GRID, GROUND, AND GLOBE: DISTANCES IN THE GPS ERA

THOMAS H. MEYER

1. PREAMBLE

This section reviews several fundamental prerequisite concepts that will play a central role in all
that is to follow.

1.1. Distance. The length [ along a smooth curve C between distinct points A and B can be
expressed as

| = /A,B ds, (1)

where ds is an infinitesimal chord. Obviously, there are an infinite number of curves between any
two points. We define the distance between distinct points A and B to be the length of the
shortest curve between A and B. Such a curve is called a geodesic and we will denote this curve
by G and its length by d.

Eq. (1) often has a simple solution when G falls on a surface of constant curvature. If G is on a
plane, then G is a straight line and (1) becomes

d= [(1'1 - 502)2 + (yl _ y2)2 + (Zl _ 22)2]1/2 (2)

for the three-dimensional case. If G is on the intersection of a plane and a sphere, then G is a
circular arc and (1) becomes

d=r-0, (3)

where r is the radius of the circle in the plane and 6 is the angle subtended along the arc. When the
plane includes the center of the sphere, the circle is called a great circle. It is easy to show that a
great circle distance is minimal on a sphere so G is the shorter of the two great circle arcs connecting
A and B on the sphere. A detailed discussion of great circle distances is given in section 4.5 on
page 26.

If G falls on a surface that does not have constant curvature (e.g., an ellipsoid or a spheroid),
then G is a complex curve and (1) does not have a simple form. When a map is compiled using
an ellipsoidal Earth model, one must come to grips with solving (1) on a surface without constant
curvature. This problem has no direction solution and is still an area of active research. A detailed
discussion of geodesic distances on an ellipsoid is given in section 4.5 on page 26.

1.2. Reference Ellipsoids. The Earth is more nearly shaped like a spheroid than a sphere. A

spheroid has a circular cross section and is elliptical in profile. The Earth is nearly circular in the

equatorial plane but is foreshortened in the minor axis. Therefore, the Earth is modeled better by

an oblate spheroid than a sphere. It is common in the United States to refer to this shape as an

“ellipsoid,” which is technically correct because a spheroid is an ellipsoid. Although spheroid is
1
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FIGURE 1. Radius of Curvature in the Prime Meridian.

the more correct of the two terms, ellipsoid will be used to conform to standard practice when the
topic concerns geodetic reference ellipsoids, such as GRS 80 or WGS 84.

See Ewing and Mitchell (1970) for derivations of the following formulae. Four principle param-
eters are used to define the shape of spheroids: the length of its semimajor and semiminor axes,
the foreshortening of the spheroid, and its eccentricity. The length of its semimajor and semiminor
axes are denoted a and b respectively, and their values are taken from tables (see Table 1 on the
facing page). The foreshortening of the spheroid is called its flattening and is defined as

f=(a=b)Ja=1—-0b/a (4)

Some reference ellipsoids are defined in terms of @ and b. Others are defined in terms of @ and 1/f.
The (first) eccentricity squared of an ellipse is defined in terms of the flattening as

a? —b?

2 2 2/ 2
=2f - f*= =1-b 5
B fa )
The (second) eccentricity of an ellipse is defined in terms of the first eccentricy as
e=e2/(1— ) (6)

1.2.1. Radii of Curvature. A radius of curvature is an instantaneous measure of how “tight” a
curve is. For a curve possessing at least second-order derivatives and having the form y = f(z),
the radius of curvature R can be expressed formally as
[L + (dy/d)*]*?

d?y/dx?
See (Casey 1996, McCleary 1994) for detailed discussions of curvature.

R =
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Semimajor(m)

1/f or Semiminor(m)

Name

6377563.396

b=6356256.910

Airy 1830

6377340.189

b=6356034.446

Modified Airy

6377104.43 rf=300.0 Andrae 1876 (Den., Iclnd.)
6378137.0 rf=298.25 Appl. Physics. 1965
6378160.0 rf=298.25 Australian Natl and S. Amer. 1969

6377397.155

rf=299.1528128

Bessel 1841

6377483.865

rf=299.1528128

Bessel 1841 (Namibia)

6378206.4 b=6356583.8 Clarke 1866

6378249.145 rf=293.4663 Clarke 1880 mod.

6375738.7 rf=334.29 Comm. des Poids et Mesures 1799
6376428. rf=311.5 Delambre 1810 (Belgium)
6378136.05 r f=298.2566 Engelis 1985

6377298.556 rf=300.8017 Everest (Sabah and Sarawak)
6377276.345 r f=300.8017 Everest 1830

6377304.063 r f=300.8017 Everest 1948

6377301.243 r f=300.8017 Everest 1956

6377295.664 r f=300.8017 Everest 1969

6378166. rf=298.3 Fischer (Mercury Datum) 1960
6378150. rf=298.3 Fischer 1968

6378155. rf=298.3 Modified Fischer 1960
6378137.0 rf=298.257222101 GRS 1980(IUGG, 1980)
6378160.0 rf=247.247167 GRS 67(IUGG 1967)
6378200. rf=298.3 Helmert 1906

6378270.0 rf=297. Hough

6378140.0 rf=298.257 IAU 1976

6378157.5 b=6356772.2 New International 1967
6378388.0 rf=297. International 1909 (Hayford)
6378163. rf=298.24 Kaula 1961

6378245.0 rf=298.3 Krassovsky, 1942

6378139. rf=298.257 Lerch 1979

6397300. rf=191. Maupertius 1738

6378137.0 rf=298.257 MERIT 1983

6378145.0 rf=298.25 Naval Weapons Lab., 1965
6376523. b=6355863. Plessis 1817 (France)
6378136.0 rf=298.257 SGS 85

6378155.0 b=6356773.3205 Southeast Asia

6376896.0 b=6355834.8467 Walbeck

6378165.0 rf=298.3 WGS 60

6378145.0 rf=298.25 WGS 66

6378135.0 rf=298.26 WGS 72

6378137.0 rf=298.257223563 WGS 84

TABLE 1. Geodetic Reference Ellipsoid Parameters.
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FIGURE 2. Geodetic latitude ¢, the vector normal to the surface of the ellipsoid,
and the radius of curvature in the prime vertical v.

Radii of curvature play an important role in determining geodesic distances. Distance formulae on
curved surfaces require a parameter indicating the radius of the surface upon which the computation
is to be performed. When using a spherical model of the Earth, that number is simply the radius
of the sphere. For a spheroid, however, things are more complicated. There are three principle
radii of curvature for a spheroid, namely the radius of curvature in the meridian p, the radius of
curvature in the prime vertical v, and the radius of curvature in the normal section 7.

1.2.2. Radius of Curvature in the Meridian. The radius of curvature in the meridian p is the radius
of curvature of a spheroid in the plane of a meridian. It is the radius to use in the geodesic length
computations in the special case that the geodesic falls exactly along a meridian. p varies with
latitude, achieving a maximum at the equator and a minimum at the poles for an oblate spheroid.
The equation for the radius of curvature in the meridian is

a(l —e?)

P U= eZsin? )32’ "

where the terms are as defined above. Note that p(0°) = b?/a < b and p(90°) = a?/b > b; the
inequalities hold when e > 0. See Figure 1 on page 2. The radius of curvature in the meridian
is seldom (if ever) used directly. Instead, it is an input to a more general equation that is shown
below.

1.2.3. Radius of Curvature in the Prime Vertical. The radius of curvature in the prime vertical v
is the length of a vector that begins at the z-axis, ends at the surface of the spheroid, and is normal
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to the spheroid. See Figure 2. The formula for the radius of curvature in the prime vertical is

a
(1 — e2sin? ¢)1/2’

UV =

(8)

where the terms are as defined above. Note that while v(0°) = a, v(90°) = p(90°) = a?/b > b. It
is also important to notice that neither p nor v points in the same direction as the radius of the
spheroid and they do not intersect the z-axis at the spheroid’s center when e? # 0.

See Bowring (1987) for a simple proof by geometry that the center of curvature in the prime
vertical section at a point on the reference ellipsoid lies on the minor axis.

1.2.4. Radius of Curvature in the Normal Section. 1t is evident by comparing equations (8) and
(7) that the radius of curvature on a spheroid varies with azimuth. Let A be a point on a spheroid.
The intersection of the spheroid and a plane containing the normal at A is called a normal section
(Bowring 1971). See Figures 15, 17, and 18 on page 31. The radius of curvature in the normal
section 7 is a combination of p and v. Its formula, which is known as Euler’s theorem (Ewing and
Mitchell 1970, Casey 1996), is

1 cos’aap  sin’aap

= + ) (9)

TAB P v

where aap denotes the azimuth of the normal section at A containing B. By examining the formula,
it is clear that nap equals p when aap is zero and that nap equals v when aap is 90°, as expected.

