

Parameters

Parameter		Range
s	Interrogated data stream port. If s is omitted, the current settings of all the ports are listed.	11-19
*cc	Optional checksum	*00-*FF

Response format

Syntax

\$PASHQ,DST,d1,s2,s3,d4,d5,d6,s7*cc

Parameters

Parameter	Description	Range
d1	Number of data streaming ports	9
s2	Data stream port	11-19
s3	Enable/disable control parameter	ON, OFF
d4	Connection Modes: 1: Server 2: Client	1-5
d5	IP mode (needed if d4=1 or 2): • 0: TCP • 1: UDP	0, 1
d6	IP port number (needed if d4=1, 2) If d4=1 (Server), specify the number of the receiver's internal port used. If d4=2 (Client), specify the number of the external server's IP port used.	1000- 1009
s7	IP address or host name (needed if d4=2) • If d4=2 (Client), specify the external server's IP address.	32 char max.
*cc	Optional checksum	*00-*FF

Example

Querying port I2 for its current settings:

\$PASHQ,DST,I2*63 \$PASHR,DST,9,I2,ON,1,0,1002,*5A

Relevant Set Command

\$PASHS,DST

DST,STS: Data Stream Port Status

Function

This command allows you to read the status of each of the data stream ports (Ix), as well as the status of port E (modem) and ports P, Q and I (Ethernet).

Command Format

Syntax

\$PASHQ,DST,STS[,s][*cc]

Parameters

Parameter	Description	Range
S	Interrogated data stream port. If s is omitted, the current statuses for more ports (i.e. ports lx but also ports E, P, Q and I) are listed.	I1-I9, E, P, Q, I
*cc	Optional checksum	*00-*FF

Response format

Syntax

Through an example:

Stream I1-Off

Stream I2-Server 2 connection(s) client:125.32.47.12 Start:02-02-2011

15:12:02

Stream I2-Server 2 connection(s) client:154.32.25.14 start:02-02-2011

15:15:30

Stream I3-Client Connected Start: 02-02-2011 15:15:30

Stream I4-Client Disconnected

Stream I5-Off

Stream I6-Off

Stream I7-Off

Stream I8-Off

Stream 19-Off

Port E-Direct IP Connected to 12.32.254.32:2101 Start:02-02-2011 15:12:02

Port P-NTRIP client Connected to NAN2 Start:02-02-2011 15:12:02

Port Q-NTRIP client Connected to NAN3 Start:02-02-2011 15:12:02

Port I-Server 1 connection(s) client:123.36.32.1 Start:02-02-2011 15:12:02

Parameters

 Each response line describes one currently active connection to a given port, hence several response lines are returned if several connections to the same port are currently active. For an inactive port, the "Off" status is reported.

- Ports I1to I9 are labeled "Stream I1" to "Stream "I9".
 The statuses of Ports E, P, Q and I are provided at the end of the list.
- The next parameter indicates the type of connection (server or client) for the active connection.
- Then, for a connection in server mode, the following parameters are listed:
 - Number of clients
 - Client IP address
 - Connection start time
- or, for a connection in client mode:
 - Status: "Connected" or "Disconnected"
 - Connection start time

Example

Querying port I2 for its current settings:

\$PASHQ,DST,STS,I2*1B

\$PASHR,DST,9,I2,ON,5,2,1002,165.65.76.12*2C

Relevant Set Command

\$PASHS,DST

DSY: Daisy Chain Status

Function

This command queries the receiver for the status of the daisy chain function.

Command Format

Syntax

\$PASHQ,DSY[*cc]

Parameters

None.

Response Format

\$PASHR,DSY,OFF*59

or

Syntax

\$PASHR.DSY.c1.c2.d3*cc

Parameter	Description	Range
c1	Source port: • A, B, F: Serial ports • C: Bluetooth port • D: Radio • E: Modem • H: Second GNSS board • I, P, Q: Ethernet port	A-I, P, Q
c2	Destination port: A, B, F: Serial ports C: Bluetooth port D: Radio E: Modem H: Second GNSS board I, P, Q: Ethernet port	A-I, P, Q
d3	Mode: 0: Raw (default) 1: Block	0,1
*cc	Checksum	*00-*FF

Example

Command reporting data on port A forwarded to port C:

\$PASHQ,DSY \$PASHR,DSY,A,C*38

Relevant Set Command

\$PASHS,DSY

DTM: Datum Reference

Function

This command asks the receiver to output the content of the

NMEA DTM message.

Command Format

Syntax

\$PASHQ,DTM[*cc]

Parameters

None.

Response Format

Syntax

\$GPDTM,s1,,f2,c3,f4,c5,f6,s7*cc

Parameter	Description	Range
s1	Local datum code: W84: WGS84 used as local datum 999: Local datum computed using the parameters provided by the RTCM3.1 data stream.	W84, 999
f2	Latitude offset, in meters	0-59.999999
c3	Direction of latitude	N, S
f4	Longitude offset, in meters	0-59.999999
c5	Direction of longitude	E, W
f6	Altitude offset, in meters	±0-99.999
s7	Reference datum code	W84
*cc	Checksum	*00-*FF

Example

\$PASHQ,DTM

\$GPDTM,999,2.324525,N,1.499476,W,1.365,W84*37

See Also \$PASHS,NME

Automatic Output of DTM Messages

This is a reminder on how to output DTM messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,DTM,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output DTM messages on port A at a rate of 2 seconds:

\$PASHS,NME,DTM,A,ON,2

DYN: Receiver Dynamics

Function

This command allows you to query the current setting for the receiver dynamics.

Command Format Syntax

\$PASHQ,DYN[*cc]

Response Format Syntax

\$PASHR,DYN,d*cc

Parameters

Parameter	Description	Range
d	Receiver dynamics: 1: Static 2: Quasi-static 3: Walking 4: Ship 5: Automobile 6: Aircraft 7: Unlimited 8: Adaptive 9: User-defined	1-9
*cc	Checksum	*00-*FF

Example

\$PASHQ,DYN \$PASHR,DYN,8*33

Relevant Set Command \$PASHS,DYN

See also \$PASHS,UDP

ECP: Power Status of Extended Communication Port

Function This command allows you to query the current power status

of the extended communication port (a circuit that controls

all the receiver ports, both internal and external).

Command Format Syntax

\$PASHQ,ECP[*cc]

Response Format Syntax

\$PASHR,ECP,s*cc

Parameter	Description	Range
s	Power status	ON, OFF
*cc	Checksum	*00-*FF

Example

\$PASHQ,ECP \$PASHR,ECP,ON*1D

Relevant Set \$PASHS,ECP,ON **Commands** \$PASHS,ECP,OFF

EFT: Embedded FTP Server

Function This command allows you to read the current settings of the

embedded FTP server.

Command Format Syntax

\$PASHQ,EFT[*cc]

Response Format Syntax

In free form, as shown in the example below.

Example

\$PASHQ,EFT

EMBEDDED FTP SERVER: ON

PORT: 21 MEMORY: 0 PATH: pub

ADMINISTRATOR USERNAME: smith ADMINISTRATOR PASSWORD: 255ki631

USERNAME: Andrew PASSWORD: 25ml55 USERNAME: Yves PASSWORD: 25ml55

See Also \$PASHS,EFT,OWN

\$PASHS,EFT,PAR

\$PASHS,EFT,USR,ADD

ELM: Elevation Mask

Function This command is used to read the current value of the

elevation mask. The elevation mask impacts data recording,

data output and satellite reception at the base.

Command Format Syntax

\$PASHQ,ELM[*cc]

Response Format Syntax

\$PASHR,ELM,d1*cc

Parameters

Parameter	Description	Range
d1	Current value of elevation mask, in degrees	0-90
*cc	Checksum	*00-*FF

Example \$PASHQ,ELM

\$PASHR,ELM,5*29

Relevant Set

Command

\$PASHS,ELM

See also \$PASHQ,PEM

EML: Email Settings

Function This command allows you to read the current email settings.

Command Format Syntax

\$PASHQ,EML[*cc]

Response Format Syntax

\$PASHR,EML,LVL=d1,SMT=s2,PRT=d3,USR=s4,PWD=s5,SND=s6, ADD=s7,IPP=c8 *cc

Parameter	Description	Range
LVL,d1	Notification level: 0: No notification 1: Standard notification 2: Full notification	0-2
SMT,s2	SMTP server address or hostname	32 characters max.
PRT,d3	SMTP port number	0-65535
USR,s4	Username	32 characters max.
PWD,s5	Password	32 characters max.
SND,s6	Email address used to return messages to the receiver if the email address of the recipient is not found.	64 characters max.
ADD,s7	Recipient email address to which the receiver sends messages.	64 characters max.
IPP,c8	Internet port used (always P)	Р
*cc	Checksum	*00-*FF

Example

\$PASHQ,EML

 $\label{eq:pashrem} $PASHR,EML,LVL=1,SMT=smtp.gmail.com,PRT=25,USR=gmail, PWD=gmail,SND=no-reply@proflex500.com,ADD=johnsmith@ashtech.com, IPP=P*56$

See Also \$PASHS,EML,PAR \$PASHS,EML,TST

ETH: Ethernet Status and Parameters

Function This command is used to read the current status of the

Ethernet port as well as all the parameters relevant to this

port.

Command Format Syntax

\$PASHQ,ETH[*cc]

Response Format Syntax

\$PASHR,ETH,c1,s2,s3,s4,DHP=s5,ADD=s6,MSK=s7,GTW=s8,DN1=s9,DN2 =s10*cc

Parameter	Description	Range
c1	Ethernet port (TCP/IP server)	
s2	Ethernet status	OFF, ON
s3	MAC address (xx:xx:xx:xx:xx)	17 characters
s4	Current IP address (=s6 when DHCP disabled)	0.0.0.0-255.255.255.25
DHP=s5	DHCP mode (0: disabled; 1: enabled)	0, 1
ADD=s6	Static IP address assigned to the receiver when DHCP is disabled	0.0.0.0-255.255.255.255
MSK=s7	Sub-network mask	0.0.0.0-255.255.255.255
GTW=s8	Gateway IP address	0.0.0.0-255.255.255.255
DN1=s9	DNS 1 IP address	0.0.0.0-255.255.255.255
DN2=s10	DNS 2 IP address	0.0.0.0-255.255.255.255
*cc	Checksum	*00-*FF

Parameters s6, s7, s8, s9, s10 are the Ethernet parameters used when the DHCP mode is disabled. In that case, s4=s6.

Example \$PASHQ,ETH

\$PASHR,ETH,I,ON,02:03:04:85:06:07,10.20.2.74,DHP=1,ADD=10.20.2.28, MSK=255.255.255.0,GTW=10.20.2.1,DN1=134.20.2.16,DN2=134.20.2.3*57

See also \$PASHS,ETH,PAR

\$PASHS,ETH

FIL, CUR: Information On G-File Being Recorded

Function This command allows you to read information about the G-file

currently being recorded.

Command Format Syntax

\$PASHQ,FIL,CUR[*cc]

Response Format Syntax

General form:

\$PASHR,FIL,CUR,s1,d2,s3,s4,d5*cc

If no G-file recording is in progress:

\$PASHR,FIL,CUR,NONE*79

Parameter	Description	Range
s1	Filename (including path)	255 characters max.
d2	Size in bytes	0-134217728
s3	Date (ddmmyyyy)	
s4	Time (hhmmss)	000000-235959
d5	Memory location: O: Internal memory. 2: USB key.	0, 2
*cc	Checksum	*00-*FF

Example

\$PASHQ,FIL,CUR

\$PASHR,FIL,CUR,GazerA09.123,1769897,14032009,130850,0*63

See Also \$PASHS,REC

\$PASHS,MEM

FIL,LST: Listing Files in Receiver Memory or USB Key

Function

This command allows you to list the names of the files stored in the receiver's internal memory or on the USB key connected to the receiver.

Command Format

Syntax

\$PASHQ,FIL,LST[,c][,s][*cc]

Parameters

Parameter	Description	Range
С	Memory type: • c=0 (or c omitted): Internal memory • c omitted: Memory is as defined with \$PASHS,MEM • c=2: USB key	0, 2
S	Path name	
*cc	Optional checksum	*00-*FF

Response format Syntax

\$PASHR,FIL,LST,d1,d2,s3,d4,s5,s6[,c7]*cc

Parameter	Description	Range
d1	Number of files	
d2	File index	
s3	File name or directory name	255 characters max.
d4	Size in bytes	0-134217728
s5	Date (ddmmyyyy)	
s6	Time (hhmmss)	000000-235959
c7	=D when s3 is a directory name	D
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,FIL,LST*53

\$PASHR,FIL,LST,4,0,GazerA09.123,1769897,14032009,130850*74 \$PASHR,FIL,LST,4,1,GazerB09.123,1769876,10032009,110952*7C \$PASHR,FIL,LST,4,2,GazerC09.123,1769787,01032009,181856*72 \$PASHR,FIL,LST,4,3,GazerD09.123,1769787,01032009,181856*74

See Also

\$PASHS,REC \$PASHS,MEM \$PASHQ,FLS

FLS: List of Raw Data Files

Function

This command is used to list the raw data files stored in the selected memory (cf. \$PASHS,MEM). An index number is used in the command fomat to limit the number of listed files. Files are listed in blocks of 10 files.

Command Format

Syntax

\$PASHQ,FLS,d[*cc]

Parameters

Parameter	Description	Range
d	File index number ("0" for 1st file, "1" for 2nd file, etc.). All files with index number equal to or greater than this number will be listed. If d is greater than the highest file index number, the command is "NAKed".	0-999
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,FLS,d1,d2,d3,n(s4,m5,d6)*cc

Parameters

Parameter	Description	Range
d1	Free memory space, in kbytes, in the selected memory	000000- 999999
d2	Total number of files currently stored in the selected memory	000-999
d3	Number of files listed corresponding to those matching the command criterion	00-10
s4	Site name assigned to the file	4 characters
m5	File time in the "wwwdhhmm" format where: • wwww: GPS week number • d: Day in week • hh: Time (hours) • mm: Time (minutes)	0000-9999 1-7 00-23 00-59
d6	File size in kbytes	0-999999
*cc	Checksum	*00-*FF

Example

Listing the files from index number "10":

\$PASHQ,FLS,10

\$PASHR,FLS,65240,012,02,sit3,146821321,7,sit3,146821321,4*06

See also \$PASHS,REC

\$PASHS,FIL,D \$PASHS,MEM

FTP: FTP Status and Settings

Function

This command is used to query the status and settings of the FTP server used to upload files from the receiver.

Command Format

Syntax

\$PASHQ,FTP[*cc]

Parameters

None.

Response format

Syntax

\$PASHR,FTP,s1,d2,d3,s4,d5,d6,ADD=s7,PRT=d8,LGN=s9,PWD=s10, PTH=s11*cc

Parameters

Parameter	Description	Range
s1	File transfer status: NONE: no transfer to FTP	NONE, PUT
d2	PUT: File being uploaded to FTP Number of files to be transferred	0-255
d3	Number of files already transferred	0-255
s4	Name of the file being transferred	255 characters max.
d5	Size, in bytes, of the file being transferred	0-134217728
d6	Percentage of data already transferred for the file transfer currently in progress.	0-100
ADD=s7	FTP server IP address or host name	
PRT=d8	FTP server port number	0-65535
LGN=s9	FTP server login	32 characters max.
PWD=s10	FTP server password	32 characters max.
PTH=s11	Path used on the FTP server	255 characters max.
*cc	Checksum	*00-*FF

Example

\$PASHQ,FTP*35

\$PASHR,FTP,PUT,10,3,GabcdA9.145,1769897,56,ADD=ftp.ashtech.com, PRT=21,LGN=Ashtech,PWD=u6huz8,PTH=/my folder*11

See Also \$PASHS,FTP,PAR \$PASHS,FTP,PUT

GGA: GNSS Position Message

Function This command is used to output a GGA message containing

the last computed position. If no position is computed, the message will be output anyway, but with some blank fields.

Command Format Syntax

\$PASHQ,GGA[*cc]

Response Format Syntax

\$GPGGA,m1,m2,c3,m4,c5,d6,d7,f8,f9,M,f10,M,f11,d12*cc

Parameters

Parameter	Description	Range
m1	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
m2	Latitude of position (ddmm.mmmmmm)	0-90 0-59.999999
c3	Direction of latitude	N, S
m4	Longitude of position (dddmm.mmmmmm)	0-180 0-59.999999
c5	Direction of longitude	E,W
d6	Position type: 0: Position not available or invalid 1: Autonomous position 2: RTCM Differential (or SBAS Differential) 3: Not used 4: RTK fixed 5: RTK float 9: SBAS Differential. See comment.	0-5, 9
d7	Number of GNSS Satellites being used in the position computation	3-27
f8	HDOP	0-99.9
f9,M	Altitude, in meters, above mean seal level. "M" for meters	± 99999.999,M
f10,M	Geoidal separation in meters. "M" for meters. Based on the official NATO's standard mean- sea-level algorithm (5-degree grid of height).	± 999.999,M
f11	Age of differential corrections, in seconds	0-999

Parameter	Description	Range
d12	Base station ID (RTCM only)	0-4095
*cc	Checksum	*00-*FF

Example \$PASHQ,GGA

\$GPGGA,131745.00,4717.960847,N,00130.499476,W,4,10,0.8,35.655,M, 47.290.M.3.0.1000*61

Comment The code allotted to a position solution of the SBAS

differential type is either "1" or "9", depending on the last

\$PASHS,NPT command run.

See also \$PASHS,NME

\$PASHS,NPT

Automatic Output of GGA Messages

This is a reminder on how to output GGA messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GGA,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GGA messages on port A at a rate of 0.5 second:

\$PASHS,NME,GGA,A,ON,0.5

GLL: Geographic Position - Latitude/Longitude

Function

This command is used to output a GLL message containing the last computed position. The message is output on the port on which the query is made. If no position is computed, the message will be output anyway, but all position-related fields will be blank.

Command Format Syntax

\$PASHQ,GLL[*cc]

Response Format Syntax

\$GPGLL,m1,c2,m3,c4,m5,c6,c7*cc

Parameter	Description	Range
m1	Latitude of position (ddmm.mmmmmm)	0-90 0-59.999999
c2	Direction of latitude	N, S
m3	Longitude of position (dddmm.mmmmmm)	0-180 0-59.999999
c4	Direction of longitude	E,W
m5	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
c6	Status A: Data valid V: Data not valid	A, V
c7	Mode indicator: A: Autonomous mode D: Differential mode N: Data not valid	A, D, N
*cc	Checksum	*00-*FF

Example \$PASHQ,GLL

\$GPGLL,4717.960853,N,00130.499473,W,132331.00,A,D*7D

See also \$PASHS,NME

Automatic Output of GLL Messages

This is a reminder on how to output GLL messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GLL,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GLL messages on port A at a rate of 0.5 second:

\$PASHS,NME,GLL,A,ON,0.5

GLO: GLONASS Tracking Status

Function

This command is used to query the GLONASS tracking status.

Command Format Syntax

\$PASHQ,GLO[*cc]

Response Format Syntax

\$PASHR,GLO,s*cc

Parameters

Parameter	Description	Range
s	ON: GLONASS satellites currently tracked and used. OFF: GLONASS satellites not tracked.	ON, OFF
*cc	Checksum	*00-*FF

Example

\$PASHQ,GLO \$PASHR,GLO,ON*1D

Relevant Set Command

\$PASHS,GLO

GNS,CFG: Reading the GNSS Mode Used in the Receiver

Function This command is used to query the GNSS mode used in the

receiver. The GNSS mode refers to the constellations and

frequencies used.

Command Format Syntax

\$PASHQ,GNS,CFG[*cc]

Parameters

None.

Response format Syntax

\$PASHR,GNS,CFG,d*cc

Parameter	Description	Range
	GNSS mode currently selected:	
	• 0: GPS L1	
	 1: GPS L1 and GLONASS L1 	
d	• 2: GPS L1/L2P	0-5
	• 3: GPS L1/L2C	
	 4: GPS L1/L2P and GLONASS L1/L2 	
	5: GPS L1/L2C and GLONASS L1/L2	
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,GNS,CGF*40 \$PASHR,GNS,CFG,1*5D

Relevant Set Command

\$PASHS,GNS,CFG

GRS: GNSS Range Residuals

Function

This command is used to output a GRS message containing the satellite range residuals. The message is output on the port on which the query is made. No message will be output if there is no position computed.

Command Format Syntax

\$PASHQ,GRS[*cc]

Response Format Syntax

\$--GRS,m1,d2,n(f3)*cc

Parameter	Description	Range
"\$GRS" Header	\$GPGRS: Only GPS satellites are used. \$GLGRS: Only GLONASS satellites are used. \$GNGRS: Several constellations (GPS, SBAS, GLONASS) are used.	\$GPGRS, \$GLGRS, \$GNGRS
m1	Current UTC time of GGA position (hhmmss.ss)	000000.00- 235959.99
d2	Mode used to compute range residuals	Always "1"
f3	Range residual for satellite used in position computation (repeated "n" times, where n is the number of satellites used in position computation). Residuals are listed in the same order as the satellites in the GSV message so that each residual provided can easily be associated with the right satellite.	±999.999
*cc	Checksum	*00-*FF

Example \$PASHQ,GRS

\$GNGRS,141003.50,1,1.14,-0.48,0.26,0.20,-0.94,-0.28,-1.18*61

\$GNGRS,141003.50,1,-0.20*4F

See also \$PASHS,NME

Automatic Output of GRS Messages

This is a reminder on how to output GRS messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GRS,<port ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GRS messages on port A at a rate of 0.5 second:

\$PASHS,NME,GRS,A,ON,0.5

GSA: GNSS DOP and Active Satellites

Function

This command is used to output a GSA message containing data related to DOP values and satellites used in the position solution.

Where applicable, one response line per constellation used is returned. In this case, the returned DOP values are the same in all response lines.

Command Format Syntax

\$PASHQ,GSA[*cc]

Response Format Syntax

\$--GSA,c1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,f15,f16,f17*cc

Parameters

Parameter	Description	Range
"\$GSA" Header	\$GPGSA: Only GPS satellites are used. \$GLGSA: Only GLONASS sats are used. \$GNGSA: Several constellations (GPS, SBAS, GLONASS) are used.	\$GPGSA, \$GLGSA, \$GNGSA
c1	Output mode: • M: Manual • A: Automatic	M, A
d2	Position indicator: 1: No position available 2: 2D position 3: 3D position	1-3
d3-d14	Satellites used in the position solution (blank fields for unused channels)	GPS: 1-32 GLONASS: 65-96 SBAS: 33-64
f15	PDOP	0-9.9
f16	HDOP	0-9.9
f17	VDOP	0-9.9
*cc	Checksum	*00-*FF

Example \$PASHQ,GSA

\$GNG\$A,A,3,20,11,13,23,17,04,31,,,,,1.6,0.9,1.3*21 \$GNG\$A,A,3,81,83,68,,,,,1.6,0.9,1.3*2C

See also \$PASHS,NME

Automatic Output of GSA Messages

This is a reminder on how to output GSA messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GSA,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GSA messages on port A at a rate of 0.5 second:

\$PASHS,NME,GSA,A,ON,0.5

GST: GNSS Pseudo-Range Error Statistics

Function This command is used to output a GST message containing

standard deviations relevant to the position solution.

Command Format Syntax

\$PASHQ,GST[*cc]

Response Format Syntax

\$--GST,m1,f2,f3,f4,f5,f6,f7,f8*cc

Parameters

Parameter	Description	Range
"\$GST" Header	\$GPGST: Only GPS satellites are used. \$GLGST: Only GLONASS satellites are used. \$GNGST: Several constellations (GPS, SBAS, GLONASS) are used.	\$GPGST, \$GLGST, \$GNGST
m1	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
f2	RMS value of standard deviation of range inputs (DGNSS corrections included), in meters	0.000-99.999
f3	Standard deviation of semi-major axis of error ellipse, in meters	0.000-99.999
f4	Standard deviation of semi-minor axis of error ellipse, in meters	0.000-99.999
f5	Orientation of semi-major axis of error ellipse, in degrees from true North	0.000-99.999
f6	Standard deviation of latitude error, in meters	0.000-99.999
f7	Standard deviation of longitude error, in meters	0.000-99.999
f8	Standard deviation of altitude error, in meters	0.000-99.999
*cc	Checksum	*00-*FF

Example \$PASHQ,GST

\$GNGST,154013.80,0.642,1.746,1.303,27.197,1.663,1.407,2.456*79

See also \$PASHS,NME

Automatic Output of GST Messages

This is a reminder on how to output GST messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GST,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GST messages on port A at a rate of 0.5 second:

\$PASHS,NME,GST,A,ON,0.5

GSV: GNSS Satellites in View

Function This command is used to output a GSV message containing

information on the satellites in view.

Command Format Syntax

\$PASHQ,GSV[*cc]

Response Format Syntax

\$--GSV,d1,d2,d3,n(d4,d5,d6,f7)*cc

The set of parameters (d4,d5,d6,f7) can be repeated up to 4 times in a single response line, corresponding to the description of 4 different satellites. The number of response lines is therefore dependent on the number of satellites in view (e.g. three response lines if between 9 and 12 satellites are visible).

Parameter	Description	Range
"\$GSV"	\$GPGSV: GPS and SBAS satellites.	\$GPGSV,
Header	\$GLGSV: GLONASS satellites	\$GLGSV
d1	Total number of messages	1-4
d2	Message number	1-4
d3	Total number of satellites in view	1-15
d4	Satellite PRN	GPS: 1-32 GLONASS: 65-96 SBAS: 33-64
d5	Elevation in degrees	0-90
d6	Azimuth in degrees	0-359
f7	SNR in dB.Hz	30.0-60.0
*cc	Checksum	*00-*FF

Example

\$PASHQ,GSV \$GPGSV,2,1,07,20,61,066,50,11,30,146,36,13,41,200,50,23,73,134,52*7C

\$GPGSV,2,2,07,33,34,198,42,17,40,242,50,04,37,304,48*47 \$GLGSV,1,1,04,77,29,098,46,84,19,332,46,83,49,276,52,68,57,300,52*67

See also \$PASHS,NME

Automatic Output of GSV Messages

This is a reminder on how to output GSV messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GSV,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GSV messages on port A at a rate of 10 seconds:

\$PASHS,NME,GSV,A,ON,10

LCS: Local Coordinate System Status

Function

This command asks the receiver to indicate the coordinate system it currently uses to deliver its position solution. A local coordinate system may be used provided its characteristics are received through the appropriate RTCM 3.1 message (1021, 1022 or 1023) from the base used.

Command Format Syntax

\$PASHQ,LCS[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,LCS,s*cc

Parameters

Parameter	Description	Range
s	Status: ON: Local coordinate system used when available OFF: Coordinate system used is WGS84 necessarily.	ON, OFF
*cc	Checksum	*00-*FF

Example

\$PASHQ,LCS \$PASHR,LCS,ON*05

Relevant Set Command

\$PASHS,LCS

LOG: Editing a Log File

Function

This command is used to edit the specified or current log file. A log file lists all events related to IP connections with the receiver.

Command Format

Syntax

\$PASHQ,LOG[,d][*cc]

Parameters

Parameter	Description	Range
d	Index number of the log file you want to edit. If d is omitted, the current log file is edited.	0-900
*cc	Optional checksum	*00-*FF

Response format

Syntax

The response is formatted as follows:

Date: <Year>-<Month>-<Day>

Maximum size: x Mb Duration: xx days

hh:mm:ss: <message 1> hh:mm:ss: <message 2>

• • •

hh:mm:ss: <message n>

Parameters

- The first line contains the date when the log file was created.
- The second line indicates the maximum size (in Mb) permitted for the file as well as the time, in days, during which it is kept in memory.
- Each of the lines that follow contains a message that describes a connection event (time of event, beginning or end of connection, type of connection, identification of the connected device).

Example

\$PASHQ.LOG*33

Date: 2009-04-08

Maximum size: 1 Mb Duration: 20 days

14:12:34: connect server, stream=I1, port=1001, IP=12.34.87.22 14:15:33: connect client, stream=I2, IP=23.33.43.12, port=7721

15:36:12: disconnect server, stream=I1, port=1001, IP=12.34.87.22

See Also \$PASHS,LOG,PAR

\$PASHS,LOG,DEL \$PASHQ,LOG,LST

LOG,LST: Listing Log Files

Function This command is used to read the list of log files present in

the receiver.

Command Format Syntax

\$PASHQ,LOG,LST[*cc]

Parameters

None.

Response format Syntax

\$PASHR,LOG,LST,d1,d2,s3,d4*cc

Parameters

Parameter	Description	Range
d1	Current number of log files in the receiver	0-900
d2	File index	0-900
s3	Filename	255 characters max.
d4	Size, in bytes	0-134217728
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,LOG,LST*54

\$PASHR,LOG,LST,4,0,20090408.log,1769897*01 \$PASHR,LOG,LST,4,1,20090407.log,1769876*00 \$PASHR,LOG,LST,4,2,20090406.log,1769787*03 \$PASHR,LOG,LST,4,3,20090405.log,1769787*01

Relevant Set Command

\$PASHS,LOG,PAR \$PASHS,LOG,DEL \$PASHQ,LOG

LOG, PAR: Log File Settings

Function This command is used to read the settings of any new log file

created in the receiver.

Command Format Syntax

\$PASHQ,LOG,PAR[*cc]

Parameters

None.

Response format Syntax

\$PASHR,LOG,PAR,s1,d2,d3*cc

Parameters

Parameter	Description	Range
s1	Log file control parameter: ON: Generation of log files enabled OFF: Generation of log files disabled	ON, OFF
d2	Maximum size, in Mbytes	1-90
d3	Number of days during which a log file is kept in memory.	1-100
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,LOG,PAR*5C \$PASHR,LOG,PAR,OFF,1,20*0F

Relevant Set Command

\$PASHS,LOG,PAR

MDM: Modem Status and Parameters

Function This command is used to query the modem parameters.