1.2.5. Ezamples. The following examples pertain to the GRS 80 ellipsoid (Moritz 2000, p.131).
Example 1. The semimajor axis is defined as a = 6,378,137 m, exactly. [

Example 2. The flattening is derived to be f = 0.003 352810681 18, which gives 1/f = 298.257 222 101.
O

Example 3. The first eccentricity is derived to be
62 — 2f . f2
=2-0.003 352810681 18 — [0.003 352810 681 18]?
= 0.006 694 380 022 90

g

Example 4. The second eccentricity is derived to be

e=e%/(1—¢?)
= [0.006 694 380 022 90] /(1 — [0.006 694 380 022 90]*)
= 0.006 739496 77547

g
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Example 5. At a geodetic latitude ¢ = 41.98097°, the radius of curvature in the meridian is
B a(l —e?)
(1 — eZsin® $)3/2
6378 137m (1 — 0.006 694 380 022 90)
(1 — 0.006 694 380 022 90 sin® 41.98097°)3/2
=6364009.194 79 m

g

Example 6. At a geodetic latitude ¢ = 41.98097°, the radius of curvature in the prime vertical is
a

(1 — e2sin? ¢)1/2
= 6378137m/+/(1 — 0.006 694 380 02290 sin? 41.98097°),
= 6387710.095 74 m
O

Example 7. At a geodetic latitude ¢ = 41.98097° and an azimuth of o = 45°, the radius of

curvature in the normal section is

1 cos2a  sin?a
_|_

U p v
- cos? 45° sin? 45°

~ 6364009.19479m | 6387710.095 74m

= 1.5684213740654431398 x 10 "m *

50

1 =6375837.619 50 m
g

2. THE FLAT-EARTH ASSUMPTION

Before the Global Positioning System (GPS), it was usually possible to ignore the curvature of the
Earth when making relatively short distance measurements and still maintain acceptable accuracy.
This was possible in spite of the Earth being round because, of course, the Earth has a relatively
large radius. The difference between the curved surface of the Earth and a straight line can safely
be ignored over areas of the size of a typical subdivision and not incur unacceptable errors for, say,
a typical surveying construction project. As will be shown, the difference between the length of the
arc connecting two points relatively close to one another on the surface of the Earth and the length
of the equivalent chord is very small, usually less than the precision of a typical electronic distance
measuring device (EDM) found in a modern total station. However, GPS has changed things in
such a way that a “flat Earth” assumption now causes everyday problems for surveyors.

GPS is becoming a surveying and mapping instrument whose importance rivals that of the total
station. For example, for long baseline measurements, GPS has an advantage over opto-mechanical
measuring devices in that the baseline stations do not need intervisibility, thus eliminating the need
to traverse between them. Indeed, it is just as easy to process a GPS baseline connecting stations
that are on opposite sides of the planet as a baseline between two stations 10 meters apart. Also,
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F1GURE 3. Distances from GPS NAVSTAR satellites to places on the Earth’s surface
are inherently three-dimensional.
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FiGURE 4. GPS satellite orbits viewed from the equatorial plane.

GPS baseline errors are far less sensitive to the length of the baseline than what is the case with
a traditional instrument. Furthermore, using real-time kinematic (RTK) technologies, surveyors
are able to take position measurements in an absolute coordinate system and with centimeter-
precision while in the field (i.e., in “real time”). This is similar to total station data collector
coordinate geometry (COGO) software that performs a traverse in the field. Its many advantages
and high-accuracy insure that GPS is here to stay, at least for the foreseeable future.
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FIGURE 5. GPS satellite orbits viewed from the North Pole.
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FIGURE 6. GPS satellite orbits viewed from space.
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A “flat Earth” assumption is unnecessary and inappropriate for GPS measurements. Unlike
measurements made with transits and levels, which are inherently two-dimensional and oriented
according to gravity, GPS measurements are inherently three-dimensional and not oriented to
the geoid in an obvious way (Figure 3). As shown in Figures 4, 5, and 6, there are six GPS
satellite orbits. Each orbit is inclined 55° from the equatorial plane and is occupied by four
satellites. For details about orbits and other GPS information see (Leick 1995, Hofmann-Wellenhof
and others 1997).

The fundamental observable for GPS is the propagation time of a radio wave broadcast from
the NAVSTAR satellites to the surveyor’s GPS receiver (Leick 1995, Hofmann-Wellenhof et al.
1997, Van Sickle 1996). This propagation time is converted into a pseudo-range. This distance
is called a “pseudo-range” because of an unknown clock bias between the receiver and the time
standards in the satellites. This bias alters the derived distance from the true distance. Following
the notation in Leick (1995), denote the pseudo-range from satellite s to receiver r as p. Then,
using the well-known relationship, p; = ¢ - At;, where p; is the pseudo-range just defined, c is the
speed of light, and At} is the propagation time of the radio wave from satellite s to receiver r. p;
is inherently three-dimensional because it is the distance from a satellite in space to a receiver on
the Earth and the satellites are not all coplanar.

3. COORDINATE SYSTEMS

There are four coordinate systems to consider for this discussion, namely, geocentric Cartesian,
local geodetic Cartesian, geodetic, and planimetric Cartesian. The geocentric Cartesian coordinate
system is often called “Earth-centered, Earth-fixed,” “Conventional Terrestrial Reference System”
(CTRS), and also “XYZ”. We will use the latter in this discussion. Geodetic coordinates are geo-
detic latitude, longitude and ellipsoid height. Planimetric coordinates are usually called “eastings”
and “northings.” These will all be discussed in turn.

3.1. Geocentric Cartesian Coordinates. The mathematics describing the spatial relationships
of the GPS are defined in a geocentric Cartesian coordinate system (Leick 1995, Hofmann-Wellenhof
et al. 1997). As an example of XYZ coordinates, Figure 7 on the following page depicts the
XYZ coordinates of a place in Connecticut, USA. If the positions of a satellite and receiver! are
expressed in geocentric Cartesian coordinates, then the actual (as opposed to a pseudo-range)
distance between them is simply the Euclidean straight-line, three-dimensional distance given by

(2) as
= [(@" =) + (v —y)* + (2" = 2)* ]2, (10)

where z, y, and z denote the geocentric Cartesian coordinates, and s and r denote the satellite
and receiver, respectively. For mapping-grade GPS measurements, the pseudo-ranges to at least
four satellites are mathematically manipulated using trilateration to determine the coordinates of
the receiver. In (10), df is known, having been measured by the hardware. Also, z*, y*, and z* are
known because the coordinates of the satellites are derived from the part of the navigation message
called the broadcast ephemeris. If one were to use (10) to compute distances, the result would
be a slant distance and would be essentially the same thing that an EDM would have measured.

Mapping with slant distances is usually not done. Instead, slant distances are converted to
horizontal and vertical distances. This transformation is simple when slant distances are measured

1To be specific, this is the distance to the phase center of the receiver’s GPS antenna.
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FIGURE 7. The WGS 84 XYZ coordinates of the south-east corner of the roof of
the W.B. Young Building on the University of Connecticut’s campus (z=1451658.2,
y=-4534382.6, 2=4230142.1). The coordinates indicate meters along the axes away
for the Earth’s center of mass.

with instruments like a total station because the instrument was presumably oriented according to
the local vertical when the measurement was taken. Some trigonometry involving the measured
angle of elevation (21) resolves a slant distance into its two parts. However, GPS measurements are
not made with any notion of local vertical. The final output of a GPS post-processing computer
program is a list of the coordinates of the occupied stations. If they are reported in their most
natural form, these coordinates will be in the World Geodetic System of 1984 (WGS 84) datum and
in its XYZ coordinate system. Finding the distance between such points is done using (2) and would
result in a slant distance. However, the horizontal distance between the stations is required for map
compilation, not the slant distance. To derive the horizontal distances from XYZ coordinates, the
coordinates are first transformed to geodetic latitude, longitude, and ellipsoid height coordinates.
Then, the horizontal distance is the length of the geodesic between these points.

3.2. Local Geodetic Coordinate Systems: East-North-Up. Another useful coordinate sys-
tem is defined when local East/North/Up axes are centered at a place that is usually in the middle
of a region of interest and on or near the Earth’s surface, rather than at its center. Let O denote
the origin of this coordinate system. The North axis is oriented along the meridian passing through
O, positive to the North. The East axis oriented along the parallel passing through O, positive to
the East. The Up axis passes through O and is parallel to the radius of curvature in the prime
vertical at O. In Figure 8 on the next page, O defines the origin of a local ENU coordinate system.
In this system, P has ENU coordinates of (P, P,, P,).

3.2.1. ENU vs. XYZ for GPS. The ENU coordinate system can be very helpful when examining
GPS baseline statistics. The body of the Earth stops the radio waves transmitted from GPS
satellites below the horizon. Consequently, GPS receivers get no observables from below them, only
from above. Therefore, GPS measurements are less precise in the direction of the local vertical
than horizontal and the precision estimates for GPS baselines are typically one and a half to twice
as large vertically as horizontally. This effect is readily apparent when the baseline is presented
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FIGURE 8. A Local Geodetic East-North-Up (ENU) Coordinate System.

in an ENU coordinate system. It is not apparent at all in an XYZ coordinate system because the
three ENU directions get mixed together in non-obvious ways in the XYZ coordinate system. So, it
is very helpful to see the precisions in the ENU coordinate system when checking that the vertical
precision is twice the horizontal precisions.

3.2.2. XYZ to ENU. The ENU coordinate system is very similar to the geocentric Cartesian coor-
dinate system presented in the previous section. Both are Cartesian, which means that they have
three mutually perpendicular axes and the coordinates are distances from the origin. Indeed, any
particular ENU coordinate system is simply the XYZ coordinate system translated from the center
of the Earth to the local origin, and then rotated so the y-axis becomes the North axis, the z-axis
becomes the East axis, and the z-axis becomes the Up axis. The details of this process follow.
Converting XYZ to local geodetic ENU involves translating the coordinate system origin from the
Earth’s center to the local origin and then rotating the axes to align the y-axis with North, the
z-axis with East, and the z-axis with Up (Wolf and Dewitt 2000, pp. 573-576). We need the
coordinates of the ENU coordinate system local origin in both geodetic coordinate (¢, Ag) and in
XYZ coordinates (zg,yo, z0). Let (x,y, z) be the XYZ coordinates of the point for which to find its
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ENU coordinates, (e,n,u). Then,

(& mi1 M1 M3 r — Ty r — I
no | =] mo moy o3 y—yo | =M | y—yo |, (11)
u ms31 M3 133 zZ — 20 zZ— 20

where the matrix M is
mi] = —sin g

my19 = COS )\0

mi3 = 0
mo1 = — sin gbg COSs )\0
Moz = — sin ¢y sin Ay

23 = COS ¢y

COS by COS Ay

m31
m39 = COS ¢0 sin )\0
ms33 = sin ¢0.

The inverse problem of finding the XYZ coordinates of a point whose coordinates are given in
ENU is found from (11) by inverting M and solving for (z,y, z) as

x e To
y|l=M"1|n|+]| w (12)
z U 20

The ENU coordinate system might seem to not be a projected coordinate system. After all, it is
merely a translation and rotation of the XYZ coordinate system, which is not projected. However,
an ENU coordinate system defines a plane tangent to the reference ellipsoid at the local origin
and the East/North/Up coordinates are projected onto this plane. Therefore, like most projected
coordinate systems, the East and North directions in a ENU coordinate system increasingly devi-
ate from geodetic east and north as distance to the origin increases. This phenomenon is called
convergence. Also, the Up coordinate can be quite counter-intuitive. For example, with the ex-
ception of the local ENU origin, any point on the reference ellipsoid’s surface will have a negative
Up coordinate because the projection plane is tangent to the ellipsoid at the local origin. Any other
point on the ellipsoid’s surface is below this tangent plane.

3.3. Geodetic Coordinates. Geodetic coordinates are geodetic latitude, longitude and ellipsoid
height. Geodetic latitude is the angle that the radius of curvature in the prime vertical makes with
the equatorial plane (see Figure 2 on page 4). Ellipsoid height is the length of a vector that starts
at the surface of and is normal to the reference ellipsoid and ends at the point of interest.

If one is using a spherical approximation for the Earth’s figure, then converting from geodetic
coordinates to XYZ coordinates is nothing more than the conversion from a spherical coordinate
system to a Cartesian coordinate system that most people learned in calculus or in a course having
analytical geometry. Converting to XYZ coordinates on an ellipsoid complicates the situation
because the surface normal vector for an ellipsoid is the radius of curvature in the prime vertical,
which does not intersect the z-axis at the center of the ellipsoid (Bowring 1976). Nevertheless, the
formulae for spheres and ellipsoids are very similar in structure. The ellipsoidal formulae are
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z = (v+ h)cos¢pcos A, (13a)
y = (v + h)cos ¢sin A, (13b)
z=((1—-¢e*)v+h)sing (13c)

where A is longitude, h is the height above the ellipsoid and v is the radius of curvature in the
prime vertical at geodetic latitude ¢.

The inverse problem of converting from XYZ coordinates back to geodetic coordinates on an
ellipsoid has no direct solution (Heiskanen and Moritz 1967), so it has received a fair amount of
attention (Heiskanen and Moritz 1967, Bowring 1976, Taff 1985, Borkowski 1989, Laskowski 1991,
Lin and Wang 1995, Vanicek and Krakiwsky 1996, Fukushima 1999, Gerdan and Deakin 1999,
Pollard 2002).

Bowring (1976) developed what is probably the most widely used procedure. Although it is
iterative, it is always adequate when used without iteration for places on or near the Earth’s surface,
producing positions whose accuracy is about 1 ym. Bowring amended his original height formula by
replacing it with one that is adequate for positions in outer space (Bowring 1985). Fukushima (1999)
introduced a procedure that is accurate at all heights, thus improving a shortcoming of Bowring’s
procedure, which looses accuracy near the geocenter. Although there are many procedures to
choose from , we present Bowring’s procedure (Bowring 1976) for latitude and longitude due to its
widespread use and his improved procedure for height (Bowring 1985). Define p = \/(302 + y?).
Then

tan A\ = y/x (14a)
tan 8 = ( —Zf)p (14b)
tan(90° — 8) = @ (14c)
_ z+eb sin® 8
o _p— ae? cos® B
tan(90° — ¢) = Ty (14e)
h =pcos ¢+ zsing — (a*/v) (14f)

where € = ¢2/(1 — €2) from (6). Use (14c) and (14e) when ¢ =~ 90°.

3.4. Planimetric Cartesian Coordinates. Planimetric Cartesian coordinates are often called
“eastings” and “northings.” They are the product of a cartographic projection from three-dimensional
geodetic coordinates (¢, A) into a two-dimensional Cartesian space (z,y), i.e., a map. In this work,
eastings will be denoted by = and northings by y instead of e and n for two reasons. First, this
emphasizes the Cartesian nature of projected coordinates. Second, using e for eastings could create
confusion with €2, the first eccentricity squared.

There are hundreds of unique cartographic projections (Maling 1973, Snyder 1987, Bugayevskiy
and Snyder 1995, Iliffe 2000, Qihe and others 2000). All projections distort certain spatial charac-
teristics or relationships of the features being projected. There are projections that do not distort
one or more (but not all) of the following: great-circle distance (gnomic), direction (azimuthal),
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FIGURE 9. Two cylindrical projections. On the left is a standard cylindrical pro-
jection. The axis of the standard cylindrical projection is coincident with the minor
axis. On the right is a transverse cylindrical projection. The axis of the transverse
cylindrical projection is in the Equatorial plane.

shape (conformal), or area (equal-area). Maps are compiled with a particular projection that
is usually chosen to display some characteristic of interest without distortion. For example, asses-
sor’s maps might be compiled using equal-area projections because taxation usually depends on
the property’s area.

Shape-preserving projections are said to be conformal. More specifically, a projection is con-
formal if and only if the projected angle between two lines equals the unprojected angle between
those same lines. This property makes the mathematical analysis of a projection much easier so
conformal projections are used and studied extensively.

3.4.1. Scale Variation. This section follows the material in Snyder (1987, pp. 20-28). No projection
maintains constant scale throughout its range. Tissot (1881) developed Tissot’s Indicatrix, which
is a graphical representation of the scale and angular distortions produced by a projection. Tissot
showed that an infinitely small circle on the Earth will be projected to a small ellipse. If the
projection is conformal, the projected ellipse will have zero eccentricity, i.e., it will be a circle.