Command Format Syntax

\$PASHQ,MDM[*cc]

Response Format Syntax

\$PASHR,MDM,c1,d2,s3,PWR=s4,PIN=s5,BND=d6,PTC=d7,CBS=d8, APN=s9,LGN=s10,PWD=s11,IPT=d12,PHN=s13,ADL=c14,RNO=d15*cc

Parameters

Parameter	Description	Range
c1	Modem port	Е
d2	Modem baud rate	9
s3	Modem state "NONE" means that the modem option [Z] is not valid.	OFF, ON, INIT, DIALING, ONLINE, NONE
PWR=s4	Power mode: AUT: Automatic MAN: Manual	AUT, MAN
PIN=s5	PIN code	4-8 digits
BND=d6	Band:	0-2
PTC=d7	Protocol: • 0: CSD • 1: GPRS	0-1
CBS=d8	CSD mode:	0-1
APN=s9	Access Point Name (GPRS)	32 char. max.
LGN=s10	Login (GPRS)	32 char. max.
PWD=s11	Password (GPRS)	32 char. max.
IPT=d12	Internet Protocol: • 0: TCP • 1: UDP	0-1
PHN=s13	Phone number (CSD)	20 digits max.
ADL=c14	Auto-dial mode	Y, N
RNO=d15	Maximum number of re-dials (CSD)	0-15
*cc	Checksum	*00-*FF

Example

\$PASHQ,MDM

\$PASHR,MDM,E,9,ONLINE,PWR=MAN,PIN=,BND=1,PTC=1,CBS=1,APN=a 2bouygtel.com,LGN=,PWD=,IPT=0,PHN=,ADL=Y,RNO=2*47

Relevant Set Command

\$PASHS,MDM

See also \$PASHQ,MDM,LVL

\$PASHQ,MWD

\$PASHS,NTR \$PASHS,DIP \$PASHS,MDM,DAL

MDM,LVL: Modem Signal Level

Function This command is used to query the current level of the

modem signal.

Command Format Syntax

\$PASHQ,MDM,LVL[*cc]

Response Format Syntax

\$PASHR,MDM,LVL,d*cc

Parameters

Parameter	Description	Range
d	Current signal level: • 0-100: Signal level. The higher the number, the higher the signal level. • "-1": No signal available.	0 to 100 -1
*cc	Checksum	*00-*FF

Example

\$PASHQ,MDM

\$PASHR,MDM,LVL,-1*7A

See also \$PASHQ,MDM

MDP: Port A Setting

Function This command is used to read the current setting of port A.

Command Format Syntax

\$PASHQ,MDP[*cc]

Response Format Syntax

\$PASHR.MDP.A.s*cc

Parameter	Description	Range
S	Current port setting (RS232 or RS422)	232, 422
*cc	Checksum	*00-*FF

Example

\$PASHQ,MDP

\$PASHR,MDP,A,RS232*5E

Relevant Set

\$PASHS,MDP

Command

See also \$PASHQ,CTS

MEM: Selected Memory Device

Function This command is used to query the memory device used by

the receiver.

Command Format Syntax

\$PASHQ,MEM[*cc]

Response Format Syntax

\$PASHR,MEM,d[*cc]

Parameters

Parameter	Description	Range
d	Memory used: • 0: Internal memory (NAND Flash) • 2: USB mass storage key	0, 2
*cc	Checksum	*00-*FF

Example

\$PASHQ,MEM \$PASHR,MEM,0*2D

Relevant Set Command \$PASHS,MEM

See also \$PASHQ,FLS

MET: Meteorological Unit Settings

Function This command allows you to read the current settings on each

serial port allowing the receiver to query the meteorological

unit.

Command Format Syntax

\$PASHQ,MET[*cc]

Response Format Syntax

In free form, as shown in the example below.

Example

\$PASHQ,MET

MET PARAMETERS SETTINGS

PRTA:OFF INIT_STR:NO TRIG_CMD:*0100P9 INTVL:0005
PRTB:OFF INIT_STR:NO TRIG_CMD:*0100P9 INTVL:0005
PRTF:OFF INIT_STR:NO TRIG_CMD:*0100P9 INTVL:0005

See Also \$PASHS,MET,PAR

\$PASHS,MET,INIT \$PASHS,MET,CMD \$PASHS,MET,INTVL

MWD: Modem Watchdog Timeout

Function This command is used to query the current setting for the

modem watchdog timeout.

If no data is received or sent through its port over a period of time equal to this timeout, the modem will automatically

hang up.

Command Format Syntax

\$PASHQ,MWD[*cc]

Response Format Syntax

\$PASHR,MWD,d1,d2*cc

Parameters

Parameter	Description	Range	Default
d1	Current timeout setting: 1-99: Modem timeout in minutes. 0: No timeout	0-99	0
d2	Current idle time for modem, in minutes.	0-99	
*cc	Checksum	*00-*FF	

Example

\$PASHQ,MWD \$PASHR,MWD,0*36

Relevant Set Command \$PASHS,MWD

See also \$PASHQ,MDM

NMO: NMEA Message Output Settings

Function This command is used to query the types of NMEA messages

currently enabled on the specified port.

Command Format Syntax

\$PASHQ,NMO,c[*cc]

Parameter	Description	Range
С	Queried port ID: A, B, F: Serial port C: Bluetooth port I, P, Q, I1-I9: Ethernet port E: Modem M, U: Memory R: Automatic recording session	A, B, C, E, F, I, M, P, Q, R, U, I1-I9
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,NMO,c1,d2,f3,d4,n(s5,f6)*cc (n=18)

Parameters

Parameter	Description	Range
c1	Queried port ID:	A, B, C, E, F, I, M, P, Q, R, U, 11-19
d2	Baud rate code	0-15 (A, B, F) 0, 1 (C, E, I, M, P, Q, U, I1-I9)
f3	Output rate as defined by the last \$PASHS,NME,PER command run.	0-999.0
d4	Number of NMEA messages listed in the response line	26
s5	NMEA message type	ALM, DTM, GGA, GLL, GRS, GSA, GST, GSV, HDT, RMC, VTG, ZDA, ATT, CRT, DCR, DPO, LTN, POS, RRE, SAT, SGL, SGP, VEC, XDR, PTT, TTT
f6	Output rate: • 0.05 or 0.1 to 0.9 or 1-999: Output rate in seconds • 0: Message disabled	0-999.00 s
*cc	Checksum	*00-*FF

Example

\$PASHQ,NMO,P

\$PASHR,NMO,P,0,001.00,26,ALM,0.00,DTM,0.00,GGA,0.00,GLL,0.00,GRS, 0.00,GSA,0.00,GST,0.00,GSV,0.00,HDT,0.00,RMC,0.00,VTG,0.00,XDR,0,ZD A,0.00,ATT,0.00,CRT,0.00,DCR,0.00,DPO,0.00,POS,0.00,RRE,0.00,SAT,0.00 ,SGL,0.00,SGP,0.00,VEC,0.00,LTN,0.00,PTT,0,TTT,0*6C

See also \$PASHS,NME

NPT: Tagging of SBAS Differential Positions in NMEA & NMEA-Like Messages

Function This command is used to query the receiver for the current

tagging of all SBAS differential positions solutions in NMEA-

like and NMEA messages the receiver generates.

Command Format Syntax

\$PASHQ,NPT[*cc]

Response Format Syntax

\$PASHR,NPT,d1,d2*cc

Parameters

Parameter	Description	Range
d1	Code assigned to SBAS differential position solution in NMEA-like messages (CRT, DCR, DPO, POS, VEC): 0: Code "1" 1: Code "9"	0,1
d2	Code assigned to SBAS differential position solution in NMEA messages (GGA): • 0: Code "2" • 1: Code "9"	0, 1
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,NPT

\$PASHR,NPT,0,0*3E

Relevant Set Command

\$PASHS,NPT

NTR: NTRIP Settings

Function

This command is used to read the current NTRIP settings. When c6 is omitted in the query command, the returned NTRIP settings are those for the port defined through the \$PASHS,NTR,PAR command last run.

Command Format

Syntax

\$PASHQ,NTR[,c6][*cc]

Response Format

Syntax

\$PASHR,NTR,ADD=s1,PRT=d2,LGN=s3,PWD=s4,TYP=d5,IPP=c6*cc

Parameters

Parameter	Description	Range
s1	Caster IP address or host name	000.000.000.000- 255.255.255.255 or host name
d2	Caster port number	0-65535
s3	Login	32 characters max.
s4	Password	32 characters max.
d5	Caster type: • 0: Client • 1: Server	0-1
c6	Internet port used to connect to the caster: E: Internal modem (default) P: Ethernet stream 1 Q: Ethernet stream 2	E, P, Q
*cc	Checksum	*00-*FF

Example

\$PASHQ,NTR

\$PASHR,NTR,ADD=192.34.76.1,PRT=2100,LGN=Ashtech,PWD=u6huz8, TYP=0*2D

See also

\$PASHS,NTR,PAR \$PASHQ,NTR,TBL

NTR,MTP: Connection to Mount Point

Function

This command is used to read the current NTRIP mount point to which the specified Internet port is connected.

Command Format

Syntax

\$PASHQ,NTR,MTP[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Internet port used for the connection to the embedded NTRIP caster. E: Internal modem P: Ethernet stream 1 Q: Ethernet stream 2 If c1 is omitted, the receiver will return the mount point name corresponding to the port last defined through the \$PASHS,NTR,PAR command.	E, P, Q
*cc	Checksum	*00-*FF

Response Format

Syntax

\$PASHR,NTR,MTP,s1*cc

Parameters

Parameter	Description	Range
s1	Ilt "()FF" the nort is not connected to	100 characters max. or "OFF"
*cc	Checksum	*00-*FF

Example

\$PASHQ,NTR,MTP,P \$PASHR,NTR,MTP,NAN2*06

Relevant Set Command \$PASHS,NTR,MTP

NTR,TBL: Source Table

Function This command is used to read the source table stored in the

receiver.

Command Format Syntax

\$PASHQ,NTR,TBL[*cc]

Response Format Syntax

> \$PASHR,NTR,TBL SOURCETABLE 200 OK <source table as specified in the RTCM standard> **ENDSOURCETABLE**

Parameters

Source table as defined in the NTRIP standard.

Example

\$PASHQ,NTR,TBL

\$PASHR.NTR.TBL

SOURCETABLE 200 OK

Content-Type: text/plain

Content-Length: 7864

CAS;129.217.182.51;80;ICD;BKG;0;GER;51.5;7.5;Trial Broadcaster

NET;GREF;BKG;B;N;http://igs.ifag.deGREF.htm;none;

denise.dettmering@bkg.bund.de;none

NET;IGSIGLOS;BKG;B;N;http://igscb.ipl.nasa.gov/projects/rtwg

;none;denise.dettmering@bkg.bund.de;none

STR;FFMJ2;Frankfurt;RTCM2.0;1(1),3(19),16(59);0;GPS;GREF;GER;50.12;8

.68;0;1;GPSNetV1.9;none;N;N;560;DemoSTR;FFMJ1;Frankfurt;RTCM

2.1;3(19),16(59),18(1),19(1);2;GPS;GREF;GER;50.09;8.66;0;0;GPSNet

V1.9;none;N;N;2800;Demo

STR;FFMJ0;Frankfurt;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;

GER:50.09:8.66:0:0:Javad Legacy E:none:N:N:3600:Demo

STR;LEIJ0;Leipzig;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;

GER;51.33;12.37;0;0;Javad Legacy E;none;B;N;3600;none

STR;WTZJ0;Wettzell;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;

GER;49.13;12.88;0;0;Javad Legacy E;none;B;N;3600;none

STR;HELJ0;Helgoland;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;

GER;54.18;7.88;0;0;Javad Legacy E;none;B;N;3600;none STR;TITZ0;Titz;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;

GER;51.00;6.42;0;0;Javad Legacy E;none;B;N;3600;none

STR;HUEG0;Huegelheim;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;

GER;47.82;7.62;0;0;Javad Legacy E;none;B;N;3600;none

STR;DREJ0;Dresden;RAW;Compact(1);2;GPS+GL0;IGSIGLOS;

GER;51.05;13.73;0;0;Javad Legacy E;none;B;N;3600;none

STR;SASS0;Sassnitz;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;

GER;54.51;13.64;0;0;Javad Legacy E;none;B;N;3600;none STR;KARJ0;Karlsruhe;RAW;Compact(1);2;GPS+GLO;IGSIGLOS; GER;49.01;8.41;0;0;Javad Legacy E;none;B;N;3600;none STR;WILH0;Wilhelmshaven;RTCM 2.0;1(1),3(19),16(59);0;GPS;GREF;GER;53.52;8.10;0;1;GPSNet V1.9;none;B;N;560;VRS ENDSOURCETABLE

See also \$PASHS,NTR,LOD

\$PASHS,NTR,PAR \$PASHS,NTR,MTP

OCC: Ocupation State and Parameters

Function This command is used to read the current occupation

settings.

Command Format Syntax

\$PASHQ,OCC[*cc]

Response Format Syntax

\$PASHR,OCC,d1,d2[,s3,s4]*cc

Parameters

Parameter	Description	Range
d1	Occupation type:	0-2, 4
d2	Occupation state: O: Occupation in progress 1: No occupation in progress	0-1
s3	Occupation name	255 characters max.
s4	Occupation description	255 characters max.
*cc	Checksum	*00-*FF

Examples

\$PASHQ,OCC

\$PASHR, OCC, 2, 1*38

Relevant Set \$PASHS,OCC Command

OPTION: Installed Receiver Firmware Options

Function

This command is used to list the firmware options currently installed in the receiver. The returned message includes one response line per installed option.

Command Format

Syntax

\$PASHQ,OPTION[*cc]

Response Format

Syntax

\$PASHR,OPTION,c1,s2,h3*cc

Parameters

Parameter	Description	Range
c1	Option ID	K, F, Z, S, P, M, L, N, C, R (See table below)
s2	Option label	
h3	Hexadecimal unlock code	13 characters max.
*cc	Checksum	*00-*FF

Option ID	Label	Description
К	RTK	RTK processing enabled. Corrections generated in RTCM2.3, RTCM3.0, CMR or CMR+ format.
F	FASTOUTPUT	20-Hz data output rate enabled
Z	MODEM	GSM/GPRS modem enabled
S	GLONASS	GLONASS enabled
Р	GNSSL2	L2 tracking enabled
M	RTK2	RTK using a proprietary data format (ATOM, DBEN or LRK) enabled. Required for a base only generating data in ATOM proprietary format.
L	RTK3	Limited RTK range enabled for a rover. Also gives full RTK capability for a base.
N	STA	RTK base enabled
С	CASTER	Embedded NTRIP Caster

Option ID	Label	Description
R	FLYINGRIK	RTK computation (Flying RTK mode only) with RTCM2.3, RTCM3.0, CMR, CMR+, LRK, DBEN, ATOM. Generates RTCM2.3, RTCM3.0, CMR, CMR+, ATOM messages.

Example

\$PASHQ,OPTION

\$PASHR,OPTION,0,SERIAL,NUMBER,200751223*7A \$PASHR,OPTION,K,RTK,6756975c71766*36 \$PASHR,OPTION,S,GLONASS,6756945714671*7B

Relevant Set Command

\$PASHS,OPTION

PAR: Receiver Parameters

Function

This command lists the currently used parameters for the specified type of receiver settings. The response is returned on the port routing the query command.

Command Format

Syntax

\$PASHQ,PAR[,s1][*cc]

Parameter	Description	Range
s1	Type of receiver settings. If s1 is omitted, the response lists the parameters for all types of settings, one after the other.	See table below.
*cc	Optional checksum	*00-*FF

Type	Description
STA	Status information
RCV	Receiver settings.
RTK	RTK and ARROW settings.
PRT	Port information
MEM	Memory information
SES	Session information
RXC	RINEX converter information
ETH	Ethernet information
CST	NTRIP caster information
RDP	Radio information
MDM	Modem information
NET	Network information
XDR	External sensor information
OUT	Output information.

Response Format

Examples \$PASHQ,PAR,STA

\$PASHQ,PAR,OUT

```
OUTPUT INFORMATION
   MPC DPC PBN SNV SAL ION SBD SNW SAW SNG SAG
   .05 OFF .05 001 OFF OFF ON 001 OFF 001 OFF
B: OFF OFF OFF OFF OFF OFF OFF OFF OFF
   OFF OFF OFF OFF OFF OFF OFF OFF OFF
F: OFF OFF OFF OFF OFF OFF OFF OFF OFF
I: OFF OFF OFF OFF OFF OFF OFF OFF OFF
M: OFF OFF OFF OFF OFF OFF OFF OFF OFF
R: OFF OFF OFF OFF OFF OFF OFF OFF OFF
  OFF OFF OFF OFF OFF OFF OFF OFF
I1: OFF OFF OFF OFF OFF OFF OFF OFF
I2: OFF OFF OFF OFF OFF OFF OFF OFF OFF
I3: OFF OFF OFF OFF OFF OFF OFF OFF OFF
14: OFF OFF OFF OFF OFF OFF OFF OFF OFF
IS: OFF OFF OFF OFF OFF OFF OFF OFF OFF
19: OFF OFF OFF OFF OFF OFF OFF OFF
   MES PVT ATR NAV DAT EVT RNX
A: OFF OFF OFF OFF OFF OFF
B: OFF OFF OFF OFF OFF OFF
C: OFF OFF OFF OFF OFF OFF
F: OFF OFF OFF OFF OFF OFF
etc.
```

The parameters returned by \$PASHQ,PAR,OUT should be interpreted as follows:

- "OFF" means the message is currently not output.
- "ON" means it is currently output with the default output rate.
- A specified output rate means this rate has been user-set through the appropriate command.

PEM: Position Elevation Mask

Function This command is used to read the current value of the elevation mask used in the position processing.

Command Format Syntax

\$PASHQ,PEM[*cc]

Response Format Syntax

\$PASHR,PEM,d1*cc

Parameter	Description	Range
d1	Elevation mask angle	0-90°
*cc	Checksum	*00-*FF

Example

\$PASHQ,PEM \$PASHR,PEM,9*39

Relevant Set Command

\$PASHS,PEM

See also

\$PASHQ,ELM

PHE: Active Edge of Event Marker Pulse

Function Thi

This command is used to read the current choice of active edge for the event marker pulse (photogrammetry).

Command Format

Syntax

\$PASHQ,PHE[*cc]

Response Format

Syntax

\$PASHR,PHE,c*cc

Parameters

Parameter	Description	Range
	Active edge:	
С	R: Rising	R, F
	F: Falling	
*cc	Checksum	*00-*FF

Example

\$PASHQ,PHE \$PASHR,PHE,R*57

Relevant Set Command

\$PASHS,PHE

See also \$PASHS,NME,TTT

POP: Reading Internal Update Rate

Function This command is used to read the internal update rate

currently used for measurements and PVT process.

Command Format Syntax

\$PASHQ,POP[*cc]

Parameters

None.

Response format Syntax

\$PASHR,POP,d*cc

Parameters

Parameter	Description	Range
d	Current update rate, in Hz. Default is 20 Hz.	10, 20
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,POP*38 \$PASHR,POP,10*16

Relevant Set

\$PASHS,POP

Command

POS: Computed Position Data

Function This command allows you to query the computed position.

Command Format Syntax

\$PASHQ,POS[*cc]

Response Format Syntax

\$PASHR,POS,d1,d2,m3,m4,c5,m6,c7,f8,f9,f10,f11,f12,f13,f14,f15,f16,s17*cc

Parameter	Description	Range
d1	Position mode: O: Autonomous I: RTCM code differential (or SBAS differential) E: RTK float RTK fixed SERTK fixed	0-3, 9
d2	Count of satellites used in position computation	3-27
m3	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
m4	Latitude of position (ddmm.mmmmmm)	0-90° 00-59.999999 minutes
c5	North (N) or South (S)	N, S
m6	Longitude of position (ddmm.mmmmmm)	0-180° 0059.999999 minutes
c7	East (E) or West (W)	E, W
f8	Altitude above the WGS84 ellipsoid	±9999.000
f9	Age of differential corrections, in seconds	0-999
f10	True Track/Course Over Ground, in degrees	0.0-359.9
f11	Speed Over Ground, in knots	0.0-999.9
f12	Vertical velocity in dm/s	±999.9
f13	PDOP	0-99.9
f14	HDOP	0-99.9
f15	VDOP	0-99.9
f16	TDOP	0-99.9
s17	Firmware version ID	4-char. string
*cc	Checksum	*00-*FF

Example

\$PASHO POS

\$PASHR,POS,3,10,151858.00,4717.960848,N,00130.499487,W,82.972,,0.0, 0.0,-0.0,2.0,1.1,1.7,1.3,G010*49

Comment

The code allotted to a position solution of the SBAS differential type is either "1" or "9", depending on the last \$PASHS,NPT command run.

Relevant Set Command

\$PASHS,POS

See also \$PASHS,NME \$PASHS.NPT

Automatic Output of POS Messages

This is a reminder on how to output POS messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,POS,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output POS messages on port A at a rate of 0.2 second:

\$PASHS,NME,POS,A,ON,0.2

PPS: PPS Settings

Function This command is used to read the current settings (signal

period, offset and valid edge) of the PPS signal.

Command Format Syntax

\$PASHQ,PPS[*cc]

Response Format Syntax

\$PASHR,PPS,f1,f2,c3*cc

Parameters

Parameter	Description	Default	Range
f1	Period, in seconds	0	0.0-0.9; 1-60
f2	Offset in milliseconds	0	±999.9999
c3	Active edge: R: Rising F: Falling	R	R, F
*cc	Checksum		*00-*FF

Example

\$PASHQ,PPS

\$PASHR,PPS,1,500,R*5D

Relevant Set \$PASHS,PPS Command

PRT: Baud Rate Settings

Function

This command is used to query the baud rate setting for any of the serial ports used in the receiver.

Command Format

Syntax

\$PASHQ,PRT[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C, D, F
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,PRT,c1,d2*cc

Parameters

Parameter	Description	Range
c1	ID of port for which baud rate setting is returned.	A, B, C, D, F
d2	Baud rate code	0-15 (see table below)
*cc	Checksum	*00-*FF

Code	Baud Rate	Code	Baud Rate
0	300	7	38400
1	600	8	57600
2	1200	9	115200
3	2400	10	230400
4	4800	11	460800
5	9600	12	921600
6	19200	13	1428571

Example

\$PASHQ,PRT,A

\$PASHR,PRT,A,6*55

Relevant Set Command

\$PASHS,PRT

Command

See also \$PASHQ,CTS

\$PASHQ,MDP

PTT: PPS Time Tag

Function

This command asks for the PPS time tag message to be output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,PTT[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C, E, F, I
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,PTT,d1,m2*cc

Parameters

Parameter	Description	Range
	Day of week:	
d1	• 1: Sunday	1-7
	• 7: Saturday	
m2	GPS time tag in hours, minutes, seconds	0-23:59:59.9999999
*cc	Checksum	*00-*FF

Example

Enabling the receiver to output the PTT message on port A: \$PASHS,NME,PTT,A,ON

Generating the PPS time tag message on port A: \$PASHQ.PTT,A

\$PASHR.PTT.6.20:41:02.0000000*2D

Comments

- The response to this command will be sent out once, right after the next PPS pulse is generated.
- The response contains the GPS time at which the PPS pulse was sent, including the offset if an offset was set when the PPS pulse was enabled.
- Being set to a periodical output by the \$PASHS,NME,PTT command, this message is independent of the NMEA period. It is only linked to the PPS period.

PWR: Power Status

Function This command is used to query the power status of the

receiver.

Command Format Syntax

\$PASHQ,PWR[*cc]

Response Format Syntax

\$PASHR,PWR,PAR,f1,f2,d3,[f4],[d5],[f6],[d7],d8*cc

Parameter	Description	Range
f1	Battery voltage threshold, in volts, triggering a low-battery alarm	6.7-8.4
f2	External power voltage threshold, in volts, triggering a low-power alarm	9.0-28
d3	Power source: O: Internal battery I: External battery External DC source	0-2
f4	Battery DC output voltage, in volts	0.0-12.0
d5	Percentage of remaining battery energy	0-100
f6	DC input voltage from external power, in volts	0.0-30.0
d7	Battery charging status: O: Charging 1: Discharging 2: Fully charged	0-2
d8	Internal temperature, in °Celsius	
*cc	Checksum	*00-*FF

Comments

With no internal battery in, fields f4, d5 and d7 are all empty. With no external power source applied, field f6 is empty.

Example

\$PASHQ,PWR

\$PASHR,PWR,6.8,9.1,2,,,11.6,,44*0D

Relevant Set Command

\$PASHS,PWR,PAR

RAW: Raw Data Logging Settings

Function This command is used to query the raw data recording

parameters.

Command Format Syntax

\$PASHQ,RAW[*cc]

Response Format Syntax

(Through an example):

PER:020.00 ELM:10

RAW: MPC DPC PBN SNV SNG SNW SAL SAG SAW ION SBD BAUD PRTA: ON OFF OFF OFF OFF OFF OFF OFF OFF 6 PRTB: ON OFF OFF OFF OFF OFF OFF OFF OFF 6 PRTC: OFF OFF OFF OFF OFF OFF OFF OFF OFF 1 PRTF: ON OFF OFF OFF OFF OFF OFF OFF OFF 6 PRTI: ON OFF OFF OFF OFF OFF OFF OFF OFF 1 MEMR: OFF OFF OFF OFF OFF OFF OFF OFF OFF 1 12: OFF OFF OFF OFF OFF OFF OFF OFF OFF O 13: OFF OFF OFF OFF OFF OFF OFF OFF OFF O 14: 15: OFF OFF OFF OFF OFF OFF OFF OFF OFF O 16: OFF OFF OFF OFF OFF OFF OFF OFF OFF O 17. 18.

Parameters

Parameter	Description	Range
PER	Output rate, in seconds	0.00-999.00
ELM	Elevation mask used in data recording & data output	0-90
RAW	Raw data type	MPC, DPC, PBN, SNV, SNG, SNW, SAL, SAG, SAW, ION, SBD
PRTA PRTB PRTF	Serial port	ON, OFF
PRTC	Bluetooth	ON, OFF
PRTI	Ethernet	ON, OFF
MEMM MEMR MEMU	Labels for memories M (MEMM: internal memory), R (MEMR: automatic recording session) and U (MEMU: USB key)	ON-OFF
11-19	Data streaming port	ON, OFF
BAUD	For serial port: Baud rate code For other devices, "0" if not available, else "1"	0-15 (see table below)

Code	Baud Rate	Code	Baud Rate
0	300	7	38400
1	600	8	57600

Code	Baud Rate	Code	Baud Rate
2	1200	9	115200
3	2400	10	230400
4	4800	11	460800
5	9600	12	921600
6	19200	13	1428571

Relevant Set \$PASHS,RAW Command

RCP: Receiver Parameters

Function

This command returns the list of pre-defined receiver names, and for user-defined receivers, their GLONASS carrier phase biases.

Command Format

Syntax

\$PASHQ,RCP[*cc]

\$PASHQ,RCP,s1[*cc]

Parameters

Parameter	Description	Range
s1	Name of the receiver (case sensitive). If s1 is omitted, the parameters for all the receivers described in the database are listed.	31 characters max.
*cc	Checksum	*00-*FF

Response Format The response is in user-readable form.

\$PASHQ,RCP

PREDEFINED RECEIVER LIST (d1):

ASHTECH ProMark500 ProFlex500 MB500

 PM5
 MMapper100

 ProMark100
 ProMark200

 MB100
 NOVATEL

 TRIMBLE
 SEPTENTRIO

TOPCON

USERDEFINED RECEIVER LIST (d2):

RCV10 RCV11 RCV12 RCV13

..

OWN RECEIVER: ProFlex500 REFERENCE RECEIVER: RECEIVED RECEIVER:

Where:

- d1 is the number of pre-defined receivers
- d2 is the number of user-defined receivers
- · "Own receiver" refers to the name of the receiver
- "Reference receiver" provides the name of the base receiver, as set through the command \$PASHS,RCP,REF
- "Received receiver" provides the name of the base receiver, as received through the differential data stream.

\$PASHQ,RCP,s1 provides the GLONASS carrier phase biases for the specified, user-defined receiver.

\$PASHQ,RCP,MyReceiver

MyReceiver:

L1 BIAS: +0.059,+0.613 +0.671 +0.729 +0.786 +0.829 +0.898 +0.949 +0.000 +0.059 +0.112 +0.182 +0.253 +0.312 +0.373 L2 BIAS: +0.049,+0.667 +0.714 +0.761 +0.808 +0.849 +0.893 +0.947 +0.000 +0.044 +0.102 +0.153 +0.201 +0.254 +0.292

See Also \$PASHS,RCP,REF

\$PASHS,RCP,GB1 \$PASHS,RCP,GB2

RCP, OWN: Receiver Name

Function This command is used to read the name assigned to the receiver.

Command Format Syntax

\$PASHQ,RCP,OWN[*cc]

None.

Response format Syntax

\$PASHR,RCP,OWN,s1*cc

Parameters

Parameter	Description	Range
s1	Receiver name	PROFLEX500
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,RCP,OWN*4C

\$PASHR,RCP,OWN,ProMark500*0E

RCP, REF: Reference Receiver Name

Function

This command is used to query the receiver for the name assigned locally to the base receiver from which the differential stream is received.

Command Format

Syntax

\$PASHQ,RCP,REF[*cc]

Parameters

None.

Response format

Syntax

\$PASHR,RCP,REF,s1,d2*cc

Parameters

Parameter	Description	Range
s1	Reference receiver name	
d2	Receiver name preference: 0: s1 is ignored if the incoming reference data contain the reference receiver name 1: s1 is always used and the decoded reference receiver name is ignored.	0, 1
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,RCP,REF*4B \$PASHR,RCP,REF,ASHTECH,0*38

RDP,CHT: Radio Channel Table

Function This command is used to read the radio channel settings.

Command Format Syntax

\$PASHQ,RDP,CHT,c1[*cc]

Parameters

Parameter	Description	Range
101	Serial port used to communicate with the radio (A, B or F for external radio, D for internal radio)	A, B, F, D
*cc	Optional checksum	*00-*FF

Response Format Syntax

\$PASHR,RDP,CHT,s1,d2,n(d3,f4,f5)*cc
Or, if the channel table does not exist: \$PASHR,RDP,CHT,s1,0
(Here n=d2)

Parameter	Description	Range
s1	Radio Model: NONE PDL: Pacific Crest MGL: Radio transmitter P/N 800986 MDL: U-Link LFE: License-free radio, Europe	UNKNOWN, PDL, ADL, MGL, MDL, LFE, NONE
d2	Total number of available channels	0-16 (0-32 for ADL)
d3	Channel index	0-15 (1-32 for ADL)
f4	Receive frequency	410-470 MHz
f5	Transmit frequency	410-470 MHz
*cc	Checksum	*00-*FF

Comments

- Running this command should always be preceded by the execution of the \$PASHQ,RDP,PAR command, otherwise the receiver will not respond properly.
- The number of (d3,f4,f5) data sets in the response line is equal to the number of channels (d2).
- The US model of license-free radio (LFA) cannot be interrogated through this command.

Examples

\$PASHQ,RDP,CHT,D

\$PASHR,RDP,CHT,PDL,7,0,446.7750,446.7750,1,444.1000,444.1000,2,445. 1000,445.1000,3,446.1000,446.1000,4,447.1000,447.1000,5,448.1000,448.1 000,6,449.1000,449.1000*35

\$PASHQ,RDP,CHT,A

\$PASHR,RDP,CHT,NONE,0*7B

See also \$PASHS,RDP,TYP \$PASHQ,RDP, PAR

RDP,LVL: Reading the Radio Reception Level

Function

This command is used to read the current level of signal at the radio receiver input. Only U-Link Rx and license-free radio receivers can return the current value of this parameter.

Command Format

Syntax

\$PASHQ,RDP,LVL,c[*cc]

Parameters

Parameter	Description	Range
С	Identification of the port to which the internal radio receiver is connected.	A, B, D, F
*cc	Optional checksum	*00-*FF

Response format

Syntax

\$PASHR,RDP,LVL,d1*cc

Parameters

Parameter	Description	Range
d1	Signal level, in dBm	
*cc	Optional checksum	*00-*FF

Example

With U-Link Rx as the internal radio connected to port D:

\$PASHQ,RDP,LVL,D*23 \$PASHR,RDP,LVL,D,-100*10

See Also

\$PASHS,RDP,PAR

\$PASHS,RDP,TYP

RDP, PAR: Radio Parameters

Function

This command allows you to query the radio settings relevant to the port used to communicate with the radio.

Command Format

Syntax

\$PASHQ,RDP,PAR,c1[*cc]

Parameter	Description	Range
c1	Serial port used to communicate with the radio	A, B, D, F
*CC	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,RDP,PAR,c1,s2,s3,c4,s5,c6,c7,s8,f9,f10,c11,s12,s13[,f14][,c15] [,c16][,s17][,s18]*cc

Parameters

Parameter	Description	Range
c1	The port ID you specified in the command is replicated in this field	A, B, D, F
s2	Radio Model: NONE: No radio detected PDL: Pacific Crest PDL RXO or PDL HPB/LPB ADL: Pacific Crest ADL Vantage or ADLFoundation MGL: Radio transmitter P/N 800986 MDL: U-Link LFE: License-free radio, Europe (ARF7474B) LFA: License-free radio, North America (ARF7474A) UNKNOWN: Auto-detection in progress	PDL, MGL, MDL, LFE, LFA, ADL, NONE, UNKNOWN
s3	Radio state (if port D is queried)	ON, OFF
c4	Channel number	0-15 (PDL, MGL, MDL) 1-32 (ADL) 0-2 (LFE) 0-49 (LFA)
s5	Power management (if port D is queried) AUT: Automatic MAN: Manual	AUT, MAN
c6	Protocol used: O: Transparent (PDL and MDL only) 1: TRIMTALK (PDL only) 2: DSNP 3: SATEL	0-3
c7	Air link speed	4800, 7600, 8000, 9600, 16000, 19200
s8	Radio sensitivity (for PDL, ADL and MDL)	LOW, MED, HIG, OFF
f9	Receive frequency, in MHz	410-470

Parameter	Description	Range
f10	Transmit frequency, in MHz	410-470
c11	Channel spacing, in kHz: • MGL and MDL: 12.5 only • PDL: 12.5 or 25	12.5, 25
s12	RF band, in MHz (for PDL only)	410-430, 430-450, 450-470
s13	Firmware version	
f14	Central frequency setting (MDL only)	410-470 MHz
c15	Scrambler status (PDL only): O: Off 1: On	0, 1
c16	Forward Error Correction status (PDL only): • 0: FEC Off • 1: Hamming FEC On	0, 1
S17	RF output level (licence-free radios only), in mW	100, 200, 500
s18	Modulation format (PDL and ADL only)	4FSK, GMSK
*cc	Checksum	*00-*FF

Examples

If an internal PDL radio receiver is used:

\$PASHQ,RDP,PAR,D

\$PASHR,RDP,PAR,D,PDL,ON,0,AUT,0,4800,MED,444.5500,446.7750,12.5,4 30-450,V02.58,,0,0*03

If an internal U-Link Rx is used:

\$PASHQ,RDP,PAR,D

\$PASHR,RDP,PAR,D,MDL,ON,4,AUT,0,9600,MED,447.1000,447.1000,12.5,, V01.00.445.5500*20

If an external radio transmitter P/N 800986 is used:

\$PASHQ.RDP.PAR.D

\$PASHR,RDP,PAR,D,MGL,,1,,,,0.0000,447.1000,,,TD20-EUHFV10300*01

Comments

The command will be NAKed if the receiver has not been told the radio is on the specified port using command

\$PASHS,RDP,TYP.

Relevant Set Command

\$PASHS,RDP,PAR

See also \$PASHS,RDP,TYP

RDP, TYP: Radio Type Used

Function

This command is used to query the type of radio used on the

specified port.

Command Format

Syntax

\$PASHQ,RDP,TYP,c1[*cc]

Parameters

Parameter	Description	Range
c1	Serial port used to communicate with the radio	A, B, D, F
*CC	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,RDP,TYP,c1,s2*cc

Parameters

Parameter	Description	Range
c1	The port ID you specified in the command is replicated in this field	A, B, D, F
s2	Radio Model: NONE: No radio detected PDL: Pacific Crest MGL: Radio transmitter P/N 800986 MDL: U-Link LFE: License-free radio, Europe LFA: License -free radio, North America ADL: Pacific Crest ADL UNKNOWN: Auto-detection in progress	NONE, PDL, MGL, MDL, LFE, LFA, ADL, UNKNOWN
*cc	Checksum	*00-*FF

Examples

If an external radio transmitter P/N800986 is used:

\$PASHQ,RDP,TYP,A \$PASHR,RDP,TYP,A,MGL*44

If an internal PDL radio receiver is used:

\$PASHQ,RDP,TYP,D \$PASHR,RDP,TYP,D,PDL*5F

Relevant Set Command

\$PASHS,RDP,TYP

REC: Raw Data Recording Status

Function This command allows you to read the current raw data

recording status.

Command Format Syntax

\$PASHQ,REC[*cc]

Response Format Syntax

\$PASHR,REC,c*cc

Parameters

Parameter	Description	Range
С	Control character: Y: Yes. Data recording in progress. Receiver will start recording data automatically when you next turn it on. N: No. No data recording in progress. Receiver will not start recording data automatically when you next turn it on. S: Stop. No data recording in progress but the receiver will start recording data automatically when you next turn it on. R: Record. Data recording in progress but the receiver will not start recording data automatically when you next turn it on.	Y, N, S, R
*cc	Checksum	*00-*FF

Example

\$PASHQ,REC \$PASHR,REC,N*42

Relevant Set Command

\$PASHS,REC

REF: External Reference Clock

Function This command is used to read the current status of the

external reference clock mode.

Command Format Syntax

\$PASHQ,REF[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,REF,s1,d2*cc

Parameters

Parameter	Description	Range
s1	Status of external reference clock input: ON: External reference clock enabled OFF: External reference clock disabled	ON, OFF
d2	Frequency, in MHz, of external reference clock.	5, 10, 20
*cc	Checksum	*00-*FF

Example

\$PASHQ,REF

\$PASHR,REF,ON,20*26

Relevant Set Command

\$PASHS,REF

RFB: Ring File Buffering

Function This command is used to read the current status of the ring

file buffer.

Command Format Syntax

\$PASHQ,RFB[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,RFB,s1,d2,d3*cc

Parameter	Description	Range
	Status:	
s1	Y: Ring file buffering enabled	Y, N
	N: Ring file buffering disabled	
d2	File duration, in minutes	1-120
d3	Size of the ring buffer, in kbytes	
*cc	Checksum	*00-*FF

Example

\$PASHQ,RFB \$PASHR,RFB,Y,5*4E

Relevant Set Command

\$PASHS,RFB

RFT: Record File Type for Meteo & Tiltmeter Data

Function

This command allows you to read the file format used when collecting meteorological and tiltmeter data.

Command Format

Syntax

\$PASHQ,RFT[*cc]

Parameters

None.

Response Format

Syntax

\$PASHR,RFT,d*cc

Parameters

Parameter	Description	Range
	File format used:	
d	0: G-file only	0, 1
	1: D-file and G-file	
*cc	Checksum	*00-*FF

Example

\$PASHQ,RFT \$PASHR,RFT,0*28

Relevant Set \$PASHS,RFT Command

RID: Receiver Identification

Function This command allows you to read the receiver identification

parameters.

Command Format Syntax

\$PASHQ,RID[*cc]

Response Format Syntax

\$PASHR,RID,s1,d2,s3,s4,s5,s6*cc

Parameters

Parameter	Description	Range
s1	Receiver type	PF (for ProFlex 500)
d2	Not used	30
s3	Firmware version	8 characters
s4	Receiver option. When an option is valid, a letter is displayed, else a dash is displayed. The options are: K: RTK (Unlimited RTK) F: FASTOUTPUT Z: MODEM S: GLONASS P: GNSSL2 M: RTK2 (RTK using proprietary formats) L: RTK3 (Limited RTK range) N: STA (RTK base) C: CASTER R: FLYING RTK	8 characters
s5	Not used	
s6	Serial number	9 characters
*cc	Checksum	*00-*FF

Example

\$PASHQ,RID*28

\$PASHR,RID,PF,30,S020G010,KFZS----,,200751223*1F

See also \$PASHQ, VERSION

\$PASHQ,OPTION

RMC: Recommended Minimum Specific GNSS Data

Function This command is used to output an RMC message containing

the last computed position as well as navigation-related data.

Command Format Syntax

\$PASHQ,RMC[*cc]

Response Format Syntax

\$GPRMC,m1,c2,m3,c4,m5,c6,f7,f8,d9,f10,c11,c12*cc

Parameters

Parameter	Description	Range
m1	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
c2	Status A: Data valid V: Navigation receiver warning	A, V
m3	Latitude of position (ddmm.mmmmmm)	0-90 0-59.999999
c4	Direction of latitude	N, S
m5	Longitude of position (dddmm.mmmmmm)	0-180 0-59.999999
c6	Direction of longitude	E,W
f7	Speed Over Ground, in knots	000.0-999.9
f8	Course Over Ground, in degrees (true)	000.0-359.9
d9	Date (ddmmyy)	010100-311299
f10	Magnetic variation, in degrees	0.00-99.9
c11	Direction of variation	E, W
c12	Mode indicator: A: Autonomous mode D: Differential mode N: Data not valid	A, D, N
*cc	Checksum	*00-*FF

Example \$PASHQ,RMC

\$GPRMC,160324.50,A,4717.959275,N,00130.500805,W,0.0,0.0,250208,1.9, W,A*3D

VV,A 3

See also \$PASHS,NME

Automatic Output of RMC Messages

This is a reminder on how to output RMC messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,RMC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output RMC messages on port A at a rate of 0.5 second:

\$PASHS,NME,RMC,A,ON,0.5

RNX,MSI: ATOM RNX Differential Message

Function Th

This command allows you to read the current settings of the ATOM RNX message.

Command Format

Syntax

\$PASHQ,RNX,MSI[*cc]

Parameters

None.

Response Format

Syntax

\$PASHR,RNX,MSI,d1,d2,d3*cc

Parameters

Parameter	Description	Range
d1	Scenario number	0-4, 101, 201-204, 300
d2	Output rate for observations, in seconds.	0.1-0.4 if [F] option activated. 0.5-0.9 1-1800
d3	Output rate for attributes (receiver and antenna names), in seconds.	0:Disabled 1-1800
*cc	Checksum	*00-*FF

Example

\$PASHQ,RNX,MSI

\$PASHR,RNX,MSI,4,1.0,31*7E

Relevant Set Command

\$PASHS,RNX,TYP

RRE: Residual Error

Function This command is used to output a range residual message.

The message is not output until a position solution is

computed.

Command Format Syntax

\$PASHQ,RRE[*cc]

Response Format Syntax

\$PASHR,RRE,d1,n(d2,f3),f4,f5*cc

Parameters

Parameter	Description	Range
d1	Number of satellites used to compute the position	3-27
d2	Satellite number	GPS: 1-32 SBAS: 33-64 GLONASS: 65-96
f3	Range residual	±999.9 m
f4	RMS horizontal position error	0-9999.9 m
f5	RMS vertical position error	0-9999.9 m
*cc	Checksum	*00-*FF

Example \$PASHQ,RRE

\$PASHR,RRE,12,20,0.5,13,0.4,23,-0.4,17,-0.6,25,-0.3,04,-0.1,02,0.5,77,

-0.0,84,0.0,83,0.0,78,0.0,68,0.1,1.2,2.3*34

See also \$PASHS,NME

RTC: RTCM Status

Function

This command queries the current status of the RTCM. The

return message is in free-form format.

Command Format Syntax

\$PASHQ,RTC[*cc]

Response Format Syntax

(Through an example)

STATUS:

SYNC:* VER:V2.3 STID:0000 STHE:0

AGE:+0000 TYPE:18/19

MSG: SETUP:

MODE:BAS PORT:A,E VER:V3,V2.3

STI:0000

TYP:1 3 9 16 18 19 20 21 22

FRQ: 0 30 0 1 1 0 0 30

TYP: 23 24 31 32 34 36

FRQ: 0 0 0 0 0

TYP: 1001 1002 1003 1004 1005 1006 1007 1008 FRQ: 0 0 0 1 0 30 0 0

TYP: 1009 1010 1011 1012 1013 1019 1020 1029 1033 FRQ: 0 0 0 1 30 0 0 0 31

MSG:

MSG:No User Message

Parameters

Status:

Parameter	Description	Range
SYNC	RTCM status: *: Corrections from base received in rover in due time. <	*, <space></space>
VER	RTCM version	V2.3, V3
STID	Station ID received from the base	0-4095
STHE	Station health index received from the base	0-7 (RTCM2.3)
AGE	Age of last message received	0-999
TYPE	RTCM message being received or sent	1, 18/19, 20/21, 31, 1001, 1002, 1003, 1004, 1009, 1010, 1011, 1012
MSG	User message received in message type 16, 36 or 1029	90 characters max.

Setup:

Parameter	Description	Range
MODE	RTCM Base/Rover mode: ROV: If the receiver is a rover. BAS: If the receiver is a base and the selected differential data type is RT2 or RT3.	ROV, BAS, OFF
PORT	Communication port: AUT, in rover mode, when the differential reception mode is "AUT" (see \$PASHS,CPD,REM). One or two ports, in rover mode, when the differential reception mode is "MAN" (see \$PASHS,CPD,REM) One or two ports, in base mode (see \$PASHS,BAS). Only if RT2 or RT3 is used.	A, B, C, D, E, F, I, AUT
VER	RTCM version	V2.3, V3
STI	Station ID	0-4095
TYP	Type of RTCM message the receiver generates (base receiver only)	
FRQ	Transmit rate of RTCM message, in seconds	0-1800
MSG	User message sent through message type 16, 36 or 1029	90 characters max.

See also

\$PASHS,RTC,TYP

\$PASHS,BAS \$PASHS,CPD,REM

RTC, MSI: RTCM Message Status

Function This command queries a base receiver for the current RTCM

message status.

Command Format Syntax

\$PASHQ,RTC,MSI[*cc]

Response Format Syntax

\$PASHR,RTC,MSI,d1,n(d2,d3)*cc

Parameter	Description	Range
d1	Number of RTCM message types in the RTCM output message	32
d2	RTCM message type	1, 3, 9, 16, 18-24, 31, 32, 34, 1001-1013, 1019, 1020, 1029, 1033
d3	Message output rate in seconds	0-1800
*cc	Checksum	*00-*FF

Example \$PASHQ,RTC,MSI

\$PASHR,RTC,MSI,32,1,0.0,3,30.0,9,0.0,16,0.0,18,1.0,19,1.0,20,0.0,21,0.0,22,30.0,23,0.0,24,0.0,31,0.0,32,0.0,34,0.0,36,0.0,1001,0.0,1002,0.0,1003,0.0,1004,1.0,1005,0.0,1006,13.0,1007,0.0,1008,0.0,1009,0.0,1010,0.0,1011,0.0,1012,1.0,1013,0.0,1019,0.0,1020,0.0,1029,0.0,1033,31.0*5C

See also \$PASHS,RTC,TYP

RWO: Raw Data Output Settings

Function This command is used to query the raw data output

parameters on the specified port.

Command Format Syntax

\$PASHQ,RWO,c[*cc]

Parameters

Parameter	Description	Range
С		A, B, C, F, I, M, R, U, I1-I9
*cc	Optional checksum	*00-*FF

Response Format Syntax

\$PASHR,RWO,c1,d2,f3,d4,n(s5,f6,c7)*cc Where n=8

Parameter	Description	Range
c1	The port ID specified in the command is reminded in this field: • A, B, F: Serial port • C: Bluetooth port • I, I1-I9: Ethernet port • M, U: Memory • R: Automatic record session (internal or external memory)	A, B, C, F, I, M, R, U, I1-I9
d2	Baud rate code for serial port. For other devices, "0" if not available, else "1"	0-9 (A, B, F). See table below 0-1 (C, M, U, R, I)
f3	Output rate defined by the last \$PASHS,RAW,PER command run	0-999.9
d4	Number of raw data messages	11
s5	Raw data message types	MPC, DPC, PBN, SNV, SNG, SNW, SAL, SAG, SAW, ION, SBD
f6	Output rate 0: Message disabled	0-999.00
c7	ASCII/Binary setting. Always binary	В
*cc	Checksum	*00-*FF

Code	Baud Rate	Code	Baud Rate
0	300	5	9600
1	600	6	19200
2	1200	7	38400
3	2400	8	57600
4	4800	9	115200

Example

\$PASHQ,RWO,A

\$PASHR,RWO,A,9,001.00,11,MPC,0.00,B,DPC,0.00,B,PBN,0.00,B,SNV,0.00,B,SNG,0.00,B,SNW,0.00,B,SAL,0.00,B,SAG,0.00,B,SAW,0.00,B,ION,0.00,B,SBD,0.00,B*6D

See also \$PASHQ,RAW

SAT: Satellites Status

Function

This command allows you to read the status of the different

satellite constellations used.

Command Format

Syntax

\$PASHQ,SAT[*cc]

Response Format

Syntax

\$PASHR,SAT,d1,n(d2,d3,d4,f5,c6)*cc

Parameters

Parameter	Description	Range
d1	Number of satellites locked	1-27
d2	SV PRN number	1-32: GPS 33-64: SBAS 65-96: GLONASS
d3	SV azimuth, in degrees	0-359
d4	SV elevation angle, in degrees	0-90
f5	SV signal-noise ratio, in dB.Hz	30.0-60.0
c6	SV used in computation or not U: SV used SV used	U, -
*cc	Checksum	*00-*FF

Example

\$PASHQ.SAT

\$PASHR,SAT,13,20,092,32,44.0,U,13,206,78,50.0,U,23,056,55,48.0,U,33,19 8,34,44.0,-,17,218,13,42.0,U,25,152,34,38.0,U,04,276,65,50.0,U,02,308,31, 48.0,U,77,052,37,48.0,U,84,294,33,48.0,U,83,234,23,48.0,U,78,124,42,46.0, U,68,034,65,48.0,U*35

See also

\$PASHS,NME

Automatic Output of SAT Messages

This is a reminder on how to output SAT messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,SAT,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter. As an example, the command below will output SAT messages on port A at a rate of 60 seconds:

\$PASHS,NME,SAT,A,ON,60

SBA: SBAS Tracking Status

Function This command is used to query the SBAS tracking status.

Command Format Syntax

\$PASHQ,SBA[*cc]

Response Format Syntax

\$PASHR,SBA,s*cc

Parameters

Parameter	Description	Range
s	ON: SBAS satellites are being tracked and used OFF: SBAS satellites not tracked	ON, OFF
*cc	Checksum	*00-*FF

Example

\$PASHQ,SBA \$PASHR,SBA,ON*09

Relevant Set Command

\$PASHS,SBA

SES: Session Programming

Function This command allows you to list the sessions programmed in

the receiver.

Command Format Syntax

\$PASHQ,SES[*cc]

Parameters

None.

Response Format Syntax

The message returned by this command is described through the example below:

\$PASHQ,SES

```
START
            END
                    INT
A Y 00:00:00 01:00:00 030.00
B Y 01:00:00 02:00:00 030.00
C Y 02:00:00 03:00:00 030.00
D Y 03:00:00 04:00:00 030.00
E Y 04:00:00 05:00:00 030.00
F Y 05:00:00 06:00:00 030.00
G Y 06:00:00 07:00:00 030.00
H Y 07:00:00 08:00:00 030.00
I Y 08:00:00 09:00:00 030.00
J Y 09:00:00 10:00:00 030.00
K Y 10:00:00 11:00:00 030.00
L Y 11:00:00 12:00:00 030.00
M Y 12:00:00 13:00:00 030.00
N Y 13:00:00 14:00:00 030.00
O Y 14:00:00 15:00:00 030.00
P Y 15:00:00 16:00:00 030.00
Q* Y 16:00:00 17:00:00 030.00
R Y 17:00:00 18:00:00 030.00
S Y 18:00:00 19:00:00 030.00
T Y 19:00:00 20:00:00 030.00
U Y 20:00:00 21:00:00 030.00
V Y 21:00:00 22:00:00 030.00
W Y 22:00:00 23:00:00 030.00
X Y 23:00:00 00:00:00 030.00
NUMBER:24 INUSE:Y
                      REF:001 OFFSET:00:00 TODAY:210
MFM·M
           SITE:0000 RINEX:2.11 COMPRESS:N DELETE:Y
RING:Y
          MOVE:N
                    MEM:U
                             SUBDIR:s/Y/D
AUTOFTP:N FTP:ftp.ashtech.com PRT:21 LGN:proflex PWD:125uK
IPP:P PATH:rawdata SUBDIR:s/Y/D
BACKUP:0 FTP:ftp.ashtech2.com PRT:21 LGN:proflex PWD:125uK
PATH:rawdata
```

The "*" symbol placed after the session name indicates the session currently in progress.

Parameters

Parameter	Description	Range
1st column	Session name. The "**" symbol after the session name means the session is in progress.	A-X, AA-XA, AB- XB, AC-XC

Parameter	Description	Range
2nd column	Session recording flag: Y: Recording is allowed during the session. N: No data recording is allowed during the session.	Y, N
3rd column	Session start time (hh:mm:ss)	00:00:00-23-59-59
4th column	Session end time (hh:mm:ss)	00:00:00-23-59-59
5th column	Session recording rate, in seconds	0.05-999
NUMBER	Number of sessions	0-96
IN USE	Recording enabled during session	Y, N
REF	Session reference day	1-366
OFFSET	Session time offset (mm:ss)	00:00-59:59
TODAY	Day in year	1-366
MEM	Memory location: • M: Internal memory • U: USB key	M, U
SITE	Site name	4 letters
RINEX	RINEX conversion: N: No RINEX conversion 2.11: Conversion to RINEX 2.11 2.11H: Conversion to RINEX 2.11, Hatanaka	N, 2.11, 2.11H
COMPRESS	Compression: N: No compression TARZ: tarZ compression	N, TARZ
DELETE	G-file deletion after RINEX conversion	N, Y
MOVE	Moving files: N: No file is moved Y: Only the converted files are moved ALL: All files are moved	N, Y, ALL
MEM	Memory where files are moved: • M: Internal memory • U: USB key	M, U
SUBDIR	Subdirectory format	
AUTOFTP	Automatic file transfer to FTP: N: No file transferred Y: Files are transferred but not deleted from receiver memory ALL: Files are transferred, then deleted from receiver memory.	N, Y, YD
RING	Ring file memory Y, N	
FTP	FTP server address	
PRT	FTP port	0-65535
LGN	FTP login	
PWD	FTP password	

Parameter	Description	Range
IPP	Port used for FTP transfer: E: Internal modem P: Ethernet cable	E, P
PATH	Path used on FTP server	
SUBDIR	Subdirectory format on FTP server	
BACKUP	Operating mode assigned to backup FTP server: O: Not used 1: Used only when primary FTP server is inaccessible 2: Used in parallel to primary FTP	0-2
FTP	Backup FTP server address	
PRT	Backup FTP port	0-65535
LGN	Backup FTP login	
PWD	Backup FTP password	
PATH	Path used on backup FTP server	
*cc	Checksum	*00-*FF

See Also \$PASHS,SES,PAR

\$PASHS,SES,SET \$PASHS,SES,AUT

SGL: GLONASS Satellites Status

Function This command is used to read the status of each GLONASS

satellite received.

Command Format Syntax

\$PASHQ,SGL[*cc]

Response Format Syntax

\$PASHR,SGL,d1,n(d2,d3,d4,f5,f6,f7,d8,d9)*cc

Parameters

Parameter	Description	Range
d1	Number of satellites locked	1-27
d2	SV PRN number (64+satellite slot number)	65-96
d3	SV azimuth in degrees	0-359
d4	SV elevation angle in degrees	0-90

Parameter	Description	Range
f5	SV L1 signal/noise in dB.Hz	30.0-60.0
f6	SV L2 signal/noise in dB.Hz	30.0-60.0
f7	SV L5 signal/noise in dB.Hz	30.0-60.0
d8	Satellite usage status (see table below)	0-31
d9	Satellite correcting status (see table below)	0-15
*cc	Checksum	*00-*FF

Fields f5-f7 are empty is the corresponding signal is not tracked.

Satellite Usage Status:

Status	Description	Corresponding letter in SAT:
0	Satellite not tracked	
1	Code and carrier/Doppler data used	"U"
2	Code-only data used	"U"
3	Carrier/Doppler-only data used	"U"
4-14	Reserved	-
15	Unknown usage status	-
16	No navigation data for this satellite	
17	Satellite below elevation mask	
18	Satellite declared as unhealthy in ephemeris	
19	Computed coordinates of satellite are invalid	
20	Satellite has been disabled by a \$PASH command	
21	URA in ephemeris is not acceptable	
22	SV is unhealthy according to almanac	
23	Too low SNR	
24	Suspected of being a ghost satellite	
25	Because of too many Satellites used in the PVT, this satellite has been deselected	
26-30	Reserved for future causes of rejection	
31	Other cause	

Satellite Correcting Status:

S	tatus	
0		Satellite is not tracked
1		Satellite is not corrected
2		SBAS is corrected
3		DGPS is corrected
4		L1 RTK is corrected

Status	
5	L1&L2 RTK is corrected
6-14	Reserved
15	Unknown correcting status

Example

\$PASHQ,SGL

\$PASHR,SGL,08,65,316,38,49.0,38.0,,01,15,71,122,32,47.0,39.0,,01,15,72,0 66,77,53.0,48.0,,01,15,73,036,31,48.0,43.0,,01,15,74,100,75,52.0,41.0,,01,1 5,75,192,34,45.0,36.0,,01,15,81,332,13,40.0,33.0,,01,15,88,282,08,37.0,32.0 ,,25,15*0D

See also \$PASHS,NME

Automatic Output of SGL Messages

This is a reminder on how to output SGL messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,SGL,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SGL messages on port A at a rate of 10 seconds:

\$PASHS,NME,SGL,A,ON,10

SGP: GPS & SBAS Satellites Status

Function This command is used to read the status of each GPS and

SBAS satellite received.

Command Format Syntax

\$PASHQ,SGP[*cc]

Response Format Syntax

\$PASHR,SGP,d1,n(d2,d3,d4,f5,f6,f7,d8,d9)*cc

Parameters

Parameter	Description	Range
d1	Number of satellites locked	1-27

Parameter	Description	Range
d2	SV PRN number (64+satellite slot number)	GPS: 1-32
uz	SV FRIVITIDEI (04+Satellite slot Humber)	SBAS: 33-64
d3	SV azimuth in degrees	0-359
d4	SV elevation angle in degrees	0-90
f5	SV L1 signal/noise in dB.Hz	30.0-60.0
f6	SV L2 signal/noise in dB.Hz	30.0-60.0
f7	SV L5 signal/noise in dB.Hz	30.0-60.0
d8	Satellite usage status (see table below)	0-31
d9	Satellite correcting status (see table below)	0-15
*cc	Checksum	*00-*FF

Fields f5-f7 are empty is the corresponding signal is not tracked.

Satellite Usage Status:

Status	Description	Corresponding letter in SAT:
0	Satellite not tracked	
1	Code and carrier/Doppler data used	"U"
2	Code-only data used	"U"
3	Carrier/Doppler-only data used	"U"
4-14	Reserved	-
15	Unknown usage status	-
16	No navigation data for this satellite	
17	Satellite below elevation mask	
18	Satellite declared as unhealthy in ephemeris	
19	Computed coordinates of satellite are invalid	
20	Satellite has been disabled by a \$PASH command	
21	URA in ephemeris is not acceptable	
22	SV is unhealthy according to almanac	
23	Too low SNR	
24	Suspected of being a ghost satellite	
25	Because of too many Satellites used in the PVT, this satellite has been deselected	
26-30	Reserved for future causes of rejection	
31	Other cause	

Satellite Correcting Status:

Status	
0	Satellite is not tracked

Status	
1	Satellite is not corrected
2	SBAS is corrected
3	DGPS is corrected
4	L1 RTK is corrected
5	L1&L2 RTK is corrected
6-14	Reserved
15	Unknown correcting status

Example \$PASHQ,SGP

\$PASHR,SGP,13,02,216,22,42.0,25.0,.01,15,04,188,03,34.0,0.0,.17,15,05,28 4,71,51.0,44.0,.01,15,07,058,50,50.0,39.0,.01,15,08,116,77,51.0,41.0,.01,15, 10,148,53,50.0,38.0,.01,15,13,080,13,38.0,15.0,,25,15,15,272,03,37.0,0.0,1 7,15,21,332,04,37.0,0.0,17,15,26,276,39,47.0,33.0,.01,15,28,142,20,41.0,20 .0,01,15,33,200,34,41.0,...16,15,39,146,32,41.0,...16,15*16

See also \$PASHS,NME

Automatic Output of SGP Messages

This is a reminder on how to output SGP messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,SGP,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SGP messages on port A at a rate of 10 seconds:

\$PASHS,NME,SGP,A,ON,10

SIT: Site Name

Function This command is used to read the name of the site on which

data is currently being logged.