Scale distortion is most often calculated in the direction of the meridian and the parallel and are
denoted h and k, respectively. It follows from Tissot’s work that A = k for conformal projections. h
and k are scaled such that a value of identically one indicates no scale distortion in that direction.
A curve of constant, unit scale distortion is called a standard.

For computing the scale factor for the transverse Mercator projection, see (Lee 1963, Stoughton
1982, Snyder 1987).

3.4.2. Transverse Mercator. There are far too many projections to even mention, much less present
in the current work. Therefore, to illustrate grid coordinates, we will focus on two common confor-
mal projections, the Transverse Mercator (TM) projection as employed in the Universal Transverse
Mercator coordinate system (Snyder 1987, pp.48-65) and the Lambert Conformal Conic (LCC)
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Central Meridian -~-----
Standards ———

FIGURE 10. A transverse cylindrical projection with two standards. The standards
are the heavier lines to the left and right of the central meridian. Note that the
standards do not follow either meridians or parallels.

projection as employed in the State Plane Coordinate System for Connecticut (Stem 1995) and
(Snyder 1987, pp.104-106).

As shown in Figure 9 on the preceding page, the TM is a cylindrical projection whose axis is in
the Equatorial Plane. TM projections are defined by three parameters, g, kg, and ¢y. Ay defines
the longitude of the central meridian. kg is the scale factor at Ag. ¢ is the latitude of the origin of
the projection, which is at (¢, Ag). Figure 10 shows a transverse Mercator projection with ko < 1.
Thus, the region between the standards is projected smaller than reality and the regions outside the
standards are projected larger than reality. TM projections are often used for regions whose extent
is larger north-to-south than east-to-west because the standards more-or-less run north-to-south,
at least near the Equator. Also, if the standards are fairly close, the projection naturally creates a
narrow strip around the central meridian, a naturally north-south region.
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The forward equations for a general Transverse Mercator projection: To project geodetic latitude
and longitude (¢, \) to eastings and northings (z,y):

z=kov[A+ (1 —T+C)A*/6 + (5 — 18T + T* + 72C — 58¢) A° /120] (15a)
y =ko {M — My + vtan $[A%/2 + (5 — T + 9C + 4C*)A* /24 +

(15b)
(61 — 58T + T2 + 600C — 330¢) A% /720]}
E=ko[l+(1+C)A%/2+ (5 — 4T +42C + 13C% — 28¢) A* /24 + (150
(61 — 1487 + 167%) A% /720]
T = tan® ¢ (15d)
C =ecos’ ¢ (15e)
A =(X— Xo) cos ¢, (15f)
M =a[(1—e*/4—3e?/64 —5e5/256 —...)p — (3e®/8 + 3e* /32 + 455 /1024 + ... ) sin2¢ +
(15e? /256 4 45€%/1024 + ... ) sin4¢p — (35€5/3072 4 ...)sinb¢ + ... ]
(15g)

with ¢, A, and Ap in radians. M is the true distance along the central meridian from the Equator
to ¢. My = M for ¢g. If ¢ = £x/2, then only (15g) is used to compute M and M,. Then
€ = O,n = kJU(M —Mo),k) = k)g.

For UTM, a is the semimajor axis in meters, ko = 0.9996, and ¢¢ = 0 so My = 0, likewise. After
computing z, add a false easting of 500,000 m. If ¢ < 0, after computing y, add a false northing of
10,000,000 m.

The inverse equations for a general Transverse Mercator projection: To transform TM eastings
and northings (z,y) to geodetic latitude and longitude (¢, A):

¢ =¢1 — (v(p1) tan ¢y /p(h1))[D?/2 — (5 + 3T, + 10C, — 4C% — 9¢*)D* /24 +
(61 4 90T, + 2980 + 4517 — 252¢% — 3C7) D% /720]
X=X+ [D— (14211 + C1)D?/6 + (5 — 2C + 28Ty — 3C7 + 8¢ + 24T7)D®/120]/ cos ¢1 (16b)

(16a)

¢1 is the latitude at the central meridian which has the same northing coordinate as that of the
point (¢, A). It may be found by:

b1 =p+ (3e1/2 — 27e3 /32 + ... ) sin2p + (21e3 /16 — 55e] /32 4 ... ) sindp +

3 : s : (16c)
(151e7/96 + ...)sin6p + (1097e7/512 — ...)sin8u + ...
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Central Parallel ------
Standards

FIGURE 11. A conic projection with two standards. The standards are the heavier
lines north and south of the central parallel. Note that the standards are also

parallels.

where

er =[1—(1=e)?)/[L+ (1 - )] (16d)
p=M/la(l — /4 — 3et /64 — 55 /256 — ...)] (16e)
M:Mo—i-y/kto (16f)
C1 =ecos? ¢y (16g)
T, = tan® ¢, (16h)
D =xz/(v($1)ko) (161)

with My calculated from (15g) for the given ¢o. If ¢ = £7/2, k = ko, (16a), (16b), and (16d) -
(161) are omitted with ¢ = +£90°, taking the sign of y, while A is indeterminate and can be taken
as Ao or any other convenient, valid value.
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For UTM, q is the semimajor axis in meters, kg = 0.9996, and ¢9 = 0 so My = 0, likewise.
Before using the eastings, subtract a false easting of 500,000 m. If y is in the Southern Hemisphere,
subtract a false northing of 10,000,000 m before using y in the formulae.

3.4.3. Lambert Conformal Conic. The Lambert Conformal Conic projections are often used for
regions whose extent is larger east-to-west than north-to-south because the standards run east-
to-west (Figure 11 on the page before). Thus, the projection creates a strip around the central
parallel, a naturally east-west region. LCC projections are parameterized by the semimajor axis of
the reference ellipsoid ¢ and the first eccentricity squared e?, the latitudes of the standard parallels
¢o and ¢, and the latitude and longitude of the origin of the projection ¢y and Ag. The region
between the standards is projected smaller than reality and the regions outside the standards are
projected larger than reality.

The forward equations for a general Lambert Conformal Conic projection: To project geodetic
latitude and longitude (¢, A) to eastings and northings (z,y):

x =psinf (17a)
y =po — peos 6 (17b)
k =pn/(am) (17¢)
where
p=alFt" (17d)
0 =n(X—Xo) (17e)
n=(Inm; —lnmsg)/(Int; — Inty) (17f)
m = cos p(1 — e? sin® ¢) /2 (17g)
t = tan(r/4 — ¢/2)/[(1 — esing)/(1 + esin $)]*/? (17h)
or
B 1 —sing 1+esing)® 1/2 /
B [(l—i-singb) (l—esingz’)) ] (17)
F =my/(nt]) (171)

with t; = t(¢z), mg = m(dz), and py = aF't.

3.5. Examples.

Example 8. Problem: Convert NAD 83 (41° 21" 12.99487''N, 72° 01’ 25.04041"W, 635.478 m) to
XYZ coordinates.

Solution: In decimal degrees, the given coordinates are 41.3536096861°, —72.02362233611°. The
formula for the radius of curvature in the prime vertical is (8), which is repeated here for conve-
nience:

v=ua/\/(1—e*sin’ ),
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where a is the length of the semimajor axis of the ellipsoid, e? is the (first) eccentricity squared,

and ¢ is geodetic latitude. So

v = 6378137m/+/(1 — 0.006 694 380 022 90 sin® 41.3536096861°),
= 6387 476.88701 m

From (13a),

x = (v+ h)cos¢pcos A,
= (6387476.88701 m + 635.478 m) cos(41.3536096861°) cos(—72.02362233611°),
=1479921.839m

Similarly, from (13b),

y = (v + h)cos ¢sin A,
= (6387476.88701 m + 635.478 m) cos(41.3536096861°) sin(—72.02362233611°),
= —4561128.808 m

and from (13c),

z=((1 —e?)v + h)sin¢
= ((1 — 0.00669437999) 6 387 476.887 01 m + 635.478 m) sin(41.3536096861°),
=4192401.531 m.

O

Example 9. Problem: Convert the XYZ coordinates from the previous example back into geodetic
coordinates.
Solution: From (14a),

A = tan~!(y/x)
= tan™(—4 561 128.808 m/1 479 921.839 m)
= tan™!(—0.324463943364)
= —72.0236223361°.