Command Format Syntax

\$PASHQ,SIT[*cc]

Response Format Syntax

\$PASHR,SIT,s*cc

Parameters

Parameter	Description	Range
s	Site name	4 characters max.
*cc	Checksum	*00-*FF

Example

\$PASHQ,SIT \$PASHR,SIT,SITE*1D

Relevant Set

\$PASHS,SIT

Command See also

\$PASHQ,FLS

SNM: Signal-to-Noise Ratio Mask

Function

This command returns the current value assigned to the signal-to-noise ratio (SNR) mask. Any satellite received with an SNR value for the C/A code signal less than this mask will be rejected from the PVT computation.

Command Format

Syntax

\$PASHQ,SNM[*cc]

Parameters

None.

Response Format

Syntax

\$PASHR,SNM,d1*cc

Parameters

Parameter	Description	Range
d1	Signal-to-Noise ratio mask, in dB.Hz	0-60
*cc	Checksum	*00-*FF

Example \$PASHQ,SNM

\$PASHR,SNM,45*09

Relevant Set \$PASHS,SNM Command

SOM: Signal Observations Masking

Function This command is used to read the type of mask currently

applied to signal observations.

Command Format Syntax

\$PASHQ,SOM[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,SOM,d*cc

Parameters

Parameter	Description	Range
s	Mask type: 0: No masking 1: Reference station 2: Static base 3: Moving base 4: Rover 9: User-defined	0-4, 9
*cc	Checksum	*00-*FF

Example

\$PASHQ,SOM \$PASHR,SOM,4*3D

Relevant Set Command

\$PASHS,SOM

SOM,CTT: Cumulative Tracking Time Mask

Function

This command is used to read the current setting of the cumulative tracking time mask applied to signal observations. This mask is active only when applying masks to signal observations has been set to be user defined (see \$PASHS,SOM).

Command Format

Syntax

\$PASHQ,SOM,CTT[*cc]

Parameters

None.

Response Format

Syntax

\$PASHR,SOM,CTT,d1,d2*cc

Parameters

Parameter	Description	Range	Default
d1	Mask applied to differential data, in seconds	0-255	10
d2	Mask applied to raw data, in seconds	0-255	10
*cc	Checksum	*00-*FF	

Example

\$PASHQ,SOM,CTT \$PASHR,SOM,CTT,10*67

Relevant Set Command

\$PASHS,SOM,CTT

See Also

\$PASHS,SOM

SOM, NAV: Navigation Data Mask

Function

This command is used to read the current setting of the navigation data mask applied to signal observations. This mask is active only when applying masks to signal observations has been set to be user defined (see \$PASHS,SOM).

Command Format Syntax

\$PASHQ,SOM,NAV[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,SOM,NAV,s1,s2*cc

Parameters

Parameter	Description	Range	Default
s1	Mask applied to differential data	ON, OFF	ON
s2	Mask applied to raw data	ON, OFF	OFF
*cc	Checksum	*00-*FF	

Example

\$PASHQ,SOM,NAV \$PASHR,SOM,NAV,ON,ON*50

Relevant Set Command

\$PASHS,SOM,NAV

See Also \$PASHS,SOM

SOM, SNR: Signal-to-Noise Ratio Mask

Function

This command is used to read the current setting of the signal-to-noise ratio mask applied to signal observations. This mask is active only when applying masks to signal observations has been set to be user defined (see \$PASHS,SOM).

Command Format Syntax

\$PASHQ,SOM,SNR[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,SOM,SNR,d1,d2*cc

Parameters

Parameter	Description	Range	Default
d1	Mask applied to differential data, in dBHz	0-60	28
d2	Mask applied to raw data, in dBHz	0-60	28
*cc	Checksum	*00-*FF	

Example

\$PASHQ,SOM,SNR \$PASHR,SOM,SNR,28,28*46

Relevant Set Command

\$PASHS,SOM,SNR

See Also \$PASHS,SOM

SOM, WRN: Channel Warnings Mask

Function

This command is used to read the current setting of the channel warnings mask applied to signal observations. This mask is active only when applying masks to signal observations has been set to be user defined (see \$PASHS,SOM).

Command Format

Syntax

\$PASHQ,SOM,WRN[*cc]

Parameters

None.

Response Format

Syntax

\$PASHR,SOM,WRN,s1,s2*cc

Parameters

Parameter	Description	Range	Default
s1	Mask applied to differential data	ON, OFF	ON
s2	Mask applied to raw data	ON, OFF	OFF
*cc	Checksum	*00-*FF	

Example

\$PASHQ,SOM,WRN

\$PASHR,SOM,WRN,ON,ON*42

Relevant Set

\$PASHS,SOM,WRN

Command

See Also \$PASHS,SOM

STI: Station ID

Function This command is used to query the receiver for the station ID

it transmits to the rover through the corrections message.

Command Format Syntax

\$PASHQ,STI[*cc]

Response Format Syntax

\$PASHR,STI,d*cc

Parameters

Parameter	Description	Range
		0-1023 (RTCM 2.3)
d	Station ID	0-4095 (RTCM 3.x)
		0-31 (CMR & CMR+)
*cc	Checksum	*00-*FF

Example

\$PASHQ.STI

\$PASHR,STI,817*28

Relevant Set Command \$PASHS,STI

SVM: Satellite Use Mask

Function This command is used to read the current setting of the

satellite use mask defining the maximum number of code or

Doppler observations used in the PVT calculation.

Command Format Syntax

\$PASHQ,SVM[*cc]

Parameters

None.

Response Format Syntax

\$PASHR,SVM,d1*cc

Parameters

Parameter	Description	Range	Default
l d l	Maximum number of code/Doppler observations used in PVT.	0-26	14
*cc	Checksum	*00-*FF	*00-*FF

Example

\$PASHQ,SVM \$PASHR,SVM,25*17

Relevant Set Command \$PASHS,SVM

TCP: TCP/IP Server Settings

Function This command is used to query the settings of the TCP/IP

server.

Command Format Syntax

\$PASHQ,TCP[*cc]

Response Format Syntax

\$PASHR,TCP,MOD=s1,LGN=s2,PWD=s3,ADD=s4,PRT=d5*cc

Parameters

Parameter	Description	Range
s1	TCP/IP connection mode: 0: Disabled 1: Enabled with authentication 2: Enabled without authentication (default)	0-2
s2	Login	32 characters max.
s3	Password	32 characters max.
s4	IP address	0.0.0.0- 255.255.255.255
d5	Port number	0-655535
*cc	Checksum	*00-*FF

Example

\$PASHQ,TCP

\$PASHR,TCP,MOD=1,LGN=Magellan,PWD=u6huz8,ADD=192.34.76.1, PRT=8888*7A

See Also \$PASHS,TCP,PAR

\$PASHS,ETH,PAR

TLT: Tiltmeter Setup

Function

This command is used to query the tiltmeter for its setup

data.

Command Format

Syntax

\$PASHQ,TLT[*cc]

Parameters

None.

Response Format

Syntax

Through an example:

\$PASHQ,TLT

TILTMETER PARAMETERS SETTINGS

See Also \$PASHS,TLT,CMD

\$PASHS,TLT,INIT \$PASHS,TLT,INTVL \$PASHS,TLT,PAR

UDP: User-Defined Dynamic Model

Function This command is used to query the parameters of the user-

defined dynamic model.

Command Format Syntax

\$PASHQ,UDP[*cc]

Response Format Syntax

\$PASHR,UDP,f1,f2,f3,f4*cc

Parameters

Parameter	Description	Range	Default
f1	Maximum expected horizontal velocity, in m/s	0-100 000	100 000
f2	Maximum expected horizontal acceleration, in m/s²	0-100	100
f3	Maximum expected vertical velocity, in m/s	0-100 000	100 000
f4	Maximum expected vertical acceleration, in m/s ²	0-100	100
*cc	Checksum	*00-*FF	

Example

\$PASHQ,UDP

\$PASHR,UDP,100000.00,100.00,100000.00,100.00*35

Relevant Set Command

\$PASHS,UDP

See Also

\$PASHS,DYN

UNT: Distance Unit Used on Display Screen

Function This command allows you to know which distance unit is

currently used on the receiver display screen to express the

coordinates of the computed position.

Command Format Syntax

\$PASHQ,UNT[*cc]

Response Format Syntax

\$PASHR,UNT,s*cc

Parameters

Parameter	Description Range			
s	Distance unit used: • M: Meters • F: US Survey Feet • IF: International Feet	M, F, IF		
*cc	Checksum	*00-*FF		

Example

\$PASHQ,UNT \$PASHR,UNT,M*5A

Relevant Set Command \$PASHS,UNT

UPL: FTP Server Providing Firmware Upgrades

Function This command is used to read the status and settings of the

FTP server used to perform firmware upgrades.

Command Format Syntax

\$PASHQ,UPL[*cc]

Parameters

None.

Response format Syntax

\$PASHR,UPL,s1,s2,d3,d4,ADD=s5,PRT=d6,LGN=s7,PWD=s8,PTH=s9*cc

Parameters

Parameter	Description	Range		
s1	FTP data transfer status: NONE: No data transfer in progress GET: Firmware upgrade being downloaded from FTP	NONE, GET		
s2	Name of the file being transferred	255 char max.		
d3	Size, in bytes, of the file being transferred	0-134217728		
d4	Percentage of the file transferred so far	0-100		
ADD=s5	FTP server IP address or host name			
PRT=d6	TP server port number 0-65535			
LGN=s7	FTP server log in 32 char m			
PWD=s8	FTP server password 32 char ma			
PTH=s9	Path used on FTP server to access the upgrade file 255 char m			
*cc	Optional checksum *00-*FF			

Example

\$PASHQ,UPL*3E

\$PASHR,UPL,GET,pf500_upgrade_V227Ga21.tar.bz2,1769897,56, ADD=ftp.magellangps.com,PRT=21,LGN=Magellan,PWD=u6huz8, PTH=/my folder*34

See Also

\$PASHS,UPL,PAR \$PASHS,UPL,UPG \$PASHQ,UPL,LST

UPL,LOG: Editing the Firmware Upgrade Log File

Function

This command is used to edit the firmware upgrade log file. This file logs all the actions performed during a firmware upgrade routine.

Command Format

Syntax

\$PASHQ,UPL,LOG[,d][*cc]

Parameters

None.

Response format Syntax

The response is formatted as follows:

\$PASHR.UPL.LOG

Starting script at <Day> <Month> <Time> UTC <Year> Programming tool is /usr/local/bin/dataflash tool

- 3. -

Example

\$PASHQ,UPL,LOG*56

\$PASHR,UPL,LOG

Starting script at Mon Mar 16 14:40:05 UTC 2009

Programming tool is /usr/local/bin/dataflash_tool

Archive tool is /bin/tar

Print tool is /usr/local/bin/oled_print

-rwxr-xr-x 1 root root 7259586 Mar 16 13:59 /mnt/usbdisk/

pf500_upgrade_V227Ga21.tar.bz2

Uncompressing archive file '/mnt/usbdisk/pf500_upgrade_V227Ga21.tar.bz2 '

-rwx----- 1 root root 1775055 Mar 13 09:40 /mnt/usbdisk/pf500_upgradeqnss-0.0.a21.tar.bz2

-rwx----- 1 root root 5451979 Mar 16 11:00 /mnt/usbdisk/pf500_upgrade-main-0.0.227.tar.bz2

Valid upgrade file found. Processing...

Target is 'main', version is '0.0.227'

Processing file pf500_upgrade-main-0.0.227.tar.bz2

 $Uncompressing \ archive \ file \ '/mnt/usbdisk/pf500_upgrade-main-0.0.227.tar.bz2$

File: ramdisk.img.gz, Address: 0x0040A400

Programming file 'ramdisk.img.gz' at address 0x0040A400

/usr/local/bin/dataflash_tool -d /dev/mtd3 -a 0x0040A400 -i /mnt/usbdisk/

tmp_df_1269/ramdisk.img.gz

File: u-boot.env, Address: 0x00035000

Programming file 'u-boot.env' at address 0x00035000

/usr/local/bin/dataflash_tool -d /dev/mtd3 -a 0x00035000 -i /mnt/usbdisk/

tmp df 1269/u-boot.env

/usr/local/bin/dataflash_tool -d /dev/mtd3 -a 0x00035000 --data=D69F0C2B

File: ulmage-pm4-rd, Address: 0x00041000

Programming file 'ulmage-pm4-rd' at address 0x00041000

/usr/local/bin/dataflash_tool -d /dev/mtd3 -a 0x00041000 -i /mnt/usbdisk/

tmp df 1269/ulmage-pm4-rd

 $Uncompressing \ archive \ file \ '/mnt/usbdisk/pf500_upgrade-gnss-0.0.a21.tar.bz2$

pm4loader 0.25

com_open for /dev/ttyS2 returned 3 FW section found at 0x10008000

PFLD CRC: 0x78b8025e PASSED.

Options not found Set number: 0

Slave's FW found: NONE

FW CRC: 0x310005c5 PASSED.

Set number: 1

Slave's FW found: Elcano1 Elcano2 TMS

FW CRC: 0x59ceea46 PASSED. FW CRC: 0x3d208b13 PASSED.

FW CRC: UX302U8D13 PASSED.

FW CRC: 0xc8713d9b PASSED.

Set number: 2

Slave's FW found: Elcano1 Elcano2 TMS

Set number: 3

Slave's FW found: Elcano1 Elcano2 Elcano3 Elcano4 TMS

FW CRC: 0xb355ec6d PASSED.

Set number: 4

Slave's FW found: Elcano1 Elcano2 Elcano3 Elcano4 TMS

FW CRC: 0x390961b7 PASSED. FW CRC: 0x5b0ca4fa PASSED.

Set number: 5

Slave's FW found: Flcano1 Flcano2 TMS

Set number: 6

Slave's FW found: Elcano1 Elcano2 Elcano3 Elcano4 TMS

Set number: 7

Slave's FW found: Elcano1 Elcano2 Elcano3 Elcano4 TMS

FW CRC: 0xdb3a34e3 PASSED.

FW CRC: 0x66b000d4 PASSED. FW CRC: 0x8156b3a0 PASSED.

ALL FW CRC: 0x78050c8f PASSED.

SFLD image not found.

Ask PFLD version.

PFLD Nadiallv1.23

Wait for REC_WAIT_CODE.

Uploading SFL...

Complete.

Wait for SFLD

SFL is running:

Baudrate accepted by SFL.

LOADING FW...

Secondary Firmware Loader v00.08 (Nadia II protected)

TypeID:1 (1F 01 C8 00)

PFL v01.23 in FLASH, PFL v01.23 in imagefile

PFL versions are equal, PFL programming will be skipped

Erasing FLASH...

Writing to FLASH...

FW upload into board N 1 complete.

Board 1: OK

Skipped

OK

Ending script at Mon Mar 16 15:01:38 UTC 2009

Fxit code is 0

See Also \$PASHS,UPL,LOG

UPL,LST: Listing the Firmware Upgrades Available on FTP

Function

This command is used to list the upgrade files and/or upgrade directories found on the FTP server.

Command Format

Syntax

\$PASHQ,UPL,LST[,s][*cc]

Parameters

Parameter	Description	Range
s	Path that extends the one defined with \$PASHS,UPL,PAR. If s is omitted, the command lists the content of the default directory (i.e. as defined with \$PASHS,UPL,PAR).	255 characters max.
*cc	Optional checksum	*00-*FF

Response format

Syntax

\$PASHR,UPL,LST,d1,d2,s3,s4,d5,s6,s7*cc

Parameters

Parameter	Description	Range
d1	Number of listed files or subdirectories	
d2	Index of file or subdirectory	
s3	Indicates whether the listed item is a file or a directory: DIR: Directory FIL: File	DIR,FIL
s4	Name of the file or subdirectory	255 characters max.
d5	Size, in bytes	0-134217728
s6	Date of creation (ddmmyyyy)	
s7	Time of creation (hhmmss)	000000-235959
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,UPL,LST*59

\$PASHR,UPL,LST,4,0,FIL,pf500_upgrade_V227Ga21.tar.bz2,1769897, 14032009,130850*76

\$PASHR,UPL,LST,4,1,FIL,pf500_upgrade_V226Ga21.tar.bz2,1769876, 10032009,110952*7C

\$PASHR,UPL,LST,4,2,FIL,pf500_upgrade_V225Ga21.tar.bz2,1769787,01032 009,181856*70

\$PASHR,UPL,LST,4,3,DIR,my directory,1769787,01032009,181856*68

See Also \$PASHS,UPL,PAR

\$PASHS,UPL,UPG

UTS: GPS Time Synchronization Status

Function This command gives the status of the GPS time

synchronization process. When enabled, this process allows all measurements and coordinates to be synchronized with

GPS time, and not with the local clock.

Command Format Syntax

\$PASHQ,UTS[*cc]

Response Format Syntax

\$PASHR,UTS,s*cc

Parameters

Parameter	Description Rang			
S	GPS time synchronization status	ON, OFF		
*cc	Checksum	*00-*FF		

Example

\$PASHQ,UTS

\$PASHR.UTS.ON*0B

Relevant Set Command

\$PASHS,UTS

VEC: Vector & Accuracy Data

Function This command is used to query the receiver for vector and

accuracy data.

Command Format Syntax

\$PASHQ,VEC[*cc]

Response Format Syntax

\$PASHR,VEC,c1,d2,m3,f4,f5,f6,f7,f8,f9,f10,f11,f12,d13*cc

Parameters

Parameter	Description	Range
c1	Position mode:	0-3, 9
d2	Number of SVs used in position computation	3-27
m3	UTC time (hhmmss.ss)	000000.00-235959.99
f4	X component of vector (along ECEF X axis), in meters	±99999.999
f5	Y component of vector (along ECEF Y axis), in meters	±99999.999
f6	Z component of vector (along ECEF Z axis), in meters ±9999.999	
f7	X component standard deviation	99.999
f8	Y component standard deviation	99.999
f9	Z component standard deviation	99.999
f10	XY correlation	±9.999999
f11	XZ correlation	±9.999999
f12	YZ correlation	±9.999999
d13	Base station ID (RTCM only)	0-4095
*cc	Checksum	*00-*FF

Example

\$PASHQ,VEC

\$PASHR,VEC,3,09,130924.00,-37.683,55.081,-17.925,0.016,0.012,0.026, 0.234765,0.098765,0.098763,0001*71

Comment

The code allotted to a position solution of the SBAS differential type is either "1" or "9", depending on the last \$PASHS,NPT command run.

See Also \$PASHS,NME \$PASHS,NPT

Automatic Output of VEC Messages

This is a reminder on how to output VEC messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,VEC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output VEC messages on port A at a rate of 0.2 second:

\$PASHS,NME,VEC,A,ON,0.2

VERSION: Firmware Version

Function

This command is used to list the firmware versions installed in the receiver, including those of the modem and internal radio.

Command Format

Syntax

\$PASHQ,VERSION[*cc]

Response Format

Syntax

(Through an example)

\$PASHQ, VERSION

RECEIVER version: S402Gt21

SYST fw: S056 GNSS fw: Gt21

KERNEL: 2.6.19-pm4 #204 Fri Apr 3 14:29:24

RESCUE: 2.6.19-rescue BOOT LOADER: 1.1.5.6

PMU: 2.31.0 API: 1.214 BSP: 1.0-200

GNSS S/N: 702100B200812104 GNSS Options: WJKLEYGSVHCP

RFS: 403

GSM: 6.63c IMEI: 354060010607238 stack IP:

Internal Radio: PDL V02.58

Comments

In the GSM: information line, the GSM version will appear only after the modem has been turned on. The stack IP version will appear only after a GPRS connection has been established.

See also \$PASHQ,RID

VTG: Course Over Ground and Ground Speed

Function This command is used to output a VTG message. The

message is not output until a valid position is computed.

Command Format Syntax

\$PASHQ,VTG[*cc]

Response Format Syntax

\$GPVTG,f1,T,f2,M,f3,N,f4,K,c5*cc

Parameters

Parameter	Description	Range		
f1,T	COG (with respect to True North) T for "True" North: COG orientation	000.00-359.99		
f2,M	COG (with respect to Magnetic North) M for "Magnetic" North: COG orientation	000.00-359.99		
f3,N	SOG (Speed Over Ground) N for "knots": SOG unit	000.00-999.99		
f4,K	SOG (Speed Over Ground) K for "km/hr": SOG unit	000.00-999-99		
c5	Mode indicator: A: Autonomous mode D: Differential mode N: Data not valid	A, D, N		
*cc	Checksum *00-*F			

Comments

The magnetic table used is the WMM-2005 (published Dec 2004), which is the standard model of the US Department of

Defense (WMM for "World Magnetic Model").

Example \$PASHQ,VTG

\$GPVTG,128.00,T,129.92,M,0.17,N,0.31,K,A*2D

See also \$PASHS,NME

Automatic Output of VTG Messages

This is a reminder on how to output VTG messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,VTG,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output VTG messages on port A at a rate of 0.5 second:

\$PASHS,NME,VTG,A,ON,0.5

WARN: Warning Messages

Function This command is used to list the possible warning messages

stored in the receiver.

Command Format Syntax

\$PASHQ,WARN[*cc]

Response Format Syntax

\$PASHR,WARN,s1,s2*cc

Parameters

Parameter	Description	Range
s1	Warning message label NONE: No warning message	See List of Alarms on page 692.
s2	Status: Pending: Alarm acknowledged Current: Alarm not acknowledged yet Occurred: An error condition was detected earlier but has vanished since then	PENDING, CURRENT, OCCURRED
*cc	Checksum	*00-*FF

Example \$PASHQ,WARN

\$PASHR,WARN,connect. to GPRS failed,PENDING*7F

See also \$PASHS,WAK

WEB: Web Server Control, Owner Data & Connection Profiles

Function This command is used to list the Web Server settings,

including control flag, owner information and connection profiles. It can be sent to the receiver only through its port A,

B or F.

Command Format Syntax

\$PASHQ,WEB[*cc]

Parameters

None.

Response format Syntax

Through an example:

\$PASHQ,WEB*27 WEB INTERFACE: ON HTTPD PORT: 80 COMPANY: Ashtech

ADMINISTRATOR NAME: Peter Smith

ADMINISTRATOR EMAIL: psmisth@ashtech.com ADMINISTRATOR PHONE: 0228093838

ADMINISTRATOR LOGIN: smith

ADMINISTRATOR PASSWORD: 255kj631

USER LOGIN: Andrew USER PASSWORD: 25ml55 USER LOGIN: Yves USER PASSWORD: 25ml55

See Also \$PASHS,WEB,OWN

\$PASHS,WEB,PAR

\$PASHS,WEB,USR,ADD

XDR: Transducer Measurements

Function This command is used to read the last measurements made

by the connected transducer(s).

Command Format Syntax

\$PASHQ,XDR[*cc]

Parameters

None.

Response Format Syntax

\$GPXDR,c1,f2,c3,s4,...,n(c1,f2,c3,s4)*cc

The response uses the same format as the one used at the input of the transducer (\$WIXDR and \$YXXDR).

The data set from each transducer is in the form c1, f2, c3, s4. Data sets from several transducers can be sent through a single message as long as the total number of characters in the data string does not exceed 180 characters.

Parameters

Parameter	Description	Range
c1	Transducer type: A: Angular displacement C: Temperature D: Linear displacement F: Frequency G: Generic H: Humidity I: Current N: Force P: Pressure R: Flow rate S: Switch or valve T: Tachometer U: Voltage V: Volume	A, C, D, F, G, H, I, N, P, R, S, T, U, V
f2	Transducer value	±X.X
c3	Transducer unit: D: Degrees (type A) C: Celsius (type C) M: Meter or cubic meter (type D or V) H: Hertz (type F) P: Percent (type H) A: Amperes (type I) N: Newton (type N) B: Bars (type P) L: Liters (type R) R: RPM (type T) V: Volts (type U) Empty (types G and S)	D, C, M, H, P, A, N, B, L, R, V, M
s4	Transducer ID	80 characters max.
*cc	Checksum	*00-*FF

Example

\$PASHQ,XDR

\$GPXDR,P,1.018719,B,DQ75136,C,23.33,C,DQRHT212,H,34.7,P,DQRHT212*58

Relevant Set

None.

Command

See Also \$PASHS,NME

ZDA: Time & Date

Function This command returns the receiver date & time.

Command Format Syntax

\$PASHQ,ZDA[*cc]

Response Format Syntax

\$GPZDA,ZDA,m1,d2,d3,d4,d5,d6*cc

Parameters

Parameter	Description	Range
m1	UTC time (hhmmss.ss)	000000.00- 235959.99
d2	Current day	01-31
d3	Current month	01-12
d4	Current year	0000-9999
d5	Local zone offset from UTC time (hour)	-13 to +13
d6	Local zone offset from UTC time (minutes) 00-59	
*cc	Checksum	*00-*FF

Example

\$PASHQ,ZDA

\$GPZDA,162256.27,25,02,2008,+00,00*43

NOTE: The time offset is always reported as null (d5=d6=0).

Relevant Set Command \$PASHS,ZDA

See also \$PASHS,LTZ \$PASHS,NME

Automatic Output of ZDA Messages

This is a reminder on how to output ZDA messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,ZDA,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output ZDA messages on port A at a rate of 60 seconds:

\$PASHS,NME,ZDA,A,ON,60

Chapter 15. Data Output

DPC: Compact GPS Measurements

This message contains the L1/L2 measurements from all tracked GPS satellites for one epoch.

The message is as follows:

\$PASHR,DPC,<structure>

The message's binary structure is described in the table below.

Type*	Size in bits	Resolution	Contents
Unsigned short	16		Message length. Number of bytes in the <packed data=""> section.</packed>
PACKED DATA			
Double	32	1 msec	Receiver time in GPS milliseconds of week
Char[4]	32		Receiver's four-character ID
Unsigned long	32		Mask representing satellites that are contributors to the message content. This is a bitwise indication: Starting from the least significant bit, bit1 corresponds to SV PRN#1, bit2 corresponds to SV PRN#2, and so on. Bit value "1" for a given SV PRN means the corresponding satellite is a data contributor to this message, "0" otherwise.
The data that follow are repeated for each satellite presented in the satellite mask			
Unsigned char	1		Satellite health ("0" means Sat is unhealthy)
Unsigned char	7	1 degree	Satellite elevation
Unsigned char	1		RAIM status (always zero)
Unsigned char	7	1 dBHz	SNR of L1CA observation
#L1 Data Block (#L1 Data Block (L1CA in all cases)		
Double	31	0.1 nsec	Raw range in 0.1 nsec (range is smoothed by carrier). "0" means bad raw range data.
Unsigned char	1		Warning flag ("1" means bad carrier phase with possible cycle slips)
Unsigned char	1		Sign of total carrier phase ("1": negative; "0":positive)
Double	28	1 cycle	Integer part of total carrier phase in cycles
Double	11	0.0005 cycles	Fractional part of phase in 0.0005 cycles
Double	24	0.002 Hz	Doppler in units of 0.002 Hz
Content and data	#L2 Data Block (L2P for CFG,2&4 and L2C for CFG,3&5) Content and data packing scheme is the same as for L1 Data		
CHECKSUM			

Type*	Size in bits	Resolution	Contents
Unsigned short	16		Cumulative unsigned short sum of the <packed data="">, after <message length=""> and before <checksum></checksum></message></packed>

The data in this message are packed in bits rather than bytes. So the presented types of fields are just for the sake of giving a meaningful description of the original data packing.

NOTES:

- Most of the fields found in the DPC and DBEN data outputs are similar.
- DPC data are affected by the last \$PASHS,UTS command run. By default, this command is set to "ON".
- DPC data are affected by the last \$PASHS,ANP,OUT command run.
- DPC data can be made available on several ports simultaneously.
- DPC data can be output at a rate of up to 20 Hz, but the throughput compared to RTCM-3, CMR and ATOM may be quite higher.
- DPC data are not considered to be used as a differential protocol, i.e. they are simply generated, and so not processed to become corrections.

Reminder on How to Output DPC Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,DPC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output DPC messages on port A at a rate of 1 second:

\$PASHS,RAW,DPC,A,ON,1

ION: Ionosphere Parameters

This message contains the ionosphere and GPS-to-UTC data conversion parameters.

The message is as follows:

\$PASHR,ION,<structure>

The message's binary structure is described in the table below.

Type	Name	Size	Contents
Float	a0	4	Ionospheric parameter (seconds)
Float	a1	4	Ionospheric parameter (seconds/semi-circle)
Float	a2	4	Ionospheric parameter (seconds/semi-circle)
Float	a3	4	lonospheric parameter (seconds/semi-circle)
Float	b0	4	Ionospheric parameter (seconds)
Float	b1	4	lonospheric parameter (seconds/semi-circle)
Float	b2	4	lonospheric parameter (seconds/semi-circle)
Float	b3	4	lonospheric parameter (seconds/semi-circle)
Double	A1	8	First order terms of polynomial
Double	A0	8	Constant terms of polynomial
Unsigned long	Tot	4	Reference time for UTC data
Short	Wnt	4	UTC reference week number
Short	DtLS	2	GPS-UTC differences at reference time
Short	WnLSF	2	Week number when leap second became effective
Short	DN	2	Day number when leap second became effective
Short	DtLSF	2	Delta time between GPS and UTC after correction
Short	Wn	2	GPS week number
Unsigned long	Tow	4	Time of the week (in seconds)
Short	bulwn	2	GPS week number when message was read
Unsigned long	bultow	4	Time of the week when message was read
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 37 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		76	

The GPS broadcast ionosphere model (Klobuchar) is used.

Reminder on How to Output ION Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,ION,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the Set Command Library Chapter.

As an example, the command below will output ION messages on port A at a rate of 5 seconds:

\$PASHS,RAW,ION,A,ON,5

LTN: Latency

Content

This message contains the current value of latency. It is generated in automatic mode using the \$PASHS,NME,LTN command.