Units will be omitted from the following formulae when necessary for clarity. From (14b),

g = tan ! < i 5 5 >
(1= NV +y?)
" 4192401.531
(1 —1/298.257222101)/(1479921.8392 + (—4 561 128.808)2)

= tan™"(0.877 230 152)
= 41.258 215 228°

Notice that g is actually just an intermediate result. It’s only purpose is its use as an input to the
next equation. From e = €2/(1—¢?), e = 0.00669437999/(1—0.00669437999) = 0.006 739 496 775 47.
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Since ¢ is the length of the semimajor axis and b is the length of the minor axis, from (14d)
_ z + ebsin® B
=tan~!
¢ (\/(372 + y?) — ae? cos3ﬂ>
_ tan-! 4192401.531 + 0.0067395% x 6 356 752.314 sin® 41.3536096861°
\/(1 479921.8392 + (—4561128.808)2) — 6378 137 x 0.00669437999 cos? 41.3536096861°

= tan 1 (0.8801806425481159)
= 41.353 609 686°

And, finally, from (14f)
2% + y?
Al R

cos ¢

_/(1479921.839? + (—4561 128.808)?)

cos 41.3536096861°
= 635478 m

g

— 6387476.88701

4. DISTANCES

This section defines and compares the distances that are computed in the various coordinate
systems presented in section 3. Ground distances, geodesic distances and grid distances are all
different from one another. This section will present and explain the differences and give procedures
to convert between them. Ground distances are presented first.

4.1. Ground Distances. Distances between objects on the topographic surface of the Earth are
called ground distances. Ground distances can be measured with chains or calibrated wheels
with odometers and are needed whenever an analysis depends upon actual distances on the Earth’s
surface. This can be the case for highway construction, hydrology, and meteorology, for example.
Mappers and surveyors seldom measure ground distances because most maps are compiled with
horizontal or reduced distances. Therefore, ground distances will not be considered further in this
material.

4.2. Spatial Distances. The distance measured by an EDM will be called an EDM distance.
EDM distances are generally not straight-line distances because the light emitted by the instrument
is refracted by the Earth’s atmosphere. A Euclidean straight-line distance is called a spatial
distance. One can attempt to remove the atmosphere’s effect on EDM distances by measuring
atmospheric temperature, humidity, and pressure. However, this cannot be done accurately: see
(Bomford 1980, p. 31) and (Torge 1997, pp. 89-93, 96-107). C.F. Gauss determined an average
value for the coefficient of refraction to be 0.13 and this value is widely used and adjusted to account
for local conditions.

Spatial distances and zenith angle observations are used for trigonometric heighting. The
change in ellipsoid height between two stations is given by (Strang and Borre 1997, p. 360)

hiarget — Pstation = s cos z + s?sin’z+ HI — HR (18)

2n



GRID, GROUND, AND GLOBE: DISTANCES IN THE GPS ERA 21

where hgation 18 the ellipsoid height of the station, s is the spatial distance, z is the observed zenith
angle, k is the coefficient of refraction, n is the radius of curvature in the normal section, HI is
the height of the instrument, and HR is the height of the target (reflector). In most cases,  will
not be known for use in this equation — it is often what is ultimately trying to be determined!
However, this equation is not very sensitive to the value of 7 and the value of the semimajor axis is
often an acceptable substitute. If the zenith angle is the appropriate combination of left and right
face observations, then one need not explicitly account for the deflection of the vertical, unless the
stations cannot be thought to have nearly deflections of the vertical (section 5.1 on page 29). This
might be the case for long lines in mountainous regions.

The height of the target station is found using (18) and reduced to the length of a normal section
chord by (Torge 1997, p. 103)

_ s? — (ht B hs)2
% = \/ T Aafm) L+ bl 19)

where h; and hs are the ellipsoid heights of the target and station, respectively, and the other
quantities are as in (18). s¢ can be reduced to the length of the normal section by

.50
S=2 — 20
1 arcsin 2 (20)

One can convert spatial distances to horizontal distances with the relationship
dhor = dspatial : SiDZ, (21)

where 2 is the zenith angle.

4.2.1. Chord Length vs. Arc Length. It is interesting to consider the type of distance measured
with chains compared to those measured with an EDM. In the past, there have been long base lines
measured with chains that provided the linear basis for large-extent geodetic surveys. In the survey
of India (Keay 2000), these base lines were mechanically flattened to remove topographic variation
and the chains were placed on leveled tables to remove the catenary shape from the chain. Some
of these base lines were nearly ten miles long and took many months to measure. Today, one could
simply set up an EDM and prism at the endpoints of the base line and make what might seem to
be the same measurement in a matter of seconds, assuming intervisibility of the stations. However,
speaking conceptually, these are really not the same measurement at all. Let us consider the
difference between straight-line distances and distances measured along the surface of a reference
ellipsoid (i.e., on an arc). To motivate and illustrate this idea, we will consider the Verrazano
Narrows Bridge located at the mouth of upper New York Bay. As sketched in Figure 12 on the
next page, the deck is 4,260 ft long and is 228 ft (69.5 m) above mean high water, and the towers
are 693 ft tall. The deck of the bridge is shown as an arc as is the surface of the Bay. Although
exaggerated, these are shown as arcs to emphasize the curvature of the Earth. If the bridge’s deck
were level, then it would have to follow the Earth’s curvature. Thus, level objects on the Earth’s
surface are not straight. Suppose there is a total station and a prism setup and leveled as shown.
The straight line between the total station and the prism depicts the path that the light from an
EDM would take, ignoring refraction effects in the atmosphere and the extremely small deflections
caused by the Earth’s gravitational field (Hopcke 1966). Let us undertake to determine how much
different the length of the deck is compared to the distance measured by the EDM.
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T1 T2

Prism at station D2

Bridge deck J

Total station at D1

S1

WaterJ 52

FiGURE 12. A simplistic rendering of the Verrazano Narrows Bridge showing the
two towers, the bridge deck, and the water. This illustrates straight line EDM
distances (chords) vs. arcs on the ellipsoid.

Consider a circle whose radius equals that of the semimajor axis of the GRS 80 ellipsoid, 6,378,137
m plus 69.5 m for the height of the deck. Denote this distance as r = 6,378,206.5 m. Refer to
Figure 13 on the facing page. Let O denote the point at the center of the circle and define two
points A and B on the circle. Denote the arc distance between A and B as dg.. From (3), the
arc length between A and B is dgy. = 7 - 6. The length of the chord AB = ¢ is given by the Law of
Cosines as ¢ = v/2r2 — 2r2 cos . For the example of the Verrazano Narrows Bridge, d,.. was given
as 4,260 ft so

0 = dgre/r

= (4260 f6 x 0.3048 ft/m)/6 378 206.5 m

= 0.000203 576 (22)
Then
c=V2r2—2r2cosf

= /2 x 6378206.52 — 2 x 6378 206.52 cos(0.000 203 576)
= 1298.447997851666 m/(0.3048 ft/m)
= 4259.999992951660 ft,

which is a minute difference. The chord vs. arc distance correction is very small for short baselines
and often can safely be ignored. However, Table 2 on the next page lists increasing values of d,,. and
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FIGURE 13. Chord distances vs. arc distances.

FIGURE 14. Chord distances vs. arc distances.

the corresponding value of ¢ at sea level for comparison. As would be expected, the chord distance
is marginally shorter than the arc distance. At 10 km the difference is roughly one millimeter
although at 100 km the difference is roughly one meter.

dare 1 500 10 000 100 000 1 000 000
c 1499.9999965 | 9 999.998975 | 99 998.976 | 998,976.098
¢/dare | 0.999999998 | 0.999999898 | 0.99998975 0.998976

TABLE 2. Arc distances d, equivalent chord distances ¢, and their ratio. Distances
are given in meters.
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We now generalize this discussion and derive a procedure to convert slant distances into the
corresponding arc distances. As shown in Figure 14 on the preceding page, an infinite number of
horizontal arc distances can be derived from the single slant distance dg, one for each r1 < r < r2.
The chord distance for any r1 <r <r2is

r12 4+ 722 — d?
2rlr2
so0, since the horizontal arc distance dy,.. = r -6,
r1? + 72?2 — d2
2rlr2

Law of Cosines

0 = arccos <

dgre = T - arccos ( (23)
In (23), 1 =n+ h and 72 = n + h2, where 7 is the radius of curvature in the normal section and
h is ellipsoid height.

4.3. Reduced Distances on the Sphere. This section presents the concept of reduced dis-
tances, which pertains to the seemingly contradictory idea that two pairs of stations separated
only in height are not separated by the same horizontal distance (Clark 1963, Heiskanen and
Moritz 1967, Bomford 1980). To elaborate, suppose there are two stations S1 and S2 at sea level
as shown in Figure 12 on page 22. Then imagine that there are two other stations D1 and D2
exactly above 81 and S2 at the height of the bridge deck. That is, S1 has the same latitude and
longitude as D1 and S2 has the same latitude and longitude as D2, but D1 and D2 are at a height
of 228 ft rather than at sea level. It happens that the arc distance between S1 and S2 is less than
the arc distance between D1 and D2. As shown in the figure, the essence of the matter is that
both pairs of stations are on arcs but the radius for D1 and D2 is greater than that for S1 and
S2.

The arc distance between D1 and D2 was given as 4260 ft or 1,298.448 m. To find the arc
distance between S1 and S2, simply apply (3) with a radius that does not include the height of
the deck. 6 is supplied from (22), so

dsi,s2 = al
= 6378137 m x 0.000203 576
= 1298.44m x 3.28084 ft/m
= 4259.96 ft

Thus, the distance along the deck is 0.04 ft or 0.49 in longer than the distance across the surface
of the bay. The towers stand 693 ft high so their tops are separated by 4260.12 ft, which is greater
than the distance on the water by 1.4525 in. These differences are enough to be of concern and
they are taken into consideration in the design of such large structures.

For mapping, the situation is usually the opposite. Consider a land survey done in Bogota,
Columbia at an elevation of 8,500 ft. Suppose there are two stations connected by a baseline
measured on the ground having a length of 10 km. This same baseline measured on the ellipsoid
would measure only 9995.94 m. Table 3 on the facing page shows separations of stations on a 10
km baseline on the surface of the sphere and increasing in height to 5000 m. Unlike the distances
given in Table 2, these distances increase with height. Distances on a reference ellipsoid are said to
be the reduced equivalent of the ground distances they correspond with. Reduced distances are
often smaller than ground distances, but not necessarily.
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Height (m) | Baseline Length (m)
0 10 000.000

100 10000.157

500 10000.784

1000 10001.568

1500 10002.352

2000 10003.136

3000 10 004.704

4000 10006.271

5000 10007.839

TABLE 3. The length of baselines separating stations at identical latitude and lon-
gitude, differing only in height.

FIGURE 15. The normal section from A to B. Notice that the section plane includes
the normal vector at A and contains B.

Unlike the discrepancy between arc length and chord length, this is a matter of concern for at least
two reasons. First, distances reported by GPS post-processing software are given on the surface of
the reference ellipsoid, not on the ground. Second, maps compiled in an absolute coordinate system
such as the State Plane Coordinate System typically employ reduced distances, as well. Therefore,
significant inconsistencies arise when a surveyor uses ground distances to compile such a map or
compares ground distances with GPS-derived distances. See Stem (1995) for a more complete
treatment of how to use reduced distances (including traverses), particularly when mapping in the
State Plane Coordinate System.

4.4. Normal Section Distances. Suppose there is an observation made from a point A to a
target B; see Figure 15. Let va be the normal at A. The normal section from A to B is the
curve on a spheroid made by the intersection of a plane containing va and B.
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Consider how an EDM measures a distance. Suppose that an EDM and a target reflector have
been leveled perfectly with respect to some reference ellipsoid. Then, the EDM will measure a
straight-line to the reflector, forming a plane containing three points: the intersection of the radius
of curvature in the prime vertical with the minor axis, the optical center of the EDM, and the
reflector. The intersection of this plane with the surface of the ellipsoid forms a normal section.
It might seem obvious that the length of a normal section should be a geodesic since it seems to
somehow be a straight-line path between the station and the target. Were the reference surface a
sphere, this would be so; it is the definition of a great circle. However, this is generally not the case
on a spheroid. This section presents formulae to compute the length of the normal section.

Clarke (1880) first presented the original formulae. Several methods were presented and com-
pared in (A.C.I.C. 1959). Robbins (1962) developed these further, giving formulae with a maximum
error of 1/180 M over 1600 km. Bowring (1971) extended Robbins (1962) so that distances up to
6000 miles can be computed. Bomford (1980, p. 102) notes that, “The length of the normal section
differs from that of the geodesic by under 1 in 150000000 in a side of 3000 km, and the difference
can always be ignored.” Even so, Bomford gives the corrections on page 95 and 499. Thus, normal
section distance is practically equivalent to geodesic difference, the distinction being purely mathe-
matical in nature. Therefore, separate formulae for normal section distances will be presented and
the interested reader is referred to the citations for details.

4.5. Geodesic Distances. Geodesic distances are computed using flat-Earth models, spherical-
Earth models, and ellipsoidal-Earth models.

4.5.1. Flat-Earth Geodesic Distances. For flat-Earth models, distances are given by the Euclidean
distance formula (2) in either two or three dimensions, whichever is appropriate.

4.5.2. Spherical-Earth Geodesic Distances. On the sphere, the shortest distance between two points
is the length of the (shorter) arc of the great circle common to the points. The length of this arc is
given by (3), where r is the radius of the circle, which in this case equals the radius of the sphere
and 6 is the angle subtended by the arc in the plane of the great circle. 8 can be found using the
Law of Cosines for spherical triangles,

0 = arccos[sin ¢; sin ¢y + cos ¢p1 cos ¢g cos(A; — Ag)], (24)

where ¢ is latitude, A is longitude, and the subscripts denote points 1 and 2, respectively. Substi-
tuting (24) into (3) gives

d = r - arccos[sin ¢y sin g + cos 1 cos Pa cos(A; — A2)], (25)

where 7 is the radius of the sphere. The computation of (25) looses a great deal of numerical
accuracy for very short distances. The following formula is suitable for all distances.

sin?(d/2r) = sin®([pa — ¢1]/2) + cos ¢y - cos ¢a - sin?([Aa — A\1]/2) (26)

4.5.3. Spheroidal-Earth Geodesic Distances. Even though (26) is computationally stable at all dis-
tances, it is nonetheless inappropriate for use with spheroids. A great deal of attention has been
given to finding the length of geodesics on spheroids. Bomford (1980, p. 108-110) provides a
review and (McCleary 1994, Casey 1996) provide a theoretical treatment of the general subject.
Geodesy-specific treatments include (Rainsford 1949, Rainsford 1955, A.C.I.C. 1959, Sodano 1965,
Bowring 1969, Bowring 1972, Vincenty 1971, Vincenty 1975, Murphy 1981, Bowring 1985, Day
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1987, Danielsen 1994, Vassallo and Secci 1995). Bowring (1996) presented what seems to be a de-
finitive work that claims, “The inverse problem for all possible geodesics on the spheroid is solved in
ways that are selected by the programme in a manner appropriate to any two given end positions.
The comparatively simple total inverse solution for the great elliptic is also given.”

The problem of finding the geodesic distance between two geodetic points on a spheroid is related
to finding the forward and backward azimuth between those points. We present Robbins’s formula
(Robbins 1962) as given in (Bomford 1980, p. 108-110). This formula is correct to 1 in 10% at 1600
km.

%41 sin ¢1

tan g = (1 — €2 42 Vo sin ¢2> tan g, 0o = (P2 — 12), (27a)
cot aipa = (cos ¢y tan 1py — sin ¢y cos AN) csc AN, (27b)
cot ahy; = (sin o cos AN — cos g tan1hy ) csc AN, (27¢)
sino = sin A\ cos ¥ csc a2, (27d)

= —sin AX cos ¢ csc oy, (for check)

Q21 = ady — Opg sin ady; tan %0’ (27e)

Eq.27b provides the forward azimuth and (27e) provides the back azimuth. The geodesic distance
is given by
2

3 4
d=v0|1— %fﬂ(l — h%) + %gh(l —2h?) + =

5
o (W24 =Th%) = 3¢>(1 = Th?) —Z_gh|, (28)

48
where

g% = esin® ¢, and
h? = ecos® h1 cos® ayo
and e is from (6).

When a3 is near 0° or 180°, get (sin AX csc a12) for (27d) from (27b) written as sin AX csc ajz =
(cos ¢y tan 1py — sin ¢y cos AN) sec o and similary from (27c) when o, is near 0° or 180°. a1 may
be got from (27a) and (27b) with suffixes 1 and 2 interchanged, instead of from (27d) and (27e).
The second expression in (27d) cannot then be used.

The reader is encouraged to compare (28) with (25). The former accounts for the ellipsoid
whereas the latter is a great circle distance.