The message is as follows:

\$PASHR.LTN.d1*cc

d1 is described in the table below.

Parameter	Description	Range
d1	Latency in milliseconds.	0-10000
*cc	Optional checksum	*00-*FF

Example

\$PASHR,LTN,60*2C

Comments

Latency refers to the time it takes for the receiver to compute a position from the measurement time tag and prepare data to be transmitted through the serial port. The value of latency depends on the number of locked satellites.

In time-tagged mode, the value of latency also includes the time required for the correction stream to go through the data communication link before arriving at the receiver.

See Also

\$PASHS,NME

MPC: GNSS Measurements

This message contains the measurement of one satellite for one epoch.

The message is as follows:

\$PASHR,MPC,<structure>

The message's binary structure is described in the table below.

Туре	Size	Contents
Unsigned short	2	Sequence tag (unit: 50 ms) modulo 30 minutes
Unsigned char	1	Number of remaining structure to be sent for current epoch
Unsigned char	1	Satellite index number GPS: 1-32 SBAS: 33-51 GLONASS: 65-88
Unsigned char	1	Satellite elevation angle (degree)
Unsigned char	1	Satellite azimuth angle (2-degree increments)
Unsigned char	1	Channel ID not duplicated for the current epoch
	29	C/A code data block (29 bytes)
Unsigned char	1	Warning flag Bit1, Bit2: 0,0: Code and/or carrier phase measured but measurement was not used to compute position. 1,0: Code and/or carrier phase measured, navigation message was obtained and measurement was used to compute position but position wasn't finally computed. 0,1: Code and/or carrier phase measured, navigation message was obtained, measurement was used to compute position and position was computed successfully. Bit3: Carrier phase questionable Bit4: Code phase (range) questionable Bit5: Range not precise (code phase loop not settled) Bit6: Z tracking mode Bit7: Possible cycle slip Bit8: Loss of lock since last epoch

Туре	Size	Contents
Unsigned char	1	Indicates quality of the position measurement (good/bad) 0: Measurement not available and no additional data will be sent. 23: Code and/or carrier phase measured, navigation message was obtained and measurement was used to compute position but position wasn't finally computed. 24: Code and/or carrier phase measured, navigation message was obtained, measurement was used to compute position and position was computed successfully. Other state: measurement was not used to compute position.
Unsigned char	1	Polarity of the phase tracking 0: Polarity unknown 5: Polarity known
Unsigned char	1	Signal-to-noise ratio for satellite observation (db.Hz)
Unsigned char	1	Always 0. Not used.
Double	8	Full carrier phase measurements in cycles
Double	8	Raw range to SV (in seconds), i.e. receive time - raw range = transit time
Long	4	Doppler (10 ⁻⁴ Hz)
Long	4	Smoothing Bits 0-22: magnitude of smooth correction in centimeters Bit 23: sign of smooth correction Bits 24-31: smooth count, unsigned, as follows: 0=unsmoothed 1=least smoothed 255=most smoothed
	29	L1 block, same format as C/A code data block (see note below)
	29	L2 block, same format as C/A code data block (see note below)
Unsigned char	1	Checksum, a bytewise exclusive OR (XOR)
Total of bytes	95	

NOTES:

- The sequence tag for GLONASS satellites is x seconds less than the sequence tag for GPS satellites, due to the difference between the UTC (used for GLONASS) and GPS system time scales.
- The raw range for GLONASS satellites contains a time shift of x seconds, i.e. x seconds more than for GPS

- satellites in the same conditions. "x" is as defined in the previous note.
- In case of GPS L1/L2P tracking mode, the L1 block contains L1P data. In case of GPS L2CS tracking mode, the L1 block contains zero data. In case of GLONASS-M satellites, the L1 block contains zero data.
- In case of GPS L1/L2P, the L2 block contains L2P data.
 In case of GPS L2CS tracking mode, the L2 block contains L2CS data. In case of GLONASS-M satellites, the L2 block contains C/A data on the L2 frequency

Reminder on How to Output MPC Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,MPC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output MPC messages on port A at a rate of 1 second:

\$PASHS,RAW,MPC,A,ON,1

PBN: Position Information

This message contains position information in binary format. The message is as follows:

\$PASHR,PBN,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
Long	pbentime	4	GPS time when data was received (ms of week)
Char	sitename	4	Site name
Double	navx	8	Station position: ECEF-X (m)
Double	navy	8	Station position: ECEF-Y (m)
Double	navz	8	Station position: ECEF-Z (m)
Float	navt	4	Clock offset (m)
Float	navxdot	4	Velocity in ECEF-X (m/s)
Float	navydot	4	Velocity in ECEF-Y (m/s)
Float	navzdot	4	Velocity in ECEF-Z (m/s)
Float	navtdot	4	Clock drift (m/s)
Unsigned short	pdop	2	PDOP multiplied by 100
Unsigned short	checksum	2	The checksum is computed by breaking the structure into 27 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total of bytes		56	

When for example after a cold start, the receiver has no correct time tag, the PBN message is output with a fixed "zero" time tag.

Unlike all the other position messages, the position provided in a PBN message *cannot* be an RTK position. It can only be a standalone, SBAS or DGNSS position.

Reminder on How to Output PBN Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,PBN,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output PBN messages on port A at a rate of 1 second:

\$PASHS,RAW,PBN,A,ON,1

SBA, DAT: SBAS Data Message

Provided the command below has been run beforehand, \$PASHS,RAW,SBD,<port_ID>,ON

... the SBA,DAT message is output in response to: \$PASHQ,SBD, <port_ID>

...and is in the form: \$PASHR,SBA,DAT,d1,m2,d3,d4,s5*cc

Where:

Parameter	Description	Range
d1	SBAS SV ID number	33-51
m2	Time tag: hhmmss.hh The SBA,DAT message contains the time tag of the beginning of WAAS message transmission (WAAS message transmission time is 1 second)	000000.00- 235959.99
d3	RTCA message ID	0-63
d4	Error flags (in HEX): bit0-preamble error, bit1-parity error	0-2
s5	RTCA message: 250 bit in 63 HEX numbers. The data lie from left to right and from high-order to low-order bits. The two low-order bits in the 63rd number are not used.	
cc	Checksum, computed by "exclusive-ORing" all of the bytes in the message between, but not includ- ing, the "\$" and the "". The result is "*cc" where c is a hexadecimal character.	*00-*FF

SAL: GPS Almanac Data

This message contains almanac data for one GPS satellite. The message is as follows:

\$PASHR,SAL,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
Short	prn	2	Satellite PRN number minus 1 (0-31)
Short	health	2	Satellite health
Float	е	4	Eccentricity
Long	toe	4	Reference time for orbit (sec)
Float	i0	4	Inclination angle at reference time (semi-circles)
Float	w dot	4	Rate of right ascension (semi-circles/sec)
Double	A1/2	8	Square root of semi-major axis (meters1/2)
Double	w0	8	Longitude of ascending node (semicircles)
Double	W	8	Argument of perigee (semicircles)
Double	M0	8	Mean anomaly at reference time (semi-circle)
Float	Af0	4	Clock correction (sec)
Float	Af1	4	Clock correction (sec/sec)
Short	wna	2	Almanac week number
Short	wn	2	GPS week number
Long		4	Seconds of GPS week
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 34 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		70	

Reminder on How to Output SAL Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SAL,<port ID>,ON,

For more details on the \$PASHS,RAW command, refer to the Set Command Library Chapter.

As an example, the command below will output SAL messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SAL,A,ON,15

SAG: GLONASS Almanac Data

This message contains almanac data for one GLONASS satellite.

The message is as follows:

\$PASHR,SAG,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
Short	prn	2	Satellite number 1-24
Short	frq	2	Satellite GLONASS frequency number [-7,,6]
Short	health	2	Satellite health 0=bad, 1=good
Float	е	4	Eccentricity
Long		4	Reference day number (days in range 1 to 1461)
Float		4	Correction to inclination (semicircles)
Float	w0	4	Longitude of first ascending node (semicircles)
Float		4	Reference time of longitude of first node (seconds)
W	Float	4	Argument of perigee (semicircles)
Float	Af0	4	Correction to mean value (43200 s) of Draconic period
Float	Af1	4	Af1=d(Af0)/dt(sec/sec)
Float		4	Satellite clock offset (seconds)
Unsigned short	Checksum	2	The checksum is computed by breaking the structure into 21 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		44	

Reminder on How to Output SAG Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SAG,<port_ID>,ON,<Rate>

با ۱۳۰۱م، ۱۰۸۳، ۱۳۰۰م، ۱۳

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SAG messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SAG,A,ON,15

SAW: SBAS Almanac Data

This message contains almanac data for one SBAS satellite. The message is as follows:

\$PASHR,SAW,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
char	ld	1	Data ID
char	Health	1	Satellite Health&Status bitwise meaning is: Bit0 – Ranging On(0), Off(1) Bit1 – Corrections On(0), Off(1) Bit2 – Broadcast Integrity On(0), Off(1) Bit3 – Reserved Bit4-7 – SBAS provider ID (0-15): 0 – WAAS, 1 – EGNOS, 2 – MSAS, 3-13 – Not assigned yet, 14-15 – Reserved
long	Т0	4	Almanac data reference time within the day expressed in the SBAS time scale (seconds)
float		3*4 Satellite ECEF X,Y,Z coordinates (meters)	
float		3*4	Satellite ECEF velocity X', Y', Z' coordinates (m/s)
long	Tow	4	Time within week in GPS time scale when SBAS almanac was received
char	Wn	1	Week number in GPS time scale modulo 256 when SBAS almanac was received
char	Prn	1 Satellite number (33 to 51)	
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 18 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		38	

Reminder on How to Output SAW Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SAW,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SAW messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SAW,A,ON,15

SNG: GLONASS Ephemeris Data

This message contains the GLONASS ephemeris data for one satellite.

The message is as follows:

\$PASHR,SNG,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents	
Long		4	Start time of 30-second frame in satellite time scale tk from which the ephemeris data is derived; time modulo one day (seconds)	
Short		2	Day number of 30-second frame; modulo four-year period counting from beginning of last leap year, which corresponds to parameter tb (tb is set within this day number). This parameter varies within the range 1 to 1461. If day number=0, the day number is unknown (absent in navigation frame)	
Long		4	Ephemeris data reference time within the day expressed in GLONASS system time scale = UTC + 3 hours (seconds)	
Float		4	Frequency offset gh of the on-board frequency standard at tb (dimensionless)	
Float		4	Bias to between satellite time scale and GLONASS system time scale at tb (seconds)	
Double		3*8	Satellite ECEF (PZ-90) X, Y, Z coordinates (km)	
Float		3*4	Satellite ECEF (PZ-90) velocity X', Y', Z' (km/sec)	
Float		3*4	Satellite perturbation acceleration X", Y", Z" due to moon and sun (km/sec/sec).	
Double		8	Bias between GLONASS system time scale and UTC + 3 hours time scale tc (seconds)	
Char		1	Age of ephemeris parameter En (interval from moment when ephemeris data was last uploaded to tb)	
Char		1	Combined 3-bit flag (contains Ï1, Ï 2, Ï 3)	
Char		1	Satellite health status flag (0=good, 1=bad)	
Char		1	Satellite frequency channel number [-7,,6]	
Short		2	Satellite system number (satellite number [1,,24])	

Туре	Name	Size	Contents
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 40 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		82	

Reminder on How to Output SNG Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SNG,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SNG messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SNG,A,ON,15

SNV: GPS Ephemeris Data

This message contains the GPS ephemeris data for one satellite.

The message is as follows:

\$PASHR,SNV,<structure>

The message's binary structure is described in the table below.

Type	Name	Size	Contents	
Short	Wn	2	GPS week number	
Long	Two	4	Seconds in GPS week	
Float	Tgd	4	Group delay (sec)	
Long	Aodc	4	Clock data issue	
Long	Toc	4	Clock data reference time (sec)	
Float	af2	4	Clock correction (sec/sec ²)	
Float	af1	4	Clock correction (sec/sec)	
Float	af0	4	Clock correction (sec)	
Long	Aode	4	Orbit data issue	
Float	Dn	4	Mean anomaly correction (semicircles/sec)	
Double	M0	8	Mean anomaly at reference time (semicircles)	
Double	е	8	Eccentricity	
Double	A ^{1/2}	8	Square root of semi-major axis (meters 1/2)	
Long	toe	4	Reference time for orbit (sec)	
Float	cic	4	Harmonic correction term (radians)	
Float	crc	4	Harmonic correction term (meters)	
Float	cis	4	Harmonic correction term (radians)	
Float	crs	4	Harmonic correction term (meters)	
Float	cuc	4	Harmonic correction term (radians)	
Float	cus	4	Harmonic correction term (meters)	
Double	omega0	8	Longitude of ascending node (semicircles)	
Double	omega	8	Argument of perigee (semicircles)	
Double	i0	8	Inclination angle (semicircles)	
Float	omega dot	4	Rate of right ascension (semicircles/sec)	
Float	I dot	4	Rate of inclination (semicircles/sec)	
Short	Accuracy	2	User range accuracy	
Short	Health	2	Satellite health	
Short	fit	2	Curve fit interval	
Char	prn	1	Satellite PRN number minus 1 (0-31)	
Char		1	Reserved byte	

Туре	Name	Size	Contents
Unsigned short	Checksum	2	The checksum is computed by breaking the structure into 37 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		76	

Reminder on How to Output SNV Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SNV,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SNV messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SNV,A,ON,15

SNW: SBAS Ephemeris Data

This message contains the SBAS ephemeris data for one satellite.

The message is as follows:

\$PASHR,SNW,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
char	-	1	Spare field
char	accuracy	1	Accuracy
long	ТО	4	Ephemeris data reference time within the day expressed in the SBAS time scale (seconds)
double		3*8	Satellite ECEF X,Y,Z coordinates (meters)
float		3*4	Satellite ECEF velocity X', Y', Z' coordinates (m/s)
float		3*4	Satellite ECEF acceleration X",Y",Z" (m/s2)
float	aGf0	4	Time offset between satellite time scale and SBAS system time scale (seconds)
float	aGf1	4	Time drift between satellite time scale and SBAS system time scale (seconds)
long	tow	4	Time within week in GPS time scale when SBAS ephemeris was received
char	wn	1	Week number in GPS time scale when SBAS ephemeris was received
char	prn	1	Satellite number (33 to 51)
Unsigned short	Checksum	2	The checksum is computed by breaking the structure into 34 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		70	

Reminder on How to Output SNW Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SNW,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SNW messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SNW,A,ON,15

TTT: Event Marker

Content

This message delivers the exact GPS time, to within 1 µsecond, when an external event is detected.

The message is sent through port B, where the event marker input pin is located, and not through the port specified by the \$PASHS, NME command.

The message is therefore independent of the NMEA output rate. It can be output at a faster or slower rate than the NMEA rate, depending on the recurrence of the event.

The message is as follows:

\$PASHR,TTT,d1,m2*cc

d1 and m2 are described in the table below.

Parameter	Description	Range
d1	Day in week (1: Sunday; 7: Saturday)	1-7
m2	GPS time tag, in hours, minutes and seconds	0-23:59:59.9999999
*cc	Checksum	*00-*FF

Example

\$PASHR,TTT,3,18:01:33.1200417*AC

See Also

\$PASHS,NME,TTT

Chapter 16. Troubleshooting

Bluetooth Connection from FAST Survey Failed

	RTK Base	RTK Rover	PP Base	PP Rover
Relevant to	•	•	•	•

Your field terminal typically uses a wireless link (Bluetooth type) to communicate with the receiver.

To ask for a Bluetooth connection with a receiver, you have to select "Bluetooth" and "Ashtech BT" (or "Windows Mobile") on the **Comms** tab when setting your base or rover.

Using (**), you can then search for remote Bluetoothenabled devices, select the one corresponding to your receiver and finally ask for a Bluetooth connection to be established between FAST Survey and your receiver.

In the next sessions, FAST Survey will automatically restore the connection if you ask it to do so, provided the same receiver is still close by and powered on.

Bluetooth Icon:

When the Bluetooth connection is active, the Bluetooth icon is displayed in the lower-right corner of the screen.

After examining the screen, you determine that FAST Survey is not communicating with the receiver via Bluetooth. Follow the steps below to try to resolve the problem.

Step 1. Has your Receiver Booted Normally?

When you turn on your receiver, it may fail to complete the boot sequence.

- If your receiver has completed the boot sequence normally (the General Status screen is displayed after the "Starting..." message), go to Step 2.
- 2. If your receiver fails to complete the boot sequence:
 - Make sure the battery is charged. A too-low battery will prevent the receiver from powering up normally.

• If there is still enough energy in the battery, your receiver may be malfunctioning. Try to turn it on again. In case of a new failure, call your local dealer or email Ashtech technical support for assistance.

Step 2.Does FAST Survey Ask for a Bluetooth Connection?

When using FAST Survey for the first time, you will need to run a search phase to list the Bluetooth devices present in the vicinity.

After opening a job in FAST Survey, the software will prompt you to re-activate the connection with the last receiver used.

- 1. If no receiver is detected the first time you use FAST Survey, go to Step 3.
- 2. If FAST Survey fails to restore the connection to the last receiver used, make sure the nearby receiver is the expected one (check its Bluetooth identifier on the Receiver Identification screen). The Bluetooth connection will fail if it's not the right receiver.

Step 3. Is the Receiver Close Enough to You?

FAST Survey was unable to detect the receiver. Do the following to resolve the problem.

- Move the field terminal closer to the receiver (1 meter typical) and resume the search using the Find Receiver button in the Bluetooth Devices window. If after several attempts, no receiver is detected, then either the field terminal or the receiver has a faulty Bluetooth device.
- 2. You may try to isolate the problem by turning on another receiver and resuming the search phase. If it's successful, then it means the first receiver is malfunctioning. Call your local dealer or email Ashtech technical support for assistance. Conversely, you may try another field terminal to see if the Bluetooth problem is in the first field terminal.

Receiver is Not Tracking Satellites

	RTK Base	RTK Rover	PP Base	PP Rover
Relevant to	•	•	•	•

Step 1. Has the Receiver Been Powered Up?

To determine if the receiver is powered up, examine the power LED on the front panel of the receiver. If the LED is on, the receiver is on.

- If the receiver is not powered up, turn on the receiver by pressing and holding the power key on the front panel. The button must be held for a few seconds since there is a delay in power on. You will see the power LED turn on and the display will show the logo followed by the message "Starting...".
- If the receiver does not power up, check the power source. The receiver supports both internal (battery) and external power sources.

If using the internal power source, make sure the internal battery has been fully charged before it was inserted in the receiver. A too low battery will prevent the receiver from powering up.

If using external power, check to ensure the power cable is properly connected to both the external battery and the receiver.

- If the cable is properly connected, check the power level of the external power source. If low, replace the battery with a charged battery and turn on the receiver.
- If the external power source is good and the cable is connected to both the receiver and the power source, there may be a problem with the cable. If available, try a different power cable. If the new cable works, the old cable is malfunctioning. Call your local dealer or email Ashtech technical support to have the cable repaired.
- 3. If the receiver is now powered up, go to step 2.

Step 2. Does the Number of Tracked Satellites Stay Abnormally Low?

- 1. Check the information displayed on the receiver front panel. In the upper line, starting from the left, the first number displayed should gradually rise from 0 to 8 or more. This information represents the number of tracked satellites. In the same time, the last number in the same line should increase as well, in the same proportion. This information represents the number of satellites actually used by the receiver, and should be equal to, or slightly less than, the first number in the line.
- 2. If the receiver fails to track any satellites after a few minutes of operation, see if you can improve this by moving the receiver to a better place (a more open-sky area) where there can't be any doubt on the possibility for a receiver to track satellites.
- 3. If the receiver still fails to track any satellites, a component may be malfunctioning. Call your local dealer or email Ashtech technical support for assistance.

Receiver is Not Logging Data

	RTK Base	RTK Rover	PP Base	PP Rover	ĺ
Relevant to	•	•	•	•	ĺ

Raw Data Logging Icon:

The Raw Data Logging icon on the front panel of the receiver will be animated when data logging is in progress.

Examining the General Status screen, you determine that the receiver is not logging data to memory. Follow the procedures below to determine the cause of this problem.

Step 1. Has Data Logging Been Started?

At receiver power up, data logging is disabled in the receiver (default setting). To start data logging, press the Log button on the front panel, or use FAST Survey's **Log Raw GPS** function from the **Survey** menu (tap the **Start File** button to start data logging). By default, raw data is written to the receiver's internal memory.

- If the Raw Data Logging icon starts blinking (animated icon), then the problem is solved. Warning! The Raw Data Logging icon may blink throughout a logging session, but if not a single satellite is received during this time, then your raw data file will be empty.
- 2. If the problem is not yet resolved, go to step 2.

Step 2. Is the Currently Selected Memory Usable?

The receiver logs raw data to the internal memory (recommended) or to a USB stick. With the default settings, the selected memory is the internal memory. Changing the storage medium can only be made through \$PASH,MEM or using FAST Survey. You can determine which memory is currently selected by reading the memory screens. The "*" symbol indicates the currently selected storage medium.

If the USB stick is the currently selected memory, there is no USB stick connected and you are using the receiver without FAST Survey, then the receiver won't start data logging when you press the Log button.

 If you are using the receiver alone and the currently selected memory is the USB stick, do one of the following:

- Connect a USB stick to the receiver through the USB device cable provided and press the Log button again.
- Restore the default settings (by pressing the Log+Scroll+Power buttons simultaneously) in order to make the internal memory the active memory. Press the Log button again.

If neither of these two actions resolves your problem, go to step 3.

2. If you are using FAST Survey to control the receiver, select the Survey menu. Tap on the Log Raw GPS button and then on the File Manager button. Select the memory where you want the raw data file to be created (Internal Mem or USB Mem Stick). Come back to the previous screen and tap on the Start File button. If the problem is not yet resolved, go to step 3.

Step 3. Is the Currently Used Memory Full?

Data logging will stop automatically or won't start if the storage medium used (internal memory or USB stick) is full. On the General Status screen, read the remaining percentage of free memory (second line, last number in the line).

- 1. **If "0%" is displayed**, then the memory used is full. Do one of the following:
 - · Change the storage medium
 - Using \$PASHS,FIL,D or FAST Survey, empty the memory or delete the files you don't need anymore.

If neither of these two actions resolves your problem, you may have a malfunctioning receiver. Contact your local dealer or email Ashtech Technical Support for assistance.

2. If the memory is not full (>0%), you may have a malfunctioning receiver. Contact your local dealer or email Ashtech Technical Support for assistance.

Radio Data Link Fails to Provide Base Corrections to Rover

	RTK Base	RTK Rover	PP Base	PP Rover
Relevant to		•		

The Data Link icon is displayed on the rover's General Status screen when base corrections are received and a float or fixed

solution is available. Next to it is the age of corrections, a value which should not normally exceed a few seconds when the data link operates smoothly.

After examining the General Status screen, you determine that the rover is not receiving data. Follow the outline below to troubleshoot this problem.

Step 1. Is the Receiver Fitted with the Appropriate Radio Module?

The radio module used should be compatible with the radio transmitter used at the base. Several sub-bands and channel bandwidths are available for the radio (see *Optional Receiver Kits on page 5*).

- 1. If you are using the right module, go to step 2.
- 2. If you are not using the right module, turn off the receiver and replace the module with the right one. You then need to restore the default settings in the receiver (by pressing the Reset Factory Defaults button in FAST Survey's Equip>GPS Utilities or pressing the Log+ Scroll+ Power buttons simultaneously on the front panel) so the receiver can recognize and use the new module. If using the right module does resolve the problem, go to step 2.

NOTE: There is no particular action required to power up the radio module other than to power up the receiver. This automatically applies power to the radio module.

Step 2. Is the Radio Antenna Connected to the Radio Module?

The radio module cannot operate properly without an antenna. Make sure the antenna is connected to the radio module.

- 1. **If the antenna is not connected**, connect the radio antenna (provided in the radio receiver kit) to the radio module. Ensure that the connection is secure. If the problem is not yet resolved, go to step 3
- 2. **If the antenna is connected**, ensure the connection to the radio module is secure. If the problem is not yet resolved, go to step 3.

Step 3. Are the Rover Radio Settings Compatible with those of the Base Radio?

The rover radio must use settings that are compatible with those of the base radio, in order for the rover to receive corrections from the base. (This means you are supposed to know the currently used base radio settings.)

- 1. Check the radio settings in the rover:

 Use \$PASHQ,RDP,PAR or FAST Survey (Equip menu>GPS

 Rover>RTK Tab, Device field, (**) to check the frequency,
 protocol and "Over the Air" baud rate used.
- 2. If the rover radio is set properly, go to step 4.

Step 4. Is the Line of Sight Between the Base and the Rover Antennas Obstructed?

Although radios are fairly robust, an excessive amount of obstructions can block out the signal.

- 1. If the line of sight is not obstructed, go to step 5 below.
- 2. If the line of sight is obstructed:
 - Move to a less obstructed location. In order to test if the system is functioning properly, move to a location that does not have an obstructed view between the base and rover radio antennas.
 - If this is not possible, move to higher ground or a location where there is less obstruction.
 - If, after moving, the rover radio begins to receive data from the base, then the previous location is too obstructed from the base. You will need to either raise the base radio antenna higher, or move the base to a location with less obstruction between the base and rover radio antennas.
- 3. If the problem is not yet resolved, go to step 5.

Step 5. Are you Within Range Specifications of Your Radio System?

The range within which your radio system will function varies greatly with the conditions under which the system is being used. With clear line of sight between the base and rover radio antennas, and no interference on the frequencies you are working on, a UHF system can function with tens of miles of separation. Unfortunately, these are ideal situations seldom found. In most situations, the range of UHF radio will be between 5 and 10 miles.

- If you are not within range specifications, move within range. Either move closer to the base, or move the base closer to you. If the problem is not yet resolved, go to step 6
- If you are within range specifications, move closer to the base to test the system. Since radio range is difficult to predict due the varying effects of local conditions, try moving closer to the base in an attempt to resolve the problem.

If by moving closer you find that the rover radio begins to receive data, the previous location is out-of-range of the radio system. You will need to elevate the base radio antenna or move the base to a location closer to you to solve the problem. If the problem is not yet resolved, go to step 6.

Step 6. Is the Radio Being Jammed?

When working with UHF radios, it is possible that the frequency you are using is being shared with other people in your vicinity. Traffic on this frequency can interfere with the rover's ability to receive data from the base. The effect may be no reception of base data or intermittent reception of data. Both are detrimental to proper operation of the RTK system. Interference can be a problem with UHF radios.

There are two methods to determine if there is traffic on the frequencies you wish to use. The best method is to acquire a handheld scanner and to listen for traffic on the frequency you plan to use. The second method is to observe the Data Link icon the rover's General Status screen. The base and rover radio will receive any traffic on the frequency they are set to causing this icon to appear. This is best done before setting up the base to transmit data. Any appearance of the Data Link icon indicates some traffic on your frequency.

 If there is no jamming, your radio module or radio antenna may be malfunctioning. There is no way to further isolate this problem unless you have spares for these components. Call your local dealer or email Ashtech technical support for assistance.

2. If there is jamming:

 Lower the sensitivity of the rover radio. FAST Survey lets you change the sensitivity of the rover radio, and you can also lower the sensitivity of the PDL radio via the front panel display.

Lower the sensitivity of the rover to medium or low. If the traffic on your frequency is not strong in power, lowering the sensitivity of the rover radio may cause the radio to ignore the traffic. This will not help if the traffic is caused by a nearby or very high powered radio.

The disadvantage of lowering the sensitivity is a reduction in the range of your radio system. A lower sensitivity at the rover may cause the rover to not hear the base transmissions as the rover moves farther away from the base.

Try another frequency. If you are licensed to operate on more than one frequency, move to a different frequency in hopes that the new frequency has less traffic.

If you have a license for only one frequency, you may need to find another frequency in your area that is clear of traffic in order for the system to function reliably and acquire a license for this frequency if possible.

Data Link Okay but No Fixed Position Computed

	RTK Base	RTK Rover	PP Base	PP Rover
Relevant to		•		

Once the receiver is set to function in RTK (i.e. RTK firmware option has been enabled), it will compute RTK quality positions. In order to accomplish this, the rover must collect raw satellite data at its position and also receive RTK correction data transmitted by the base. Without these two components, the rover will not be able to fix RTK position solutions.

To determine if the rover is computing a fixed position, you can read the General Status screen (2nd parameter in upper line), or use FAST Survey (**Equip** tab, **Monitor Skyplot** function). Using either the display screen or FAST Survey, you have determined that the rover system is not computing a "Fixed" position. Follow the steps outlined below to troubleshoot this problem.

Step 1. Is the Radio Receiving Base Data?

To determine if the rover is receiving base data, examine the 2nd line on the General Status screen. The Data Link icon should be visible. Refer to *Radio Data Link Fails to Provide Base Corrections to Rover on page 685* if you need to fix this problem, and then come back to this procedure.

Step 2. Is the Receiver Tracking satellites?

Use either the front panel of the receiver or FAST Survey running on the field terminal to determine if the rover is tracking satellites.

- If the receiver is not tracking satellites, refer to Receiver is Not Tracking Satellites on page 682 and then come back to this procedure.
- If the receiver is tracking satellites, go to step 3 below.

Step 3. Are The Base and Rover Tracking at least 5 Common Satellites?

In order for the rover to compute an RTK position, the base and rover must observe data from at least 5 common healthy satellites simultaneously. Without this common data, the rover cannot compute an RTK position.

Use the receiver front panel or FAST Survey's Monitor/Skyplot function to determine if the base and rover are indeed tracking at least 5 common healthy satellites.

- 1. If the base and rover are not tracking at least 5 common satellites:
 - Check satellite availability. Use the Mission Planning utility from GNSS Solutions to check satellite availability for your current location and time. Look for the number of satellites available higher than 5° above the horizon. Ensure at least 5 healthy satellites are available. If not, you will need to perform your survey at another time.
 - If the problem is not yet resolved and at least 5 satellites are now tracked and used, your rover may be malfunctioning. Contact your local dealer or email Ashtech technical support for assistance.
 - Move the base or rover if sites have satellite obstructions. If your base or rover site has any obstructions 5° above the horizon, the obstructions may be blocking essential satellites. If obstructions exist at the base or the rover, move the system to an open area.
 - If the problem is not yet resolved and at least 5 satellites are now tracked and used, your rover may be malfunctioning. Contact your local dealer or email Ashtech technical support for assistance.
- If the base and rover are tracking at least 5 common satellites, your rover may be malfunctioning. Contact your local dealer or email Ashtech technical support for assistance.