4.6. Grid Distances. Grid distances are computed with the two-dimensional version of (2). So,
for two points A and B in a projected cartographic grid,

d, = [(Ax)? + (Ay)TV2, (20)

where Az = zpo — xp and Ay = ya — yp. Grid distances are akin to pseudo-ranges in that both
contain intrinsic errors. Pseudo-ranges are in error due to the unmeasurable time bias in the GPS
clocks, whereas grid distances as given in (29) are biased by the projection scale factor discussed in
section 3.4.1 on page 14. In general, scale factors are functions of latitude, longitude and azimuth.
For conformal projections, they are not functions of azimuth but will be functions of either latitude
or longitude, or both.
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The projection scale factor & is the ratio of the grid distance given by (29) to geodetic (ellipsoidal)
distance d. k is defined on infinitely small curves ds. So, ds, = dsy/k. For a curve on the ellipsoid
Ce and its projection on the grid Cy,

de :/ dse from (1)

and by ds. = ds,/k,

- / 1/k - ds,. (30)
C

g

If k is essentially a constant over Cg4, then

~ l/k/ dsg.
c

g

If Cy is a straight line, then
~ 1/k[(Az)? + (Ay)?]Y2. from (29)
And finally, if C, = G, then

d~1/k[(Az)® + (Ay)*)'/? (31)

where d is the geodesic distance. It is the goal of the State Plane Coordinate System to ensure that
(31) holds over the extent of the map. This is done by ensuring that the standards are sufficiently
close together and that the map extent is not so great that k£ exceeds one part in 10,000. Under
these circumstances, (31) can be used in lieu of (28) while maintaining survey-grade accuracy. The
simplicity of (31) compared with (28) justifies the effort needed to select the projection correctly.

It is appropriate to quantify the effects of the assumptions going into (31). The following sections
will describe and analyze the errors these assumptions create.

4.6.1. Constant Scale Factor. The projection scale factor is, in general, a function of azimuth,
latitude and longitude. When computing distances we are confronted with general integrals such
as (30), which could be approached with a numerical integration technique, such as Gaussian
Quadrature. However, if the base line is so long as to warrant such a technique, it is probably best
to convert the grid coordinates to geodetic coordinates and find the distance using (28).

It is often acceptable to use

e a single k for an entire project,
e a single k for each base line, or
e an average value for k£ taken from various points on the base line.

If the project’s extent is fairly small, it is possible that a single value for k& will suffice for all base
lines. This can be checked by computing k at the extremes of the project and deciding if the average
of these values differs from the extremes too much. If it does, then scale factors can be assigned to
each base line individually. The simplest approach is to use the scale factor at the midpoint of the



GRID, GROUND, AND GLOBE: DISTANCES IN THE GPS ERA 29

line. If this is unacceptable, the average of the scale factors at the endpoints is better. However, if
this is still unacceptable, use

ka + 4 Enidpoint + kB
6

where A,B are the endpoints of the base line (Stem 1995, p. 50).

kaB =

4.6.2. Geodesics vs. Grid Straight lines. The last assumption for (31) is that a straight line on
the grid is an acceptable approximation for the corresponding geodesic. This bares a similarity
to the situation regarding normal sections (see section 4.4 on page 25), but it is different. Only
gnomic projections project geodesics into straight lines. All other projections project geodesics into
complex curves, in general.

5. OBSERVATION CORRECTIONS

Field measurements differ from geodetic measurements in at least three ways. First, field mea-
surements made with instruments that are leveled to the local vertical (i.e., with respect to gravity)
use a different horizontal plane than the corresponding plane on the ellipsoid. Second, observa-
tions over relatively long base lines whose end points are greatly different in height incur a bias in
the observed versus the geodetic azimuth. Third, field measurements made with opto-mechanical
instruments occur along normal sections (ignoring atmospheric refraction and other small factors
that bend light). The length of a normal section is longer than the geodesic between the observa-
tion station and the target. The third point was discussed in section 4.4 on page 25. This section
discusses the first two issues and present corrections.

5.1. Gravity: Deflection of the Vertical. The geoid is the gravitational equipotential surface
that nominally defines mean sea level (Kellogg 1953, Ramsey 1981, Torge 1997, Blakely 1995). If
the Earth were homogeneous, spherical, and not rotating, the geoid would be spherical. However,
the Earth’s mass is very inhomogeneously distributed, its shape is more nearly a spheroid than a
sphere, and it is rotating. These factors plus others cause the geoid to not be spherical and, instead,
adopt a shape that roughly reflects that of the topographic surface of the Earth. One consequence
of this is that local vertical (“up”) is generally not parallel to the normal to the reference ellipsoid’s
surface. The difference between these two is called the deflection of the vertical.

The deflection of the vertical causes angular measurements that are horizontal with respect
to vertical to differ from angular measurements that are horizontal with respect to normal. See
Figure 16 on the next page, which is based on Bomford (1980, p. 94). Observations are taken at
station A of a target at B. Aa’ is the vertical and Aa is the normal. The deflection of the vertical
is usually broken into two parts, deflection in the plane of the meridian ¢ and deflection in the
plane of the prime vertical 7. Define ( = £sina — ncos «, where « is the measured azimuth of
the normal section from the transit to the target reckoned clockwise from north. ( is the angular
difference of what was measured versus what would have been measured had the instrument been
level with respect to the ellipsoid instead of the geoid.

Call the angle of elevation 6, the slant distance to the target ds, and the vertical distance to the
target d,. Then, tan@ = d,/d}, so d, = dj -tan@. Therefore, t't” = (-dj tanf. Then the correction
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FIGURE 16. The deflection of the vertical.

factor s to be added to the measured azimuth is

't =dy -k from (3)
k=tt"/dp

= (¢ - dy tan®)/dy, sub for ¢'t"

= —( tanf (32)

The minus sign in (32) appears so that &« = A + k produces the reduced geodetic azimuth, where
A is the observed azimuth.

Clearly, this is a factor that is more relevant to baselines that have significant angles of elevation,
such as ones that might be observed from the base of mountains to their peaks. In practice this
correction is usually less than five arc-seconds but can approach 30 arc-seconds in mountainous
areas.
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FI1GURE 17. The normal section from B to A. Notice that the section plane includes
the normal vector at B and contains A.

Geodesic

FIGURE 18. A composite picture putting Figure 15 with Figure 17. Note how the
normal vectors intersect the z-axis in different locations, and that they are not
coplanar. The geodesic from A to B is shown between the normal sections as a bold
solid curve.

The National Geodetic Survey freely distributes a software package that estimates the deflection
of the vertical anywhere in the United States. This program can be used to produce a value for (,
which can then be used in (32).

Thomson and Vanitek (1974) discuss two sources of error in this derivation: it assumes the
normals intersect and that the mean Eulerian radii is an adequate surrogate for the truth. The
worst case is analyzed and found to have negligible error magnitudes. They conclude the standard
formulae as presented are adequate.
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FiGURE 19. The observing station is on the normal at a and the target station is
at B. When B is not on the ellipsoid, the observed azimuth from a to B varies from
the true value to do the normal at b being skew to the normal at a.

5.2. Surveys at Altitude: Skew of the Normals. As shown in Figure 17 on the preceding
page, the normal section from B to A is the curve on a spheroid made by the intersection of a
plane containing vg and A. Figure 17 is the counterpart to Figure 15 on page 25, which shows the
normal section from A to B. These two figures are drawn together in Figure 18 for comparison.
As shown in the figure, if o # ¢, then va and va do not intersect the minor axis at the same
place (Bowring 1971, Bowring 1987). Consequently, the two normal sections are different curves.
When the target is not on the ellipsoid, there is a minor offset in space due to the skew of the
normals (Figure 19). The normal plane at a is shown in red and the true normal section from a to
b is also drawn in red. However, the line Bb’ is parallel to the normal at a and, when intersected
with the ellipsoid, produces point b’ rather than b. As indicated in the figure, this is caused by
the normal at b being skew to the normal at a. This results in a small pointing error, called the
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A
v
A
v

Grid

Ground Geodesic

FIGURE 20. Process of converting between grid, ground, and geodesic distances.

skew of the normals (Torge 1997, p. 141,215), (Bomford 1980, p. 94). The correction is

P = —% sin2cA B cos? ¢B (33)
where hs is the ellipsoid height of B, € is the second eccentricity, ca B is the geodetic azimuth from
A to B, and ¢p is the geodetic latitude of B. As with (32), the minus sign in (33) appears so that
this correction is always added to the observed azimuth: o = A +1). According to Bomford (1980,
p. 95), “This is a small correction, not more than 0.3” if Ay = 3000 meters. Except in mountainous
country it can reasonably be ignored...”