Rover is Computing Positions with High Uncertainties

	RTK Base	RTK Rover	PP Base	PP Rover
Relevant to		•		

You find that the rover is computing a position but the uncertainties (HRMS, VRMS) assigned to the position are unacceptably high. Follow the steps outlined below to troubleshoot this problem.

Step 1. Is the Receiver Set to Function as an RTK Rover?

The rover must be set to function in RTK rover mode in order for it to compute accurate RTK positions. If the rover is not set in RTK rover mode, the receiver will compute autonomous positions which could contain about 10 meters or more of error. This is probably the problem if HRMS and VRMS values are in the 10s of meters. Check that the system is configured as an RTK rover. For example, with FAST Survey:

- If the receiver is not set to function as an RTK rover, go to the Equip menu>GPS Rover>RTK tab and set the different parameters to match your application.
- If the receiver is set to function as an RTK rover, go to step 2.

Step 2. Are the Base and Rover Tracking at least 5 common Satellites?

Although the rover is capable of computing a position with only 4 common healthy satellites with the base, the rover will not attempt to fix ambiguities unless 5 common healthy satellites are observed. Fixing ambiguities is a required process for the rover to compute highly precise RTK positions. The receiver will inform you if you currently have a fixed ambiguity solution or a float ambiguity solution. Your field application software will also inform you which satellites are being tracked by the base and which are being tracked by the rover and whether or not these satellites are healthy. If you find that your solution will not fix, look to determine if the base and rover are indeed tracking at least 5 common healthy satellites.

1. If the base and rover are not tracking at least 5 satellites:

- Check satellite availability. Use the Mission Planning utility from GNSS Solutions to check satellite availability for your current location and time. Look for the number of satellites higher than 5° above the horizon. Ensure at least 5 healthy satellites are available. If not, you will need to perform your survey at another time.
 - Go to step 3 below if the problem is not yet resolved.
- Move the base or rover if sites have satellite obstruction. If your base or rover site has any obstructions higher than 5° above the horizon, the obstructions may be blocking essential satellites. If

obstructions exist at the base or rover, move the system to an open area.

Go to step 3 below if the problem is not yet resolved.

2. If the base and rover are tracking at least 5 satellites, go to step 3 below.

Step 3. Are HDOP & VDOP Values Too High for Precision Requirements?

Dilution of Precision (DOP) values give a quality indication of the satellite geometry at any given time. Satellite geometry is important to the precision of an RTK solution.

In fact, the DOP value is used as a multiplier in the computation of position precision. For example, in the computation of horizontal RMS (HRMS), an estimated precision value is multiplied by the HDOP at that given time to produce HRMS. The larger the HDOP value, the larger the HRMS value. The same relationship holds for VDOP and VRMS.

Therefore, poor satellite geometry will result in poor solution precision. The smaller the DOP value, the better the geometry and solution precision.

FAST Survey can view current DOP values. If your precision estimates (HRMS, VRMS) do not meet expected values, use this feature to examine the current DOP values.

1. **If DOP values are too high**, look for a satellite window with more suitable DOP values to perform the survey:

Use the Mission Planning utility from GNSS Solutions to examine expected DOP values for periods during which you would like to perform your survey. Avoid surveying during periods where DOP values are above 4. For the highest level of accuracy, limit surveying to periods where DOP values are between 1 and 2.

Remember that obstructions to line of sight between the GPS antenna and the satellites will block out satellite signals. Every time a satellite is lost due to obstructions, DOP values will be adversely affected. An obstructed area may not be suitable to meet your precision needs due to the adverse effect on satellite geometry.

2. If DOP values are not too high, go to step 4 below.

Step 4. Are Precision Requirements Too Stringent for RTK?

If the RTK system is not delivering the precision requirements you need for your specific task, it is possible that your precision requirements are too stringent for the RTK system. Review your system documentation to determine the precision specifications for the RTK system.

- If the precision is not beyond capability, then the rover may be malfunctioning. Contact your local dealer or email Ashtech technical support for assistance.
- If the precision is beyond capability, your precision requirements are not attainable through RTK surveying.
 You will need to find some other measurement system to perform your survey.

This concludes the troubleshooting section. If the tips given here did not help you to resolve your problem with your system, please call your local dealer or email Ashtech Technical Support for assistance.

Logging Data for RTK Troubleshooting Purposes - Reporting a Problem to Ashtech Tech Support

Logging the data received, processed and output by the receiver may help Ashtech isolate RTK malfunction when none of the available troubleshooting procedures has allowed you to solve the problem.

This procedure is based on the capability of the receiver to execute serial commands from a text file stored on a USB key. You can create by yourself the text file required to launch this process. Create the text file with the following content, making sure the four commands are typed in that order:

\$PASHS,MEM,2 \$PASHS,ATL,ON

(Press the ENTER key after typing the last command. This is mandatory.)

Save the file as "autoconfig.cmd" and copy it to the USB key. By naming the file that way, the receiver will automatically prompt you to run the script when you connect the USB key to the receiver.

Then follow the instructions below:

- Check that the receiver is not currently logging data. If it is logging data, press the Log button to stop data logging.
- Connect the USB key to the receiver. Wait until the USB logo appears on the receiver screen and a message is prompted (Upload Script?).
- Accept the request by pressing the Log button. The receiver will then run the script from the text file, and then

- will start logging the data, as indicated by the blinking diskette icon on the receiver screen.
- After enough data has been recorded, firmly press the Log button once, then wait until the diskette icon on the screen stops blinking. When this happens, this means data recording has been stopped.
- Turn off the receiver.
- Remove the USB key and read the content of the USB key on your computer.
- Send the collected data file (ATL_yymmdd_hhmmss.log) to Ashtech for further diagnosis.

When reporting a problem to Ashtech Technical Support, please attach to your email the response of your receiver to the following commands:

\$PASHQ,RID \$PASHQ,VERSION \$PASHQ,OPTION \$PASHQ.PAR

Log these responses in Terminal mode (with Hyperterminal for example) at a speed of 19600 Bd in a text file (*.txt).

List of Alarms

Alarms are reported on the receiver display screen. A blinking warning sign appears on the status screen prompting you to press the Scroll button so you can read the alarm label.

To acknowledge an alarm message once the alarm label is displayed on the screen, press the Scroll button again. If several alarm messages are reported, press the Scroll button as many times. This will acknowledge each message, one after the other.

If the reason for raising an alarm persists, you won't be able to acknowledge the alarm until you correct the problem.

Some of the alarms listed below can only be the result of a bad serial command submitted to the receiver (in command mode). Serial commands can be applied to the receiver from FAST Survey or GNSS Solutions' Wincomm Utility.

With ProFlex 500 CORS, alarms can also trigger notification emails to inform the administrator. All the alarms, or only those ranked as high-priority alarms can trigger emails, depending on how the administrator has set this function.

#	Rank	Alarm Label	Symptoms & Remedies
0	Medium	Software error	Receiver detected an internal error due to software. If persisting, 2nd-level maintenance is required for the receiver.
1	Medium	Unknown command	Unknown serial command received. Correct syntax and re-send command.
2	Medium	Bad parameter	Not well-formatted parameter in the command sent. Correct syntax and re-send command.
3	Medium	Bad command checksum	Serial command received with bad checksum. Correct checksum and re-send command.
4	Medium	File open error	Receiver failed to open the raw data file. Restart the receiver an try again. If error persists and selected storage medium is USB, change USB key and try again. If error persists and selected storage medium is internal memory, reformat internal memory using command \$PASHS,INI,2 (configuration will be lost).
5	Medium	File close error	Receiver failed to close the raw data file. Try again. If still unsuccessful, turn off the receiver and try again.
6	Medium	File write error	Receiver failed to write data into the raw data file. If the alarm persists, close the file and resume data logging. If error persists and selected storage medium is USB, check that it's not in read-only (remove lock). Else, change USB key and try again. If error persists and selected storage medium is internal memory, reformat internal memory using command \$PASHS, INI, 2 (configuration will be lost).
7	Medium	File read error	Receiver failed to read the number of files in the selected storage medium. If error still occurs, change the USB key or re-format the internal memory (see Alarm 4).
8	Medium	File system mount error	Receiver failed to detect the USB key. Remove USB key and re-insert it. If still unsuccessful, use a new USB key.
12	Medium	GSM connection failed	GSM connection has been lost. Try again. Most of the time, the server ends the connection for one of the following reasons: - User name and/or password is incorrect (contact your provider) - Server is faulty (contact provider) - You are outside the area covered by the NTRIP or Direct IP server.
14	Medium	GSM initialization failed	Receiver failed to initialize GSM modem. Check the GSM status icon on the display screen (should indicate Modem is powered on). If error persists, contact your GPRS provider for assistance.
16	Medium	GSM data write error	Receiver failed to write data on the GSM port. Try again. If error persists, restart the receiver. If error persists, call your local dealer or email Ashtech technical support for assistance.
19	Medium	GSM power error	Receiver failed to power on the modem or action required from modem while it is off. If error persists, call your local dealer or email Ashtech technical support for assistance.
21	High	USB removed while file opened	User error. USB key should not be removed while data is being logged to this key. Data file in progress will be entirely lost.

#	Rank	Alarm Label	Symptoms & Remedies
22	High	File transfer Error	Receiver failed to transfer data from the internal memory to the USB key. Change the USB key and try again. If error persists, restart receiver. If error still persists, call your local dealer or email Ashtech technical support for assistance.
23	High	Transfer to USB failed	Receiver failed to transfer data from the internal memory to the USB key because the key is full. Empty the key or insert a new one and then try again.
24	Low	RTC send error	Receiver has detected a task not running properly. Restart receiver. If error still persists, call your local dealer or email Ashtech technical support for assistance
25	Medium	Bad radio settings	Bad \$PASHS,RDP,PAR command received. Consider the following: -Settings may be incompatible with the type of radio used -Settings may have been rejected by the radio Correct command syntax and/or parameters and re-send command.
26	Medium	No radio detected	Receiver fails to communicate with the external or internal radio device, or radio does not respond to your command. Check to see if radio is present (internal radio) or connected and powered on (external radio). Then send your command again.
27	Medium	Radio settings corrupted	Receiver failed to interpret data received from Pacific Crest receiver or transmitter. Check baud rate and retry.
28	Medium	Bad radio response	Receiver failed to interpret data received from transmitter. Check baud rate and retry.
29	Medium	Bad radio channel	Bad \$PASHS,RDP,PAR command received (contains invalid channel number). Consider the following: -Submitted channel number may be absent from channel table -Submitted channel number rejected by radio. Check channel table and send the command again.
30	Medium	No GNSS detected	GNSS board found missing. Restart receiver. If error persists, call your local dealer or email Ashtech technical support for assistance.
31	Low	Bad PVT received	Bad position data delivered by GNSS board. If error persists, call your local dealer or email Ashtech technical support for assistance.
32	Low	Bad PVT decoded	Bad position data delivered by GNSS board. If error persists, call your local dealer or email Ashtech technical support for assistance.
33	Low	PVT multiflag	If error persists, call your local dealer or email Ashtech technical support for assistance.
34	Medium	Unknown option code	OPTION command received includes invalid option code. Check command syntax/parameters and send the command again.
35	Medium	C3 code checksum is bad	Option codes are corrupted at power-on. Re-install receiver options.
36	High	Option has expired	At receiver power-on, all installed firmware options are tested for validity. This alarm is activated if at least one option has expired. Need to purchase option if no longer available.
37	High	All attempts failed	Number of tries exceeded. Check phone number. Resume the connection procedure from the beginning. If error persists, call your local dealer or email Ashtech technical support for assistance
38	High	Memory full	Data memory full. Data logging stopped or impossible. You need to empty memory partially or entirely before data logging can be resumed.

#	Rank	Alarm Label	Symptoms & Remedies
39	Low	Spy too long	A Debug command. Apart from acknowledging the alarm, no particular action required.
40	Medium	GSM already in DIP Mode	Source table requested whereas GSM already used in DIP mode. End DIP connection before requesting the source table.
41	Medium	GSM currently in NTRIP Mode	Source table requested whereas GSM already used in NTRIP mode. End NTRIP connection before requesting the source table.
43	Medium	Invalid mount point	You are trying to connect the receiver to an invalid mount point. Correct mount point parameters and try again.
44	Low	Input buffer full	If error persists, call your local dealer or email Ashtech technical support for assistance.
45	Medium	GSM Pin code invalid	Correct pin code and try again. If error persists, contact GPRS provider to fix the problem.
46	Medium	GSM band error	Correct GSM band and try again. If error persists, call your local dealer or email Ashtech technical support for assistance.
47	Medium	GSM protocol error	Correct protocol used and try again. If error persists, call your local dealer or email Ashtech technical support for assistance.
48	Medium	GSM CSD mode error	Problem configuring the modem in CSD mode. Try again. If error persists, call your local dealer or email Ashtech technical support for assistance.
49	Medium	APN error	Problem configuring the APN. If error persists, contact GPRS provider to fix the problem.
51	Medium	GPRS login error	Check GPRS login. If error persists, contact GPRS provider to fix the problem.
53	Medium	GPRS password error	Check GPRS password. If error persists, contact GPRS provider to fix the problem.
54	Medium	GPRS connection failed	Receiver failed to connect to GPRS. Check GSM antenna. Check GPRS parameters and reception level and try again.
56	Medium	Invalid caster hostname	Correct caster hostname and try again.
57	Medium	Invalid caster port	Receiver failed to access the caster through the port mentioned. Check caster port number.
60	Medium	Disconnect. from GPRS failed	Receiver failed to disconnect from GPRS. Try again. If still unsuccessful, shut down the receiver.
61	Medium	Connect. to DIP failed	Receiver failed to connect to the specified DIP address. Check DIP parameters and access rights and try again.
62	Medium	CSD dial error	Receiver failed to dial the specified phone number.
63	Medium	CSD hangup error	Receiver failed to hang up. Shut down the receiver.
66	Medium	Auto pickup error	Receiver failed to set "auto pickup" in GSM modem
67	Medium	No SIM card detected	Receiver needs SIM card to operate in requested mode. Install SIM card or check that the installed SIM card has been inserted correctly. If still unsuccessful, call your GPRS provider to make sure the SIM card holds the information to make it usable.
69	High	Too many files	Up to 96 files (index A to Z) can be logged per day, based on the same site name. To log more files on the same day, change the site name.
70	High	Low battery	Battery output voltage below lower limit defined by \$PASHS,PWR,PAR.

#	Rank	Alarm Label	Symptoms & Remedies
71	High	Low voltage	External DC source voltage below lower limit defined by \$PASHS,PWR,PAR.
72	Medium	Storage overflow	Storage overflow. This can be solved by reducing the data recording rate.
74	Medium	Data write error on ETH port	Receiver failed to write data on the Ethernet port. Try again. If error persists, restart the receiver. If error persists, call your local dealer or email Ashtech technical support for assistance.
75	Medium	Invalid caster port	Receive cannot connect to specified IP port.
76	Medium	Connect. to DIP failed	Receiver failed to connect to the specified DIP address. Check DIP parameters and access rights and try again.
77	Medium	Invalid mount point	You are trying to connect the receiver to an invalid mount point. Correct mount point parameters and try again
78	Medium	Ethernet connection error	GSM connection has been lost. Try again. Most of the time, the server ends the connection for one of the following reasons: - User name and/or password is incorrect (contact your provider) - Server is faulty (contact provider) - You are outside the area covered by the NTRIP or Direct IP server.
79	Medium	Ethernet DIP connected	Source table requested whereas GSM already used in DIP mode. End DIP connection before requesting the source table.
80	Medium	Ethernet NTRIP connected	Source table requested whereas GSM already used in NTRIP mode. End NTRIP connection before requesting the source table.
90	Medium	BTH Name Rejected	Bluetooth name rejected. Try another one.
91	Medium	BTH PIN Rejected	Bluetooth pin rejected. Try another one.
93	Medium	GPRS Ini Failed No Signal Detected	Modem initialization failed resulting in no input signal detected
94	Medium	No ATOM Session File	Receiver could not find any G-file collected through session
95	High	Rinex Convers. Failed	Receiver could not convert G-file into Rinex files
96	High	Hatanaka Convers. Failed	Receiver could not convert G-file into Hatanaka Rinex files
97	High	TarZ Compres. Failed	Receiver could not compress converted files
99	High	Session Start Failed	Receiver could not start programmed session
100	High	Session Stop Failed	Receiver could not terminate session in progress
101	Medium	E-Mail failed	Receiver could not send a notification email following the occurrence of a high-level alarm
102	High	Conversion not allowed	Receiver was not allowed to convert the G-file
103	Medium	DynDNS Config Error	DynDNS parameters are incorrect. Please review each of them and correct whenever necessary.
104	High	DynDNS Stopped by server (Abuse)	
105	High	DynDNS Connection error	The receiver fails to connect to the DynDNS service. Please check your DynDNS parameters and the EThernet connection.
106	High	Carrier Lost on Ethernet Connection	The carrier on the Ethernet line being lost, the Ethernet port is automatically re-started. Please check the Ethernet connection.
107	Medium	Data read error on ETH network	

#	Rank	Alarm Label	Symptoms & Remedies
108	High	Option K has expired	The use of the [K] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
109	High	Option F has expired	The use of the [F] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
110	High	Option Z has expired	The use of the [Z] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
111	High	Option S has expired	The use of the [S] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
112	High	Option P has expired	The use of the [P] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
113	High	Option G has expired	The use of the [G] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
114	High	Option M has expired	The use of the [M] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
115	High	Option L has expired	The use of the [L] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
116	High	Option N has expired	The use of the [N] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
117	High	Option C has expired	The use of the [C] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
118	High	Option R has expired	The use of the [R] firmware option was granted to you for a limited period of time, which has now expired. Please contact Ashtech to renew the use of this option.
119	High	Extra Content error	Some important files are missing in the receiver. Please re-install the receiver firmware.
120	Medium	Invalid NTRIP Login/Pwd on E	NTRIP connection on port E (modem) has failed because of incorrect login or password. Please check the login and password of your NTRIP provider and try again.
121	Medium	Invalid NTRIP Login/Pwd on P	NTRIP connection on port P (Ethernet) has failed because of incorrect login or password. Please check the login and password of your NTRIP provider and try again.
122	Medium	Invalid NTRIP Login/Pwd on Q	NTRIP connection on port Q (Ethernet) has failed because of incorrect login or password. Please check the login and password of your NTRIP provider and try again.
123	Medium	No reply from caster on E	No reply from the NTRIP caster on port E (modem). Please check the caster parameters.

#	Rank	Alarm Label	Symptoms & Remedies
124	Medium	No reply from caster on P	No reply from the NTRIP caster on port P (Ethernet). Please check the caster parameters.
125	Medium	No reply from caster on Q	No reply from the NTRIP caster on port Q (Ethernet). Please check the caster parameters.
126	Medium	Caster inaccessible on E	The receiver fails to access the NTRIP caster through port E (modem). Check the caster parameters and the modem settings.
127	Medium	Caster inaccessible on P	The receiver fails to access the NTRIP caster through port P (Ethernet). Check the caster parameters and the Ethernet settings.
128	Medium	Caster inaccessible on Q	The receiver fails to access the NTRIP caster through port Q (Ethernet). Check the caster parameters and the Ethernet settings.
129	Medium	GSM PSD config error on E	An NTRIP connection is requested while the Modem is not configured in PSD (GPRS) mode. Please change the modem settings accordingly.
130	Medium	GSM PSD config error on P	?
131	Medium	GSM PSD config error on Q	?
132	Medium	Send Caster login error on E	Failed to log on to the NTRIP caster through port E (modem). Check the NTRIP caster parameters.
133	Medium	Send Caster login error on P	Failed to log on to the NTRIP caster through port P (Ethernet). Check the NTRIP caster parameters.
134	Medium	Send Caster login error on Q	Failed to log on to the NTRIP caster through port Q (Ethernet). Check the NTRIP caster parameters.
135	Medium	NTRIP connection lost on E	NTRIP connection lost on port E (modem). Check the modem status.
136	Medium	NTRIP connection lost on P	NTRIP connection lost on port P (Ethernet). Check the Ethernet connection.
137	Medium	NTRIP connection lost on Q	NTRIP connection lost on port Q (Ethernet). Check the Ethernet connection
138	Medium	DIP connection lost on E	Direct IP connection lost on port E (modem). Check the modem status.
139	Medium	DIP connection lost on P	Direct IP connection lost on port P (Ethernet). Check the Ethernet connection.
140	Medium	DIP connection lost on Q	Direct IP connection lost on port Q (Ethernet). Check the Ethernet connection.
141	Medium	Invalid mount point on E	Failed to connect to the NTRIP mount point through port E (modem) because the mount point name is invalid. Check the mount point name.
142	Medium	Invalid mount point on P	Failed to connect to the NTRIP mount point through port P (Ethernet) because the mount point name is invalid. Check the mount point name.
143	Medium	Invalid mount point on Q	Failed to connect to the NTRIP mount point through port Q (Ethernet) because the mount point name is invalid. Check the mount point name.
144	Medium	Query SrcTable error on E	Failed to get the NTRIP source table through port E (modem). Check the NTRIP parameters and the modem settings.
145	Medium	Query SrcTable error on P	Failed to get the NTRIP source table through port P (Ethernet). Check the NTRIP parameters and the Ethernet connection.
146	Medium	Query SrcTable error on Q	Failed to get the NTRIP source table through port Q (Ethernet). Check the NTRIP parameters and the Ethernet connection.

#	Rank	Alarm Label	Symptoms & Remedies
147	Medium	Send DIP login error on E	Failed to send the Direct IP login (\$GPUID) through port E (modem). Check the Direct IP parameters and the modem settings.
148	Medium	Send DIP login error on P	Failed to send the Direct IP login (\$GPUID) through port P (Ethernet). Check the Direct IP parameters and the Ethernet connection.
149	Medium	Send DIP login error on Q	Failed to send the Direct IP login (\$GPUID) through port Q (Ethernet). Check the Direct IP parameters and the Ethernet connection.
150	Medium	DIP inaccessible on E	Failed to connect to the Direct IP server through port E (modem). Check the Direct IP parameters and the modem settings.
151	Medium	DIP inaccessible on P	Failed to connect to the Direct IP server through port P (Ethernet). Check the Direct IP parameters and the Ethernet connection.
152	Medium	DIP inaccessible on Q	Failed to connect to the Direct IP server through port Q (Ethernet). Check the Direct IP parameters and the Ethernet connection
153	Medium	GSM CSD config error on E	A Direct IP connection is requested while the Modem is not configured in PSD (GPRS) mode. Please change the modem settings accordingly.
154	Medium	GSM CSD config error on P	?
155	Medium	GSM CSD config error on Q	?
156	High	FTP connection failed	Failed to connect to the external FTP server. Check the FTP parameters and the Ethernet connection.
157	High	FTP login error	Failed to connect to the external FTP server because the login and/or password are incorrect. Check the login and password.
158	Medium	FTP wrong local path	Failed to transfer the data to the FTP because the local path does not exist. Check the local path.
159	Medium	FTP wrong remote path	Failed to transfer the data to the external FTP server because the path on this server does not exist. Check the remote path.
160	High	FTP transfer failed	Failed to transfer data to the FTP. Please check FTP settings and Ethernet connection.
161	Medium	FTP file doesn't exist	Failed to transfer data to the FTP because the file does not exist. Check the file name.
162	Medium	FTP not enough memory	Fail to transfer the data to the FTP because there is not enough free memory on the FTP server. Please make room on the FTP server.
163	High	PUSH FTP Prim connection failed	Failed to push session files to the primary FTP server. Check the FTP parameters and the Ethernet connection.
164	High	PUSH FTP Prim login error	Failed to connect to the primary FTP server (sessions) because the login and/or password are incorrect. Check login and password. Subcode: 331 (password incorrect); 332 or 530 (login incorrect)
165	Medium	PUSH FTP Prim bad local path	Failed to transfer session files to the primary FTP server because the local path does not exist. Check the local path.
166	Medium	PUSH FTP Prim bad remote path	Failed to transfer session files to the primary FTP server because the remote path does not exist. Check the remote path.
167	High	PUSH FTP Prim transfer failed	Failed to transfer session files to the primary FTP server. Check the FTP parameters and the Ethernet connection.
168	Medium	PUSH FTP Prim no file	Failed to transfer session files to the primary FTP server because the file does not exist. Check the file name.

#	Rank	Alarm Label	Symptoms & Remedies
169	Medium	PUSH FTP Prim not enough mem	Failed to transfer session files to the primary FTP server because there is not enough free memory on the FTP server. Make room on the FTP server.
170	High	PUSH FTP Back connection failed	Failed to push session files to the backup FTP server. Check the FTP parameters and the Ethernet connection.
171	High	PUSH FTP Back login error	Failed to connect to the backup FTP server (sessions) because the login and/or password are incorrect. Check login and password. Subcode: 331 (password incorrect); 332 or 530 (login incorrect)
172	Medium	PUSH FTP Back bad local path	Failed to transfer session files to the backup FTP server because the local path does not exist. Check the local path.
173	Medium	PUSH FTP Back bad remote path	Failed to transfer session files to the backup FTP server because the remote path does not exist. Check the remote path.
174	High	PUSH FTP Back transfer failed	Failed to transfer session files to the backup FTP server. Check the FTP parameters and the Ethernet connection.
175	Medium	PUSH FTP Back no file	Failed to transfer session files to the backup FTP server because the file does not exist. Check the file name.
176	Medium	PUSH FTP Back not enough mem	Failed to transfer session files to the backup FTP server because there is not enough memory on the FTP server. Make room on the FTP server.
177	High	Upgrade FTP connection failed	Failed to download the upgrade file from the FTP server. Check the FTP parameters and the Ethernet connection.
178	High	Upgrade FTP login error	Failed to connect the upgrade FTP server because the login and/or password are incorrect. Check login and password.
179	Medium	Upgrade FTP bad local path	Failed to download the upgrade file from the FTP server because the local path does not exist. Check the local path.
180	Medium	Upgrade FTP bad remote path	Failed to download the upgrade file from the FTP server because the remote path does not exist. Check the remote path (on the FTP server).
181	High	Upgrade FTP failed	Failed to upgrade the receiver from FTP server. Check the FTP parameters and the Ethernet connection.
182	Medium	Upgrade FTP file doesn't exist	Failed to download the upgrade file from the FTP server because the file does not exist. check the file name.
183	Medium	Upgrade FTP not enough memory	Failed to download the upgrade file from the FTP server because there is not enough local memory.
184	Medium	Upgrade FTP no Log file	The upgrade log file does not exist.
185	Medium	No upgrade file	
186	Medium	Mountpoint on E already used	Failed to connect port E to the chosen mount point because this mount point is already used (by an external NTRIP server). Choose another mount point.
187	Medium	Mountpoint on P already used	Failed to connect port P to the chosen mount point because this mount point is already used (by an external NTRIP server). Choose another mount point.
188	Medium	Mountpoint on Q already used	Failed to connect port Q to the chosen mount point because this mount point is already used (by an external NTRIP server). Choose another mount point.
189	Medium	Too many mount points	Too many clients are connected to the embedded NTRIP caster.
190	Medium	Too many clients	Too many sources are connected to the embedded NTRIP caster.

#	Rank	Alarm Label	Symptoms & Remedies
191	Medium	Mount points not allowed	A source of corrections (NTRIP server) that is not listed in the source table is connected to the embedded NTRIP caster. This source cannot be used by the users. Check that the source uses the right mount point name to connect to the caster.
192	Medium	Baseline Out of Range	The receiver won't use the received corrections data because the distance to the base station is greater than 3 kilometers. Work with a closer station or buy the [K] firmware option (full RTK).

Chapter 17. Other Procedures & Memos

Special Button Combinations Summary

Button Combination	Receiver State	Function
Power+Log+Scroll	OFF	Restores Factory Settings.
Power+Scroll	OFF	Initiates firmware update from USB key.

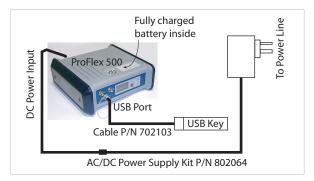
Refer to *Special Button Combinations on page 14* for more information.

Reset Procedure

The receiver may be reset to the default settings using the Log+Scroll+Power button combination. Release the three buttons only after the logo is displayed.

The reset procedure is also used to poll the radio module. If a new module is detected, the receiver will update its database so it can successfully communicate with the new module.

The default settings can also be restored using the \$PASHS,INI command. With this command, you can ask more than a simple "restore default settings". See *INI:* Receiver Initialization on page 426.


Firmware Upgrade Procedure

Firmware upgrades can be downloaded from the Ashtech FTP server in the form of one or more compressed ".tar.bz2" files. The file(s) provided, as well a the step-by step upgrade procedure are given in the relevant *Release Note*. Completing a firmware upgrade procedure may take up to 30 minutes. For this reason, it must be run with the receiver

powered from both a fully charged internal battery and the AC/DC power supply kit. You also need a USB key to make the upgrade files available to the receiver.

Follow the instructions below to complete the upgrade of your receiver:

- 1. Check that the USB key used for the upgrade is not writeprotected and then connect it to your computer.
- 2. Using Windows Explorer, copy the ".tar.bz2" file(s) to the root directory of the USB key.
- 3. Check that there is at least 10 Mbytes of free memory left on the USB key. The free memory will be used during the upgrade for decompressing data.
- 4. Disconnect the USB key from the computer (after taking the usual safety precautions related to the USB standard).
- 5. Make sure the receiver you want to upgrade is OFF and ready for upgrade (i.e. internal battery present and external AC/DC power supply connected and on).

- Connect the USB key now containing the upgrade files to the receiver's USB connector through cable P/N 702103 (provided).
- 7. Hold down the Scroll button and then press the Power button for about 10 seconds. After about 30 seconds, the Ashtech logo on the screen is replaced with the "Upgrade in progress" message, meaning that the upgrade procedure has now started.
- 8. Let the receiver proceed with the upgrade. Take care not to turn off the receiver while the upgrade is in progress.

The receiver screen will display successively:

Upgrade in progress. Writing xx% ramdisk.img.gz

..

uboot
uimage_pm4_rd
Upgrading GNSS
...
Erasing partitions
Creating Backing file
Creating partition
Config
Starting...

- Follow the instructions provided in the *Release Note* to complete the upgrade. The receiver is automatically restarted at the end of the procedure.
- 10. Disconnect the USB key and its cable from the receiver.
- 11.Check that the new firmware is installed (read the second line on the Receiver Identification Screen).

Time-tagged RTK vs. FAST RTK Position Output

Your receiver can deliver RTK positions either in Time-Tagged or Fast RTK mode. The default mode is Fast RTK.

If you wish your receiver to operate in Time-Tagged mode, use the appropriate serial command to switch into that mode (see CPD,FST: RTK Output Mode on page 383).

In its standard version, the receiver features a Fast RTK mode with an output rate of 2 Hz. With the FASTOUTPUT firmware option, the output rate is 20 Hz. After purchasing this option, use the \$PASHS,OPTION command to install it. See *OPTION: Receiver Firmware Options on page 448*).

ATOM File Naming Conventions

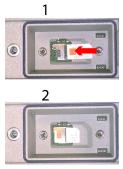
Raw data files in ATOM format are named using the following syntax:

G<Site><Index><Year>.<Day>

Where:

Item in Filename	Description
G Header indicative of a file containing ATOM data.	
<site></site>	A 4-character string recalling the name of the site where data was collected (a point name in static, a trajectory name in kinematic, or name of last surveyed point in stop & go). The default string is four underscores ("").

Item in Filename	Description
<index></index>	Order number of file being recorded (in the form "A" to "Z" for the first 26 files logged in the same day, then "AA" to "ZZ" for the next ones recorded in the same day, starting from the 27th file).
<year></year>	Last two figures of current year (e.g. "08" for 2008) for up to 26 files recorded in the same day, then only the last figure of current year for the 27th and next files.
. <day></day>	File extension: a three-figure number representing the current day number in year (1 365).


Example of first file logged on May 6th 2008 on point 584V: G584VAA8.127

Changing the Radio Module

This operation requires special technical skills. It should be performed by a certified dealer. Opening the receiver case without been authorized will automatically cancel the guarantee.

Installing a SIM Card

- Open the battery compartment by turning the quarter-turn finger screw anticlockwise.
- Remove the battery.
- Insert the SIM card as shown below.

 Put the battery back in the compartement and close the trap door.

Configuring Serial Port A

- Set up your equipment in such a way that it can successfully receive and process a serial command sent from outside the equipment. See Applying Commands Through Bluetooth or a Serial Port on page 340 in this manual to know how this can be done.
- Use the \$PASHS,MDP serial command to configure serial port A as an RS232 or RS422 port. Refer to MDP: Setting Port A to RS232 or RS422 on page 433 in this manual to learn how to use this command.
- Use the \$PASHS,CTS command to enable/disable hardware handshaking. Refer to CTS: Handshaking on page 396.

NOTE: A Bluetooth connection is also possible between a Bluetooth-enabled computer and the receiver.

Enabling a Firmware Option

- Set up your equipment in such a way that it can successfully receive and process a serial command sent from outside the equipment. See *Applying Commands Through Bluetooth or a Serial Port on page 340* in this manual to know how this can be done.
- Use the \$PASHS,OPTION serial command to enable the firmware option. Refer to OPTION: Receiver Firmware Options on page 448 in this manual to learn how to use this command.

Through this command, you will enter the code provided by Ashtech after you purchased the option. Entering this code into the receiver will unlock the option.

Enabling or Disabling the External Reference Clock

Using an external reference clock as a frequency pilot for the ProFlex 500 requires the purchase and installation of the External Reference Clock Input option (P/N 802097).

Use the \$PASHS,REF and \$PASHQ,REF command to control the use of this input and specify the signal frequency. Input specifications:

- Signal amplitude: 0.5 to 3 V, peak to peak
- Input impedance: 50 Ω
- Nominal frequency: 5, 10 or 20 MHz
- Permitted deviation around nominal frequency: ± 1 ppm

Decoding an NTRIP Source Table

The NtripCaster maintains a source table containing information on available NtripSources, networks of NtripSources, and NtripCasters, to be sent to an NtripClient on request.

Source-table records are dedicated to one of the following:

- Data STReams (record type STR)
- CASters (record type CAS)
- NETworks of data streams (record type NET)

All data fields in the source-table records are separated using the semicolon character (;), as a field delimiter. When a semicolon is part of the content, it is quoted (":")

Source Table Header

Server: <NtripCasterIdentifier>/<NtripVersion><CR><LF>

Content-Type: text/plain<CR><LF>

Content-Length: <Content-Length><CR><LF>

<CR><LF>

<Content-Length> gives the total size of the source-table records (a decimal number of bytes).

The actual source-table records follow the header fields.

Data STReam Record

Below is an example of a data stream record. The table below describes the syntax used.

STR;BRUS0;Brussels;RTCM2.0;1(1),3(60),16;0;GPS;Misc;BEL;50.80; 4.36;0;0;Ashtech UZ-12;none;B;N;500;ROB

Record Parameter	Meaning	Format
STR	Header for "data stream"	3 characters
BRUS0	Caster mountpoint	100 characters max.
Brussels	Source identifier, e.g. name of city next to source location	Undefined number of characters
RTCM2.0	Data format	Undefined number of characters
1(1),3(60)	RTCM message types or raw data format. Update	Undefined number of
1(1),3(00)	periods in parenthesis, in seconds	characters
0	Data stream contains carrier phase information: 0=No 1=Yes, L1 2=Yes, L1 & L2	Integer: "0", "1" or "2"
GPS	Navigation system(s)	Undefined number of characters
Misc	Header for "miscellaneous information".	3 characters
BEL	Country code in ISO 3166	3 characters
50.80	Station latitude or approximate rover latitude if cli- ent requested to send NMEA message (see below)	Floating point number, with two decimal places
4.36	Station longitude or approximate rover longitude if client requested to send NMEA message (see below)	Floating point number, with two decimal places
0	Necessity for client to send NMEA message with approximate position to caster: 0=NMEA message not required 1=NMEA message required	Integer: "0" or "1"

Record Parameter	Meaning	Format
0	Stream generated from single reference station or from networked reference stations: 0=Single base 1=Network	Integer: "0" or "1"
Ashtech UZ-12	Hardware or software generating the data stream.	Undefined number of characters
none	Compression/encryption algorithm applied.	Undefined number of characters
В	Authentication required (access protection): N=None B=Basic D=Digest	1 character: "N", "B" or "D"
N	User fee: N=No user fee Y=Usage is charged	1 character: "Y" or "N"
500	Bit rate (bps)	Integer
ROB	Miscellaneous information	

CASter Record

Below is an example of a caster record. The table below describes the syntax used.

CAS;129.217.182.51;80;EUREF;BKG;0;DEU;51.5;7.5;http://igs.ifag.de/index_ntrip_cast.htm

Record Parameter	Meaning	Format
CAS	Header for "caster"	3 characters
129.217.182.51	Caster Internet host domain name or IP address	128 characters max.
80	Port number	Integer
EUREF	Caster identifier, e.g. name of provider	Undefined number of characters
BKG	Name of institution, agency or company operating the caster	Undefined number of characters
0	Capability of caster to receive NMEA message with approximate position from client: 0=NMEA message not handled 1=NMEA message handled	Integer: "0" or "1"
DEU	Country code in ISO 3166	3 characters
51.5	Station latitude	Floating point number, with two decimal places
7.5	Station longitude	Floating point number, with two decimal places
http://igs.ifag.de/ index_ntrip_cast.htm	Fallback caster IP address No fallback: 0.0.0.0	128 characters max.
	Fallback caster port number	Integer

Record Parameter	Meaning	Format
	Misc Header (for "miscellaneous information")	3 characters

NETwork Record

Below is an example of a network record. The table below describes the syntax used.

NET;ascos;Ruhrgas AG;B;N;http://www.ascos.de;none;http://igs.ifag.de/root_ftp/software/NtripRegister.doc;none

Record Parameter	Meaning	Format
NET	Header for "network of data streams"	3 characters
ascos	Network identifier, e.g. name of a net- work of GNSS permanent reference stations	Undefined number of characters
Ruhrgas AG	Name of institution, agency or company operating the network	Undefined number of characters
В	Authentication required (access protection): N=None B=Basic D=Digest	1 character: "N", "B" or "D"
N	User fee: N=No user fee Y=Usage is charged	1 character: "Y" or "N"
http://www.ascos.de	Web address for stream information	Undefined number of characters
ttp://igs.ifag.de/root_ftp/ software/NtripRegis- ter.doc	Web address or mail address for registration	Undefined number of characters
none	Miscellaneous information	Undefined number of characters

Index

Symbols \$PASHQ,FIL,LST 567 \$PASHQ,FLS 569 \$GPUID *53*, *55* \$PASHQ,FTP 570 \$PASH commands *92*, *185* \$PASHQ,GGA 571 \$PASHQ,AGB *519* \$PASHQ,GLL *572* \$PASHQ,ALM *520* \$PASHQ,GLO *573* \$PASHQ,ANH *521* \$PASHQ,GNS,CFG *574* \$PASHQ.ANP 522 \$PASHQ,GRS *575* \$PASHQ,ANP,OUT *523* \$PASHQ.GSA 576 \$PASHQ,ANP,OWN 524 \$PASHQ,GST *578* \$PASHQ.ANP.REF 524 \$PASHQ.GSV *579* \$PASHQ,ANR 525 \$PASHQ.LCS *580* \$PASHQ,ANT *527* \$PASHQ,LOG 582 \$PASHQ,ATD,MSI 528 \$PASHQ,LOG,LST 583 \$PASHQ,ATL 528 \$PASHQ,LOG,PAR 584 \$PASHQ,ATM *529* \$PASHQ,MDM *584* \$PASHQ,ATO *531* \$PASHQ,MDM,LVL 586 \$PASHQ,BAS *533* \$PASHQ.MDP *586* \$PASHQ,BDS *534* \$PASHQ,MEM *587* \$PASHQ.BEEP 535 \$PASHQ,MET 588 \$PASHQ,BRD *536* \$PASHQ,MWD 588 \$PASHQ.BTH 152, 536 \$PASHQ,NMO *589* \$PASHQ,CMR,MSI 537 \$PASHQ,NPT *591* \$PASHQ,CP2,AFP *538* \$PASHQ,NTR *592* \$PASHQ,CPD,AFP 539 \$PASHQ,NTR,MTP 593 \$PASHQ,CPD,ANT 539 \$PASHQ,NTR,TBL 594 \$PASHQ,CPD,FST 540 \$PASHQ.OCC 595 \$PASHQ,CPD,MOD 541 \$PASHQ,OPTION 596 \$PASHQ.CPD.NET 543 \$PASHQ,PAR *597* \$PASHQ,CPD,POS 544 \$PASHQ.PHE 600 \$PASHQ,CPD,REM 545 \$PASHQ,POP *601* \$PASHQ,CPD,VRS 546 \$PASHQ.POS 601 \$PASHQ,CRT *546* \$PASHQ,PPS *603* \$PASHQ,CST 548 \$PASHQ,PRT 604 \$PASHQ,CTS *549* \$PASHQ,PTT *605* \$PASHQ,DBN,MSI 550 \$PASHQ.PWR 606 \$PASHQ,DCR 550 \$PASHQ,RAW 607 \$PASHQ,DDN 552 \$PASHQ,RCP *609* \$PASHQ,DIP *553* \$PASHQ,RCP,OWN 610 \$PASHQ,DPO *554* \$PASHQ,RCP,REF 611 \$PASHQ.DRI *556* \$PASHQ,RDP,CHT 612 \$PASHQ,DST 556 \$PASHQ,RDP,LVL *614*, *651* \$PASHQ.DST.STS 558 \$PASHQ,RDP,PAR 614 \$PASHQ.DSY 559 \$PASHQ,RDP,TYP 617 \$PASHQ,DTM 560 \$PASHQ,REC 618 \$PASHQ,DYN 561 \$PASHQ,REF 618 \$PASHQ.ECP *562* \$PASHQ,RFB *619* \$PASHQ,EFT *563* \$PASHQ.RFT 620 \$PASHQ,ELM *564* \$PASHQ,RID *621* \$PASHQ,EML 564 \$PASHQ,RNX,MSI 623 \$PASHQ,ETH *565* \$PASHQ.RRE 624 \$PASHQ,FIL,CUR 566 \$PASHQ,RTC 624

\$PASHQ.RTC.MSI 626 **\$PASHS.ATM** *367* \$PASHQ,RWO *627* \$PASHS,ATM,ALL 369 \$PASHQ,SAT 629 \$PASHS,ATM,PER 370 \$PASHQ,SBA *630* \$PASHS,BAS *371* \$PASHQ.SES *630* \$PASHS,BDS 372 \$PASHQ.SGL *633* \$PASHS,BEEP 373 \$PASHQ,SGP *635* \$PASHS,BRD 374 \$PASHQ.SIT 637 \$PASHS.BTH.NAME 377 \$PASHQ.SNM *638* \$PASHS.BTH.PIN 378 \$PASHQ,SOM *639* \$PASHS,CMD,LOD *346*, *378* \$PASHQ,SOM,CTT 640 \$PASHS,CMD,WTI 380 \$PASHQ.SOM.NAV 640 \$PASHS.CMR.TYP 381 \$PASHQ,SOM,SNR 641 \$PASHS,CP2,AFP 382 \$PASHQ.SOM.SVM 644 \$PASHS,CP2,RST 388 \$PASHQ.SOM.WRN 642 \$PASHS.CPD.AFP 382 \$PASHQ,STI *643* \$PASHS,CPD,FST 383 \$PASHQ,TCP 644 \$PASHS,CPD,MOD 383 **\$PASHQ.TLT** *645* \$PASHS.CPD.NET 386 \$PASHQ.UDP *646* \$PASHS.CPD.REM 387 \$PASHQ,UNT 647 \$PASHS,CPD,RST 388 \$PASHQ,UPL 647 \$PASHS,CPD,VRS 388 \$PASHQ.UPL.LOG 648 \$PASHS.CST.MTP.ADD 389 \$PASHQ,UTS *652* \$PASHS,CST,MTP,DEL 390 \$PASHQ,VEC *652* \$PASHS,CST,OFF 391 \$PASHQ,VERSION 654 \$PASHS,CST,ON 392 \$PASHQ,VTG 655 \$PASHS,CST,PAR 392 \$PASHQ.WARN 656 \$PASHS.CST.RST 394 \$PASHQ,WEB *657* \$PASHS,CST,USR,ADD 394 \$PASHQ,XDR *657* \$PASHS,CST,USR,DEL 395 \$PASHQ.ZDA *659* **\$PASHS.CTS** *396* \$PASHR,DPC *661* \$PASHS,DBN,TYP 397 \$PASHR,ION *663* \$PASHS,DDN,PAR 398 \$PASHR.MPC *665* \$PASHS.DDN.SET 399 \$PASHR,PBN 668 \$PASHS,DIP 400 \$PASHR,SAG *671* \$PASHS,DIP,OFF 401 \$PASHS.DIP.ON 402 **\$PASHR.SAL** *670* \$PASHR,SAW *673* \$PASHS,DIP,PAR 402 \$PASHR,SNG *675* \$PASHS,DRI 404 **\$PASHR.SNV** *677* \$PASHS.DST 405 \$PASHR,SNW *679* \$PASHS,DSY *407* \$PASHR,TTT *680* **\$PASHS,DYN** 408 \$PASHS,AGB *355* \$PASHS.ECP.OFF 409 \$PASHS,ANH *356* \$PASHS,ECP,ON 409 \$PASHS,ANP,DEL 358 \$PASHS,EFT,OFF 411 \$PASHS,ANP,EDx 357 \$PASHS.EFT.ON 410 \$PASHS,ANP,OUT 359 \$PASHS,EFT,PAR 411 \$PASHS,ANP,OWN 360 \$PASHS,EFT,USR,ADD 412 \$PASHS.ANP.PCO 357 \$PASHS.EFT.USR.DEL 413 \$PASHS,ANP,REF 361 **\$PASHS.ELM** *413* \$PASHS,ANR *363* \$PASHS,EML,PAR 414 **\$PASHS.ANT** *364* \$PASHS.EML.TST 415 \$PASHS,ATL 366 \$PASHS,ETH,OFF 416

\$PASHS,ETH,ON 416 \$PASHS.RDP.PAR 466 \$PASHS,ETH,PAR 417 \$PASHS,RDP,TYP 470 \$PASHS,FIL,D 418 \$PASHS,REC 472 \$PASHS,FIL,DEL 419 **\$PASHS,REF** *473* \$PASHS,FTP,OFF 420 \$PASHS,RFB *474* \$PASHS,FTP,PAR 421 **\$PASHS.RFT** *475* \$PASHS,FTP,PUT 422 \$PASHS,RNX,TYP 475 \$PASHS.GLO 423 \$PASHS.RST 477 \$PASHS.GNS.CFG 424 \$PASHS.RTC.MSG 478 \$PASHS,INI 426 \$PASHS,RTC,TYP 479 **\$PASHS,LCS** *426* \$PASHS,RXC,PAR 481 \$PASHS.LOG.DEL 427 \$PASHS.SBA 482 \$PASHS,LOG,PAR 428 \$PASHS,SES,AUT 483 \$PASHS,LTZ 429 \$PASHS,SES,DEL 484 \$PASHS.MDM.DAL 429 \$PASHS.SES.FTP.PAR 485 \$PASHS,MDM,INI 430 \$PASHS,SES,OFF 487 \$PASHS,MDM,OFF 431 \$PASHS,SES,ON *487* \$PASHS.SES.PAR 488 \$PASHS.MDM.ON 431 \$PASHS.MDM.PAR 432 \$PASHS.SES.SET 491 \$PASHS,MDP 433 \$PASHS,SIT 492 \$PASHS,MEM 434 \$PASHS.SNM 492 \$PASHS.MET.CMD 435 \$PASHS.SOM 494 \$PASHS,MET,INIT 436 \$PASHS,SOM,CTT 495 \$PASHS,MET,INTVL 437 \$PASHS,SOM,NAV 496 \$PASHS,MET,PAR 438 \$PASHS,SOM,SNR 498 \$PASHS,MWD *439* \$PASHS,SOM,WRN 499 \$PASHS.NME 440 \$PASHS.STI 501 \$PASHS,NME,ALL 442 \$PASHS,TCP,PAR 503 \$PASHS,NME,PER 442 \$PASHS,TCP,UID 504 **\$PASHS.NPT** *443* \$PASHS.TLT.CMD 505 \$PASHS,NTR,LOD 444 \$PASHS,TLT,INIT 506 \$PASHS,NTR,MTP 445 \$PASHS,TLT,INTVL 507 \$PASHS.NTR.PAR 446 \$PASHS.TLT.PAR 508 \$PASHS,OCC 447 \$PASHS,UDP 509 \$PASHS,OPTION 448 \$PASHS,UNT *510* \$PASHS.OUT.x.MET 450 \$PASHS.UPL.PAR 511 \$PASHS.OUT.x.TLT 451 \$PASHS.UPL.UPG 512 \$PASHS,USR,ADD 516 **\$PASHS,PEM** 452 **\$PASHS.PHE** *452* \$PASHS.USR.DEL 517 \$PASHS,POP *453* \$PASHS,UTS *513* \$PASHS,PPS 455 \$PASHS,WAK *514* **\$PASHS.PRT** 456 \$PASHS.WEB.OWN 514 \$PASHS,PWR,OFF 457 \$PASHS,WEB,PAR 515 \$PASHS,PWR,PAR 457 \$PASHS,ZDA *518* **\$PASHS.RAW** *458* \$WIXDR 658 \$PASHS,RAW,ALL 460 \$YXXDR 658 \$PASHS,RAW,PER 460 Numerics \$PASHS.RCP.DEL 462 1PPS 36 \$PASHS,RCP,GBx 461 702450 (cable) 217 \$PASHS,RCP,REF 463 \$PASHS.RDP.OFF 464 AC/DC power supply kit 3 \$PASHS,RDP,ON 466

Access point 53, 56, 76, 79, 107, 153 Accuracy 23 ACK 340 Acknowledge alarms 514 Acknowlege (alarm) 694 Active edge (event marker) 452, 600 Active Sync 233, 279, 288 Adaptive 408, 561 Adaptor cable 40 Adding a user profile 516 Adding FTP server user 412 Address box 91 Adjusting GLONASS biases 355 Administrator (Embedded FTP server) 192 Administrator login and password 188 Administrator profile 39, 46, 92 ADSL modem 42, 332 ADVNULLANTENNA 69, 219, 256, 264 AGB 355, 519 Age of corrections 93 Airlink speed 51, 74, 107, 108, 143, 155**,** 156 Alarm status 16, 198 Alarms 10, 116, 514, 694 ALM 440, 520 Almanac 520 Ambiguity *538*, *539* Ambiguity fixing 48, 63, 97, 145, 240, Ambiguity fixing process 382 Angle 236 Angle Entry and Display 236 Angle units 94 Angular displacement, East 112 Angular displacement, North 112 ANH 98, 122, 132, 136, 140, 145, 356, 521 ANP 98, 99, 522 ANP, DEL 358 ANP,EDx *357* ANP, OUT 123, 133, 137, 141, 146, 359, ANP, OWN 123, 132, 136, 140, 146, 360, 524 ANP,PCO 357 ANP, REF 361, 524 ANR 98, 122, 132, 136, 140, 145, 363,

ANT 98, 122, 132, 136, 140, 145, 364,

Antenna (virtual) 49, 69 Antenna definitions 357 Antenna Height 219 Antenna height 48, 68, 98, 99, 145, 256, 264, 356, 521, 527 Antenna height (base) 539 Antenna input signal level 306 Antenna measurement type 48, 68 Antenna name 99 Antenna parameters 522 Antenna Radius 219 Antenna radius 48, 68, 98 Antenna reduction 289, 525 Antenna reduction mode 363 Antenna type 256, 264 Antenna used at the base 524 ARF7474 60, 82, 83 ARP 48, 98, 145, 218, 363, 364 ASH-661 (ASH111661) 49, 69 Ashtech (legacy format) 458 Ashtech legacy 114, 165 Associations (base/rover) 87 ATD, MSI 528 ATL 198, 528, 693 ATL command 366 ATL file 366 ATM 367, 413, 529 ATM,ALL 369 ATM, PER 370 ATO 531 ATOM 65, 113, 162, 165, 196, 202 ATOM data parameters 529 ATOM differential message status 528 ATOM files 707 ATOM message parameters 531 ATOM messages 367 ATOM messages (output rate) 370 ATOM RNX differential message 475, 623 ATOM, standard, compact, super-compact 71 ATT 441 Authentication 343, 345 **AUTO 15** Auto by interval 287 Auto Dial 259, 267 Auto Set 221 autoconfig.cmd file 346 autoconfig.log file 347 Automatic (detection of port receiving corrections) 53, 55, 57, 60, 62 Automatic (modem DC power) 52, 56, 61, 75, 79, 83

Antenna 145

Antenna (GNSS) 3, 260

Automatic (radio DC power) 51 Bluetooth pin code 378 Automatic connection (modem) 52, 56, 62, Bluetooth settings 536 75, 84 Bluetooth status 17, 199 Automatic Transfer 207 Boot sequence 681 Automatic transfer (to external FTP server) BPW 244 BRD 374, 536 Automatic transfer (to FTP) 223 BTH 104, 106, 536 Autonomous 99 BTH, NAME 152, 377 BTH, PIN 152, 378 Azimuth (satellites) 101 Buzzer 13 Background map 243 Backlight 10 Cable pinout (external sensors) 217 Backpack 5, 260, 293 CAN bus 12 Backup battery 13 CAN controller 409 Backup FTP server 195, 202, 208, 224 Carlson Image X-Port.exe 243 Backup mode 385, 541 Cartesian coordinates 550 Backup RTK 385 CAS 712 Band 258, 266 Caster hostname 228 Band (modem) 52, 56, 62, 75, 84, 152 Caster IP address 446 BAS 128, 371, 533 Caster record 712 BASE 15 CDMA 275 Base antenna (naming) 361 Cell phone 262 Base position 122, 132, 136, 140, 238, Cellular antenna 2, 9, 261, 309 Change Ant. 290 Base Setup 66, 218 Change key 235 Base using external radio transmitter 74 Change receiver configuration 120 Base/rover mode 541 Changing the administrator profile 515 Channel 74, 107, 108, 154, 257, 265 Base/rover/backup mode 383 Baseline 550 Channel (change channel number when Baseline length 99 repeater used) 278 Channel (internal radio) 51 Battery 93 Channel spacing (12.5 kHz) 31 Battery (external) 251 Battery (insert) 21 Channel spacing (25 kHz) 32 Battery (remove) 20 Channel warnings mask 642 Battery charger 3 Channel warnings masks 499 Battery icon 16, 198 Channels 22 Battery model 13 Charging battery 20 Baud rate 60, 74, 82, 124, 142, 147, Charging status 104 Checking validity of new settings 120 BDS 129, 138, 372, 534 Choosing ATOM format (Standard, Compact, Super Compact) 71 BEEP *373*, *535* Clear All button 65, 73, 165, 167, 221 Beeper setup 373 Client mode 558 Biases 461 BKP *541* Client/server mode 129, 138 BLADE 1, 22 Clock (external reference) 473 Bluetooth 105, 151, 152, 236, 237, 238, CMD,LOD *378* 255, 260, 296, 297 CMD,WTI 380 Bluetooth antenna 2, 9, 261, 310 CMR 113, 162, 413 Bluetooth connection 681 CMR message type and rate 381 Bluetooth device name 104, 152, 377 CMR, CMR+ 371 Bluetooth identifier 18, 200 CMR, MSI 537

CMR, TYP 381 CMR+ 413 Command Script 187 Command window 341 Comms tab 238, 263 Company name 92 Computed position 601 Confidence level 264, 382 Configuration tab 92 Configure button 120, 255, 263 Configuring RTK base delivering corrections on port A 321 Configuring RTK base delivering corrections on port B or F 322 Configuring RTK base delivering corrections on the Ethernet port 323 Configuring RTK base delivering corrections to static IP address 324 Configuring RTK base in CSD mode 325 Configuring RTK base in NTRIP mode 327 Configuring RTK base with Magellan transmitter 320 Configuring RTK base with Pac Crest transmitter 318 Configuring RTK rover in CSD mode 317 Configuring RTK rover in Direct IP mode 316 Configuring RTK rover in NTRIP mode 314 Configuring RTK rover receiving corrections on port A 313 Configuring RTK rover receiving corrections on port B or F 314 Configuring RTK rover using internal radio receiver 312 Configuring the receiver 310 Connect Now 55, 56, 59, 62, 76, 78, 80, Connection modes for data streams available 556 Connection profiles 39, 657 Constellations (data relative to) 100 Constellations used at the base 124, 133, 137, 141 Constellations used by the rover 146 Conversion (to RINEX) 223 Convert G-files 206 Coordinate Display Order 236 Copy to USB Device 211 Corrections received via CSD modem, rover CORS station 67

CP2,RST 388 CPD, AFP 97, 145, 382, 539 CPD, ANT 99, 539 CPD,FST 97, 145, 540 CPD, MOD 122, 145, 383, 541 CPD,NET 386, 543 CPD,POS 99, 544 CPD, REM 149, 150, 387, 545 CPD,RST 388 CPD, VRS 388, 546 Cradle 307 CRD files 235 Create DynDNS account 86 Crossover cable 43 CRT 546 CSD 148, 264 CSD mode 62, 84, 105, 125, 127, 134, CSD mode settings (internal modem) 106, 151, 153 CST 548 CST,MTP,ADD 389 CST,MTP,DEL 390 CST,OFF 391 CST,ON 392 CST, PAR 392 CST,RST 394 CST,USR,ADD 394 CST.USR.DEL 395 CTS 105, 108, 110, 112, 124, 142, 147, 151, 155, 160, 161, 396, 549 CTT 494 Cumulative tracking time mask 640 Cumulative tracking time masks 495 CXL70-3 C/L 7, 8 D

CP2,AFP 382, 538

Daisy chain 407, 559
Data collection (PP) 296
Data link 685
Data link (base) 256
Data link (rover) 264
Data link icon 15
Data logging 684
Data output, CORS 220
Data recording (out of sessions) 209
Data stream records 711
Data Streaming on IP 227
Data transfer screen 19, 202, 291
Data type set to port R 170
Date 94

Course over ground 655

Date & time 518 Datum Reference 560 DBEN message status 550

DBEN messages (generating) 397

DBN,MSI 550 **DBN,TYP** 397 DC power input 11 DC power kit for port A 3

DCR 550 DDN 552 DDN, PAR 398 **DDN,SET 399** Debug data 366

Debug data recording 528

Delete files 292

Delete Files After Transfer 208, 224

Delete Receiver 237 Deleting a user profile 517 Deleting files 418

Deleting files and directories 419 Deleting FTP server user 413 Deleting log files 427

Deleting one or all sessions 484

Deleting sessions 176

Deleting user-defined receiver name 462

Delta position 554 Device 255, 263 Device cable (USB) 6, 291

Device field 74

Device settings (internal modem) 106, 151, 152

Devices used 104

DHCP 41, 43, 46, 54, 58, 77, 81, 109, 157, 228, 332, 342

Dial Mode 259 dial Mode 266 Dialing 429

Differential data formats available 129 Differential data formats available on

Ethernet port 130, 138

Differential data port 387, 545 Differential data streaming 372 Differential data streams 149 Differential data type 371, 533 Differential messages 70, 112, 162 Differential messages, base 74

Differential port 53, 149

Differential Stream x 76, 78, 83, 84

Differential streams 128 DIP 148, 400, 553 DIP.OFF 401 DIP, ON 402

DIP.PAR 402 Direct Dial 257, 265

Direct IP 125, 127, 134, 148, 196, 553

Direct IP connection 401, 402 Direct IP parameters 402 Direct IP via Ethernet, base 77 Direct IP via Ethernet, rover 54 Direct IP via modem, base 75 Direct IP via modem, rover 52 Direct TCP/IP connection 43

Disabling all ATOM messages 369 Disabling all raw data messages 460

Display screen 9 Distance 236 Distance mode 287

Distance to reference station 99

Distance unit on display screen 647, 652 Distance unit used on display screen 510

Distance units 94 DNS 1 157

DNS 1/DNS 2 IP address 342

DNS 2 157

DNSx IP Address 54, 58, 77, 81

DOP 692

Download positions from external device

288 DPC 661 DPO 554

DRI 104, 168, 404, 556

DSNP 51, 265 DSNP (protocol) 258

DSNP protocol 142, 154, 156 DST 129, 138, 405, 556

DST,STS 558 DSY 407, 559 DTM 560

DYN 97, 122, 131, 136, 139, 145, 408,

Dynamic 48, 67, 122, 131, 136, 139,

145, 218

Dynamic address 342

Dynamic IP address 398, 399

Dynamics 408, 509

DynDNS 54, 58, 77, 81, 86, 109, 158,

398, 399

DynDNS account 86 DynDNS parameters 552

Earth terminal 12, 310 ECEF coordinates 546

Echo typed characters locally 345

ECP 104, 105, 124, 147, 562 ETH, PAR 157, 417 ECP, OFF 409 Ethernet 128, 565 ECP,ON 409 Ethernet adaptor cable 2 ECP,ON/OFF 151 Ethernet data streaming 196 EDGE 26 Ethernet data streaming, base 85 Editing a log file 582 Ethernet DHCP status 104 Editing a session 176 Ethernet Direct IP 148 Editing the firmware upgrade log file 648 Ethernet Direct IP - Port P 55, 78 EFT *563* Ethernet NTRIP client 149 EFT,OFF *411* Ethernet parameters 417 EFT,ON 410 Ethernet port 12, 108, 156, 342, 416 EFT, PAR 191, 411 Ethernet status 104 EFT, USR, ADD 192, 412 Ethernet streaming 129, 138 EFT,USR,DEL 192, 413 Ethernet TCP status 104 Electric isolation (optical) 12 Event marker (active edge) 452, 600 Elevation (satellites) 101 Event marker input 37 Elevation mask 240, 256, 264, 413, 452 Extended communication port 562 Elevation mask (position) 97, 101, 146, Extended ports 104 External corrections provider, rover 60 Elevation mask (recording) 98, 101, 105, External corrections transmitter, base 82 124, 133, 137, 141, 167 External DC power cable 6 ELM 98, 105, 124, 133, 137, 141, 146, External event 25, 37 167, 413, 564 External radio 155 Email (owner email) 92 External radio settings 108 Email alerts 215 External radio type 104 Email notifications 190, 224 External reference clock 710 External reference clock input 618 Email parameters 414 Email settings 564 External sensors 217, 226 Embedded FTP administrator 192 Embedded FTP server 191, 196, 216, Factory settings 14 225, 410, 411, 563 Fallback caster 548 Embedded FTP server settings 411 Fast RTK 48, 97, 145, 540 Embedded NTRIP caster 24, 67, 80, 195, FAST RTK mode 707 202, 211, 228, 389, 390, 391, 392, Fast RTK Output mode 383 394, 395 FAST Survey 234, 235 Embedded NTRIP caster (current) 214 FASTOUTPUT10 firmware option 26 Embedded NTRIP caster (emulating Direct FEC (Forward Error Correction) 258, 266 IP mode + protection) 212 Field delimiter 339 Embedded NTRIP caster (history) 214 FIL,CUR 566 Embedded NTRIP caster (log) 214 FIL,D 418 Embedded NTRIP caster (settings) 213 FIL,DEL 419 EML 564 FIL,LST 104, 567 EML, PAR 414 File duration 168 EML,TST 415 File format for meteo and tiltmeter data 475 Enable ports B and F 256, 264 Find Receiver 237 Enabling the Web Server 515 Firmware options 27, 118, 448, 596 Ending data transfer with FTP 420 Firmware update 14 Enter owner information 514 Firmware version 18, 200, 654 Equip tab 255, 262 Firmware version (receiver) 118 ETH 104, 565 Firmware versions (other) 118 ETH, OFF 416 FIXED 15 ETH,ON 416

FKP 386	GPS & SBAS satellites status 635
FLOAT 15	GPS base 238
Float 264	GPS rover 238
Float mode 382	Ground Mark 218
FLS 104, 569	Ground mark 48
Flying RTK <i>48</i> , <i>63</i>	Ground speed 655
Format (sub-directory name) 171	GRS <i>440</i> , <i>575</i>
Freezing the rover in Flying RTK mode 318	GSA 440
FTP <i>570</i>	GSM 196
FTP server (external) 207	GSM antenna 2, 9
FTP settings 421	GSM status 16, 199
FTP,0FF <i>420</i>	GST <i>99</i> , <i>440</i> , <i>578</i>
FTP,PAR <i>421</i>	GSV <i>440</i> , <i>579</i>
FTP,PUT <i>422</i>	Н
Full Notification 215	Handshaking 396, 549
G	Hanging up 429
Gateway 41, 42, 44, 331, 332	Hatanaka 170, 206
Gateway IP address 342	HDOP 93
General parameters (rover) 47	Header <i>339</i>
General parameters, base 67	Height 93
General Status screen 14, 197, 289	Helmert 280, 283
Generating G-file from Ring File buffer 210	HI measurement tape 5
Geoid (deselect) 242	Home tab 91
Geoid model <i>571</i>	Horizontal Control 282
Georeferencing (image) 246	Host cable (USB) 2
Get Current Position 218	Hot Standby RTK 22
Get Current Position, base 68	HRMS <i>93</i>
G-file being recorded <i>566</i>	Hub 41, 42, 331, 332, 343
G-file deletion 488	Humidity 110
G-files 205, 206, 207, 209, 217, 220	HyperTerminal 344
GGA 440, 571	I
GLL 440, 572	iCGRS <i>438</i> , <i>508</i>
GLO 124, 133, 137, 141, 147, 423, 573	IGS antenna source table 360, 362
GLONASS 1, 22, 49, 69, 124, 133, 137,	Image database 244
141, 147, 220, 240, 256, 264	INI 426
GLONASS biases 355, 519	Initialization String 226
GLONASS carrier phase biases 461	Initialization string 160, 161, 438, 508
GLONASS firmware option 27	Initialize meteorological unit 436
GLONASS satellites status 633	Initialize tiltmeter 506
GLONASS tracking 423	Inosphere model 663
GNS,CFG 424, 574	Insert wait times while a command file is
GNSS antenna location 305	executed 380
GNSS input ontion 12	Install (FAST Survey) 233
GNSS input option 12	Instant RTK 23
GNSS Solutions 5, 279, 288	Instr 255, 263
Golden receiver 355 GPRS 260	Internal battery charge 103
GPRS mode 105	Internal battery voltage 103
GPRS mode settings (internal modem) 107,	Internal memory 104
151, 153	Internal modem 104
GPS 22	Internal radio (250 off) 464
	Internal radio (power off) 464

Internal radio (power on) 466	Localization 242, 243, 280
Internal radio port 147	LOG <i>582</i>
Internal radio receiver (as used in rover) 50	Log button 10
Internal radio settings 107	Log data for troubleshooting 693
Internal radio status 104	log extension 337
Internal radio type 104	Log file settings 584
Internet protocol <i>53</i> , <i>56</i> , <i>76</i> , <i>79</i>	Log files 337
Interoperability 31	Log Raw GPS 290, 292
ION 458, 663	LOG, DEL <i>427</i>
IP address 129, 138, 267, 271	LOG,LST 583
IP address on receiver identification screen	LOG,PAR 428, 584
41, 331	Login (TCP) 158
IP port 85, 129, 138	Longitude 93
IP port number 109, 158	Longitude (entering a longitude, possible
J	formats) 95
Jamming 688	Long-range radio link 251
JGW 244	Low battery alarm 457
K	LTN 664
Key combinations 14	LTZ 429
Klobuchar 663	M
KX13, 10 m <i>6</i> , <i>8</i>	MAC Address <i>54</i> , <i>58</i> , <i>77</i> , <i>81</i>
KX15 7, 8	MAC address 108, 152
L	MAC address (Ethernet port) 157
L1 phase center 48, 218	MAG111406 49, 69
LAN 41, 42, 273, 331, 332	Magnetic table 655
Latency 664	Manual (modem DC power) 52, 56, 61, 75,
Lateral plates 308	79, 83
Latitude 93	Manual (radio DC power) 51
Latitude (entering a latitude, possible	Manual Set 222
formats) 95	Manufacturer 255, 262
LCS 426, 580	Mask angle 452
LED indicators on U-Link TRx 30	Masks 492, 494, 495, 496, 498, 499
LED status (battery charger) 21	Max. number of observations used in PVT
Legacy D-File Support 226	501
Li-ion battery 2, 5	Maximum redial 106, 153
Line of sight 687	Maximum Redials 62, 84
Listing differential data messages enabled	MCA 413
on Ix ports 534	MDM 104, 106, 107, 125, 127, 134, 148, 584
Listing files stored in receiver memory or	MDM,DAL 148, 429
USB key <i>567</i>	MDM,INI 430
Listing log files 583	MDM,LVL 586
Listing Web Server settings 657	MDM,OFF 431
Load radio settings button 142, 156	MDM,ON 431
Load Source Table 57, 59, 149	
Load transmitter settings (button) 74	MDM,PAR 148, 152, 153, 432 MDP 105, 108, 110, 112, 124, 147,
Local antenna 524	151, 155, 160, 161, 433, 586
Local antenna (naming) 360	Measurement type <i>98</i> , <i>122</i> , <i>132</i> , <i>136</i> ,
Local Area Connection 44	140, 145
Local coordinate system 580	Measurement Type (antenna) 219
Local settings 46	MEM 167, 434, 587
Local time 429	,,

Memory 24, 94, 104 Memory device 587 Memory device used 434 Memory Full *685* Memory screens 17, 199 MES 65 Message type 85 MET 111, 160, 588 MET.CMD 435 MET, INIT 436 MET, INTVL 437 MET, PAR 438 Meteorological unit 217, 226, 435, 436, 437, 438, 450, 588 Meteorological unit settings 109, 160 Mobile Device Center 233 Model (equipment) 255, 262 Modem 105, 584 Modem (initialize) 430 Modem (internal) 269, 272 Modem (power off) 431 Modem (power on) 431 Modem Direct IP 148 Modem Direct IP - Port E 53, 76 MODEM firmware option 27 Modem in CSD mode, base 83 Modem NTRIP client 149 Modem parameters 432 Modem power status 93 Modem signal level 586 Modem timeout 439, 588 Modifying a user profile 516 Monitoring 230 Mount point 81, 149, 228 Mount point (connection to) 445 Mount points 24, 196, 211, 229 Mount points (allowed to users) 394 Mount points (create/modify) 389 Mount points (delete) 390 Mount points (protection) 214 Move files 206 Moving Base 145 Moving base 48 Moving Position 218 Moving position 68, 122 MPC 413, 458, 665

MWD *439*, *588*

NAK 340

Multi-function serial cable pinout 34

Multipath mitigation 22

NAT 273

NATO standard mean seal level 571

NAV 65, 494

Navigation data 165, 206 Navigation data mask 640 Navigation data masks 496

NET 713

Network 269, 272

Network and Dial-up Connections 275

Network of data streams 713

Network to which base is connected 125,

127, 133, 134

Network to which rover is connected 147

NME 440 NME,ALL 442 NME,PER 442

NMEA messages 64, 113, 162, 164, 589 NMEA messages (common output rate) 442

NMEA, NMEA-like messages 440, 442

NMEA2000 *12* NMO *589*

No Notification 216

Notification Email Address 225

NPT 443, 591 NTR 592

NTR,LOD *149*, *444* NTR,MTP *149*, *445*, *593*

NTR,PAR 125, 127, 134, 148, 149, 446

NTR,TBL 594

NTRIP 125, 127, 134, 148, 265, 269

NTRIP caster 57, 59, 592 NTRIP caster parameters 548 NTRIP caster source table 444 NTRIP caster user (delete) 395

NTRIP client via Ethernet, rover 58, 77, 80

NTRIP client via modem, rover 55

NTRIP mount point 593 NTRIP server 196, 227 NTRIP Server submenu 79 NTRIP Server via Ethernet 227 NTRIP Server via Ethernet, base 81 NTRIP Server via modem, base 78 NTRIP servers (internal) 211

NTRIP settings 446, 592 NTRIP source table 710

Number of received vs. used satellites 93

Number of sessions 175

Number of users connected simultaneously 39

0

OCC 447, 595

Occupation 447, 595 Port P 211 Offset (session offset) 488, 491 Port Q 211 Offset Per Day 205, 222 Ports B & F 409 Offset per day 170 Ports B & F (deactivate) 409 0-files 288 Ports B & F (power control) 61, 82 POS 99, 122, 132, 136, 140, 441 OLED 9 OPTION 448, 596 Position computation screen 18, 201 Optional settings 311 Position elevation mask 49 Options 710 Position mode 99 OUT,x,MET 450 Power (ports B & F) 61, 82 OUT,x,TLT 451 Power button 10 Output messages, base 70 Power LED 10 Output messages, rover 64 Power management 457 Over the Air Baud 258, 266 Power management (internal radio receiver) Owner information 657 Owner name 92 Power management (modem) 258, 266 Ρ Power on *682* Power source 103 Pac Crest receiver kit 5 Power status 16, 103, 198, 606 Pac Crest transmitter 4 Power-on screen 14, 197 PacCrest transmitter (connection diagram) PPS 36, 455, 603 254 PPS (1 PPS) 25 Pacific Crest 51 PPS time tag 605 Pacific Crest radio 142, 154, 155 Precision 236 Pages (of information) 10 Preparing the Backpack on page 42 294 PAR 597 Pressure 110 Password 267 Primary FTP server 207 Password (TCP) 158 Primary RTK 385 Path 208, 223 PRN 101 Pause/resume (data logging) 289, 290 Profiles 657 PBN 668 ProFlex 500 Web Server 195, 202 PEM 97, 452, 599 Projection 236 PHE 452, 600 Protocol 74, 85, 129, 138, 257, 265 Phone (owner phone) 92 Protocol (internal radio) 51 Phone Number 84 Provider 258, 266 Phone number 106, 153, 189, 267 PRT 105, 108, 110, 112, 124, 142, Phone Number (base phone number) 62 147, 151, 160, 161, 456 Pin 258, 266 Pseudo-range error statistics 578 Pin (modem) 52, 56, 62, 75, 84 PTT 441, 605 PIN code 432 Public IP address 42, 332 Pin code 152 PWR 103, 606 Pinouts 32, 33, 35, 36 PWR, OFF 457 Place World Image 246 PWR, PAR 457 Point-to-point connection 63 Point-to-point mode 83 POP 453, 601 Query commands 339 Port A 433 Query interval 160, 162, 437, 438, 507, Port A mode 124, 147 Port A settings 586 Quick release cable 5 Port I settings 54, 58, 77, 81 Quick-release cables 294 Port I1-I9 129, 138 Port number 273 R port 205

Rack *307* Radio *196*

Radio antenna 686

Radio channel settings 612 Radio interoperability 31 Radio module 260, 686, 705

Radio modules 26
Radio parameters 614
Radio range 687

Radio receiver (internal) 264

Radio receiver (internal), change 709

Radio settings 466 Radio type 470, 617 Radio type (transmitter) 74

Range pole 259

Range pole (UHF) 5, 260

RAW 458, 607 Raw data 10 Raw data files 177 Raw data icon 15, 198 Raw data logging settings 607

Raw data messages 113, 162, 165, 458

Raw data messages, base 72
Raw data messages, rover 65
Raw data output rate 460
Raw data output settings 627
Raw data recording 167, 472
Raw data recording rate 404, 556
Raw data recording status 618

Raw data type 205
RAW,ALL 460
RAW,PER 460
RCP 609
RCP,DEL 462
RCP,GBx 461
RCP,OWN 610
RCP,REF 463, 611
RDP,CHT 612
RDP,LVL 614, 651
RDP,OFF 464
RDP,ON 466
RDP,ON/OFF 147

RDP,PAR 104, 107, 108, 142, 154, 156,

466, 614

RDP, TYP 104, 107, 124, 142, 147, 155,

470,617

Reading current setting for VRS assumption

546

Reading data stream port status 558
Reading FTP status and settings 570
Reading GLONASS bias setting 519
Reading RTC Bridge settings 536

Reading the GNSS mode *574*Reading the internal update rate *601*Reading the radio reception level *614*, *651*

Reading the receiver name 610

Reading the reference receiver name 611 Reading the status and settings of the FTP server providing firmware upgrades 647

Readings (number of) 286 REC 104, 168, 472, 618 Receiver Antenna 219

Receiver antenna 48, 68, 123, 132, 136,

140, 146

Receiver antenna name 98
Receiver Dynamics 97
Receiver dynamics 561
Receiver identification 621

Receiver identification screen 18, 200

Receiver initialization 426 Receiver installation 305 Receiver name 462

Receiver parameters 256, 263, 597, 609

Receiver position 96

Receiver serial number 18, 92, 118, 200

Record file type 620 Recording 104

Recording (raw data), rover 65
Recording Elevation Mask 219, 222
Recording elevation mask 69, 170, 205
Recording interval 24, 104, 168

Recording menu 209
Recording mode 104
Recording status 94
REF 473, 618
Reference clock 12
Reference Day 204, 222
Reference day 170

Reference position 96, 99, 122, 132,

136, 140, 145, 218

Reference Position (antenna) 218
Reference position (enter), base 68
Reference position (on receiver) 98
Reference position, antenna 48, 68
Reference receiver name 463

Registering FAST Survey 234

Relaying device 271 Remote control 342 Repeater 4, 31, 276

Repeater mode check box 276 Reset Procedure 705, 710 Reset receiver memory 426 Reset receiver parameters 477

Reset RTK 388

Resetting embedded NTRIP caster 394 RTK Float 99 Residual error 624 RTK network 543 Re-start (automatic or manual) 13 RTS/CTS 60, 74, 82 Restore (base/rover configuration) 240 RTS/CTS handshaking 105, 108, 110, RFB 474, 619 112, 124, 142, 147, 151 RFT 111, 112, 161, 162, 475, 620 Run a series of commands 378 RID 118 Run commands from USB key 345 RINEX 196, 206, 220 RW5 files 288 Rinex 21 170 RWO 627 RINEX header definition 481 RXC,PAR 481 Ring File buffer 206, 209 S Ring file buffer 24, 474 s 255 Ring file buffer mode 168 SAG 458, 671 Ring file buffering 619 SAL 458, 670 Ring File memory 195, 205, 223 SAT 441 Ring file memory 24, 170 Satellite use mask 644 RJ45 343 Satellites 146 RMC 440 Satellites in use 15, 197 RMS (receiver position) 99 Save (rover/base configuration) 240 RNX scenario 227 Save Image Boundary 246 RNX,MSI 623 Saving registration code 235 RNX,TYP 475 SAW 458, 673 Rover Setup 47 SBA 124, 133, 137, 141, 147, 482, 630 Rover using internal radio 50 SBA, DAT message 459 RRE 624 SBAS 1, 22, 49, 69, 124, 133, 137, RS232 105, 110, 112, 147, 155, 160, 141, 147, 220, 240, 256, 264 SBAS differential 99 RS232 from/to RS422 709 SBAS differential position solution (tagging) RS232/422 (port A) 151 591 RS232/RS422 433 SBAS differential positions in NME/NMEA-RS422 105, 110, 112, 147, 155, 160, like messages (tagging) 443 SBAS tracking 482 RS422 from/to RS232 709 SBAS tracking status 630 RST 477 SBD 459 RT2 413 SBN 458 RT3 413 Scenario 476, 623 RTC 624 Scheduling (sessions) 221 RTC Bridge 193, 374 Scrambling 258, 266 RTC, MSG 478 Screen backlight 19, 201 RTC,MSI 626 Script 346 RTC,TYP 479 Scripts 311 RTCM 113, 162 Scroll button 9, 10, 14, 197 RTCM code differential 99 Sealing caps 310 RTCM message status 626 Second RTK engine 538 RTCM message type 479 Secured connection (Bluetooth) 152 RTCM status 624 Select devices connected to base serial ports RTCM2.3 278, 371 RTCM3.0-3.1 371 Select Image Database 246 RTDS Software 257, 271 Selecting a GNSS mode for the receiver 424 RTDS Software (configuration) 272 Semi-major axis 578 RTK firmware option 27 Semi-minor axis 578 RTK Fixed 99

Send button 185 Send Command 341 Send File 341

Send line ends with line feeds 345

Send NMEA *57*, *59* Sender Email Address *224* Sending test email *415*

Sensitivity 107

Serial commands 339, 348
Serial commands (data output) 352
Serial commands (receiver configuration)

348

Serial data cable *3*, *6*, *260* Serial port settings *105*

Serial ports 11 Serial ports (rover) 147 Serial ports (setting A, B, F) 150

Serial ports used at the base 124, 142

Server connection 400 Server mode 558

SES 630

SES,AUT *175*, *483* SES,DEL *484*

SES,FTP,PAR 172, 173, 485

SES,OFF 169, 487 SES,ON 169, 487 SES,PAR 170, 488 SES,SET 176, 491 Session ID 176 Session Offset 489

Session programming 169, 630 Session recording parameters 488, 491

Session Reference Day 489 Session scheduling 174 Session settings 168

Sessions 24, 198, 203, 205, 206, 207

Sessions (programming) 221
Sessions (settings) 222
Set commands 339
Set date & time 518

Set FTP providing firmware upgrades *511* Set internal update rate for measurements

and PVT 453

Set Receiver Name 237, 263 Set Receiver PIN 237

SET,DEL 176

Setting automatic sessions 483

Setting connection modes to acquire data streams through an IP connection 405

Setting email parameters 414

Setting FTP server collecting record files

485

Setting the log file 428 Setup (PP base) 293 Setup (PP rover) 293

SGL *633* SGP *635* SHMP *364*

SHMP Offset *219*SHMP offset *49*, *68*, *98*

Signal observation masks 494 Signal Observations Masking 639 Signal strength (modem) 93

Signal to noise ratio mask 492 Signal-noise ratios 101

Signal-to-Noise ratio 638 Signal-to-noise ratio mask 641 Signal-to-noise ratio masks 498

SIM card 52, 56, 62, 75, 84, 152, 260,

709

SIT *167*, *492*, *637* Site Name *94*

Site name 167, 205, 492, 637

Slant 256

Slant height 48, 68, 219

Slant vs. vertical 98, 122, 132, 136, 140,

145

Slide switch (for re-start setting) 13

SMA 9 SMTP 190 SMTP server 224 SNG 458, 675 SNM 492, 638

SNR 494 SNV 458, 677 SNW 458, 679 Software update 185 SOM 494, 639

SOM,CTT 495, 640 SOM,NAV 496, 640 SOM,SNR 498, 641 SOM,SVM 644 SOM,WRN 499, 642

Source table 149, 315, 389, 390, 392,

594, 710

Source table header 711

Space required for installing the receiver

306 SpidarNot 265

SpiderNet 265, 270 Squelch 266 Stake out 283 Stake points 283

Standalone (raw data logging) 289, 290

Standard Notification 216

Starting embedded NTRIP caster 392 Time mode 287 Starting sessions 487 Time-tagged RTK mode 707 Static IP address 271, 273, 342 TLT 112, 161, 645 Static survey (PP) 298 TLT,CMD 505 Station ID 93, 99, 501, 643 TLT, INIT *506* Status (position) 15, 197 TLT,INTVL 507 Status bar 93 TLT,PAR 508 Status pages (general) 96 TNC/TNC coaxial cable 6 Status tab 92 Too few satellites 683 STI 99, 501, 643 Transducer measurements 657 Stop & Go survey (PP) 300 Transfer files to FTP server 211 Stop&Go 290 Transparent 51 Stopping embedded NTRIP caster 391 Transparent protocol 142, 154, 156 Stopping sessions 487 Tribrach 251 Storage location 104 Trigger String 226 Trigger string 160, 161, 435, 438, 505, Storage medium 206, 289 Storage used (for recording) 167 508 Store points 286 Trimtalk 51 STR 711 TrimTalk protocol 142, 156 Stream 1 150 Tripod 251 Stream 2 150 TTT 441, 680 Sub-directory Name Format 207, 208, Turning receiver on 457 223, 224 TX-RX LED 276, 277 Sub-network mask 342 U Subnetwork mask 44 UDP 53, 56, 76, 79, 85, 107, 153, 509, SVM 501 Switch 41, 42, 331, 332 UDP/IP Direct 257, 265 Synchronization with GPS time 513, 652 UHF antenna 7, 8, 309 System status page 103 UHF input 12 Т U-Link Rx 51, 154 Tag New Site 290 U-Link Rx specifications 29 Tagging 289 U-Link transmitter 252, 253 TarZ 206 U-Link TRx 4, 142, 155 TCP 53, 56, 76, 79, 85, 104, 158, 644 U-Link TRx specifications 28 TCP,PAR 158, 503 U-Link TRx Y-shaped cable description and TCP,UID 504 pinout 31 TCP/IP 269 ULP, UPG 512 TCP/IP authentication 504 Units used 94 TCP/IP Direct 257, 265 UNKNOWN 68 TCP/IP server settings 503, 644 UNKNOWN antenna 48 TCP/IP server status 109 UNT 510, 647 Temperature 110, 112 Update Now button 87 Terminal window 185 Update rate (on DynDNS account) 87 Test message for email verification 415 Update software 185 TFW 244 Upgrade receiver firmware from FTP 512 Tiltmeter 217, 226, 451, 505, 506, 507, UPL 647 UPL,LOG 648 Tiltmeter settings 111, 161 UPL,PAR *511* Tiltmeter setup 645 Upload button 186 Time 94 Upload positions to external device 279 Time & date 659 Upload Script? 346, 693

Uploading raw data files to FTP 422 USB device 205 USB key 104 USB port 9 USB status 17, 199 Use box 222 Use Image Database 246 User message 478 User profile 39, 92 User-defined antenna (delete) 358 User-defined dynamic model 509, 646 Users (NTRIP caster) 211, 230 Users list 190, 192 Users login and password 189 UTC 429 UTS 513 V VDOP 93 VEC 99, 441, 652 Vector components 652 Velcro 260 Verbose Level 225 VERSION 654 VERSION (\$PASH command) 118 Vertical 264 Vertical Control 282 Vertical height 48, 68, 219 **VESA 305** Virtual Antenna 219 Virtual antenna 49, 69, 123, 133, 137, 141, 145, 146, 256, 264, 523 Virtual antenna (specify name) 359 Vista 45 VRMS 93 VRS assumption mode 388 VRS network 57 VTG 440, 655 W WAK 514 WARN 656 Warning messages 656 WEB 657 Web browser 39, 202 WEB, OWN 189, 514 WEB,PAR 189, 515 WEB, USR, ADD 189, 516 WEB, USR, DEL 190, 517

WinComm 340

WRN 494

World file editor 244

WMM-2005 World Magnetic Model 655

X XDR 110, 112, 657 XDR messages 217 Z ZDA 441, 518, 659

Zero Azimuth Setting 236

DECLARATION DE CONFORMITE CE DECLARATION OF CONFORMITY

DIRECTIVE R&TTE 1999/5/CE.

(EMC Directive 2004/108/EC and LVD directive 2006/95/EC included)

FABRICANT : Société ASHTECH S.A.S.

MANUFACTURER : ASHTECH S.A.S.

ADRESSE : Z.A.C. de la Fleuriay

ADRESSE : Z.A.C. de la Fleuriaye

ADDRESS B.P. 60433

44474 CAROUEFOU CEDEX

déclare que les produits :

(certifies that the product mentioned below)

NOM DU PRODUIT (PRODUCT NAME) ProFlex 500 series with GSM, BlueTooth, UHF receiver options; on internal Battery; with external power AC/DC adapter; on external DC power

SYMBOLE (SYMBOL NUMBER): P/N990607, P/N 802077, etc...

satisfont aux exigences essentielles pour le marquage CE, conformément à la DIRECTIVE R&TTE 1999/5/CE: (satisfies the test listed below, as required by the DIRECTIVE R&TTE 1999/5/CE)

- normes (Standard) ETSI EN 300 328, EN 300 440, ETSI EN 300 113-1, ETSI EN 300 113-2, EN 301 511 , Radio spécifications
- normes (Standard) ETSI EN 301 489- 17, -3, -5, -7; EMC spécifications

EN 55022-1998 ; IEC 61000-4-4 ; IEC 61000-4-5 ; IEC 610004-6.

- LVD directive 2006/95/EC; EN 60950-1:2006 / A11:2009 Safety spécifications

normes (Standard) FCC Part 15 normes (Standard) IC RSS 210

Information complémentaire (Information supplement): D051-09100581 Emitech Atlantique

.Date de certification : July, 2009 . (Date of Certification tests)

NOM DU SIGNATAIRE (BY) LIEU (PLACE) : TITRE DU SIGNATAIRE (TITLE)

DATE (DATE MARCH, 4TH 2010

: G. JUTON : CARQUEFOU :Responsable.Qualité Produits (Product Quality Manager)

SIGNATURE (SIGNATURE)

ASHTECH S.A.S.

Capital social de 7 125 227 euros; RCS Nantes 321 391 227 B.P.60433 44474 CARQUEFOU CEDEX (FRANCE) Tel: +33 (0)2 28 09 38 00 FAX: +33 (0)2 28 09 39 39

ProFlex™500

Reference Manual

Survey Solutions Contact Information: In USA +1 408 572 1103 ■ Fax +1 408 572 1199 In South America +1 305 726 7813

Email surveysales@ashtech.com

In France +33 2 28 09 38 00 • Fax +33 2 28 09 39 39 In Russia +7 495 980 5400 • Fax +7 495 981 4840 Email surveysalesemea@ashtech.com

In Singapore +65 9838 4229 • Fax +65 6777 9881 In China +86 10 5802 5174 • Fax +86 10 5802 5135

Email surveysalesapac@ashtech.com

www.ashtech.com

Ashtech follows a policy of continuous product improvement; specifications and descriptions are thus subject to change without notice. Please contact Ashtech for the latest product information. ©2009-2011 Ashtech. All rights reserved. The Ashtech logo and ProFlex are trademarks of Ashtech LLC. All other product and brand names are trademarks or registered trademarks of their respective holders. P/N 631634-01D