6. MAKING IT WORK

Having laid out all the theoretical considerations, this section presents how to start with a grid,
ground, or geodesic distance and convert it to one of the others. The process is conceptually
straightforward and is shown in Figure 20. Always convert ground to geodesic, geodesic to either,
and grid to geodesic. For example, to convert grid to ground, first convert grid to geodesic and
then convert the geodesic to ground.

Example 10. given a slant distance dg measured with an EDM at an observed azimuth ag and an
observed zenith angle of z; at a geodetic position of ¢, A, h.

Required: the geodesic distance and azimuth.

Solution

1. Correct the observed EDM distance to a spatial distance for atmospheric refraction.
2. Correct the observed azimuth for the deflection of the vertical.

3. Correct the observed azimuth for skew of the normals.

4. Reduce the spatial distance to the ellipsoid forming the length of a normal section.

In theory, this process is straightforward. However, in practice, there is an issue involving trigono-
metric leveling. Not surprisingly, the process of reducing an EDM measurement to the ellipsoid
requires knowledge of the horizontal distance to the target. Of course, computing a horizontal
distance is equivalent to trigonometric leveling. According to Bomford (1980, p. 31),“Less accu-
racy is required (for vertical angles) than for horizontal angles, since atmospheric refraction makes
high accuracy impossible in any case, and since the final height control will be by spirit leveling.”
If it is impossible to make high accuracy vertical angle measurements, the question becomes how
sensitive is the answer to errors in vertical angle measurements. To provide a real-world example,
three temporary survey markers were constructed and surveyed on the campus of the University of
Connecticut in the Fall of 2002. The markers were surveyed in three sessions having simultaneous
occupation of the three markers using two Javad Positioning System and one Trimble Navigation
L1/L2, C/A-P code, phase receivers using a nearby cooperative CORS station (NRME) for control.
Table 4 on the following page shows the results of the survey.

These coordinates were used to inverse the geodesic distance (28) and spatial distance (2), as
shown in Table 5 on the next page.
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Coordinates NAD83 CORS

Sigmas (mm)

Corr. (%)

Point Name

Latitude |

Longitude | Height (m)

s(N) [s(E) [ s(U)

N-E [N-U [E-U

HBH1 41°49'08.49900" N | 72°15'10.88705" W 1873853 | 13| 1.2 28| -25| -16 | 25
HBH2 41°48'59.20173" N | 72°14'49.14831"W 184.5880 | 1.2 | 1.1 | 26| -23 -9 19
HBH3 41°48'53.30021" N | 72°14'50.94347"W 178.0003 | 13| 1.2| 28| -30| -18 | 26

TABLE 4. Geodetic coordinates of the three survey markers.

HBHI HBH2 HBH3
HBHI | 0 |577.933 (577.956) | 657.087 (657.172)
HBH2 0 186.732 (186.854)

TABLE 5. Geodesic and (spatial distances) between stations in meters.

Average EDM Distance | Spatial (computed) | EDM - Spatial
078.028 277.956 0.072
657.246 657.172 0.074
186.926 186.854 0.072

TABLE 6. Geodesic and (spatial distances) between stations in meters.

These stations were occupied with a Leica TC307 total station. Distances and bearing to all
combinations of markers were measured with at least two sets of left and right face angular mea-
surements plus all reciprocal vertical angles. The distances were measured using the total station’s
EDM with atmospheric temperature, pressure and humidity being input from a meteorological
station on site to be used for refraction corrections. Table 6 shows that the corrected EDM mea-
surements (refraction and prism constant) agree well with the computed spatial distances but that
they are longer, as would be expected.

Table 7 on the next page shows the measured vertical angles, truth (as computed from the
coordinates), and the residual. Notice that the errors are huge compared to the precision of the
instrument, which is seven arc-seconds. This is due to the refraction of the atmosphere.

Without reciprocal zenith angle measurements, the measurements as given will be used to find the
horizontal distance to be reduced to the ellipsoid. Table 8 on the facing page shows the results. The
EDM distance is shown for reference. The geodesic distance was computed by inversing between the
station coordinates. The reduced distance is derived by applying equations to the observed slant
distance and zenith angle. The reduced error shows the accuracy of the results, which generally
agree with the GPS-derived values at the decimeter level.

This example illustrates two points. First: EDM measured distances and GPS derived spatial
distances can agree closely. Second, EDM measured distance, if used with trigonometric leveling,
can produce reduced horizontal distances or height differences that agree at the decimeter level
with GPS-derived results.

The situation is improved somewhat with reciprocal zenith angle measurements. Compare the
average of the computed change in height for station HBH2 to HBH3 (-6.076) and the computed
change in height for station HBH3 to HBH2 (6.941) = -6.509 against the true value, -6.588. This
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| Station | Target | Computed Zenith | Observed Zenith | Zenith Error (DMS) |

| HBH1 | HBH2 | 90.2799 | 90.3265 | 0° —2"  —47.6479 |
| HBH1 | HBH3 | 90.8212 | 90.6552 [ 0° 9" 57.6165 |
HBH2 | HBH1 89.7253 89.6051 [0° 77 12.8372
HBH2 | HBH1 89.7253 89.6044 [0° 7" 15.1412
| HBH2 | HBH3 | 92.0213 | 91.7150 [ 0° 18"  22.6509 |
HBH3 | HBH1 89.1847 89.2851 [ 0° —6"  —1.5099
HBH3 | HBH1 89.1847 89.2750 [ 0° =5 —24.9699
HBH3 | HBH1 89.1847 89.2855 [ 0° —6"  —2.9499
HBH3 | HBH2 87.9804 87.6597 [ 0° 19"  14.6423
HBH3 | HBH2 87.9804 87.6572 [ 0° 19"  23.4623

TABLE 7. Measured zenith angle, computed zenith angles, and the error.

| Station | Target | EDM Distance | Geodesic Distance | Reduced EDM Distance | Error (cm) |

| HBHI1 | HBH2 | 578.021 | 577.933 | 577.990 | 5.75 |

| HBHI1 | HBH3 | 328.612 | 657.087 | 657.155 | 6.86 |
HBH2 | HBH1 578.031 577.933 578.003 7.06
HBH2 | HBH1 578.031 577.933 578.003 7.05

| HBH2 | HBH3 | 186.903 | 186.732 | 186.799 | 6.66 |
HBH3 | HBH1 657.244 657.087 657.180 9.34
HBH3 | HBH1 657.243 657.087 657.180 9.31
HBH3 | HBH1 657.249 657.087 657.186 9.92
HBH3 [ HBH2 186.949 186.732 186.815 8.22
HBH3 | HBH2 186.948 186.732 186.814 8.14

TABLE 8. Slant, geodesic, and reduced distances (m).

is an error of eight centimeters versus one-half meter for the unaveraged values. The computed
reduced distance is 186.785 versus the geodesic distance of 186.732, an error of 53 millimeters. This
is an improvement of about 15 millimeters compared to the non-reciprocal scenario.

However, in spite of all the redundant measurements and attention to detail, at this height the
EDM-measured reduced distances exceed the GPS values by roughly a factor of three or worse. The
problem is evidently the inability to account for the effective refractive index, which can be seen
by the correlation between the EDM slant distances compared to the spatial distances (Table 6).
This 300% error level cannot be considered acceptable, which reconfirms what was already known:

trigonometric leveling is unacceptable for geodetic-level work.
O

Example 11. : The geodetic coordinates for HBH1, HBH2, and HBH3 have been converted into
State Plane Coordinate System, CT0600, NAD83 meters and into UTM 18N meters (Table 9 on
the next page).
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State Plane NAD83 CT0600 UTM NADS83 18N
Point Name Easting | Northing | Height Easting | Northing | Height
HBH1 346091.482 | 261990.665 | 187.385 | 728151.206 | 4633332.566 | 186.146
HBH2 346594.854 | 261706.728 | 184.588 | 728661.977 | 4633061.862 | 183.348
HBH3 346554.481 | 261524.413 | 178.000 | 728626.391 | 4632878.506 | 176.760

TABLE 9. Cartographic coordinates of the three survey markers. All coordinates

are in meters.

HBHI1-HBH2 | HBH1-HBH3 | HBH2-HBH3

Geodesic 977.933 657.087 186.732
SPCS 977.930 657.084 186.732
UTM 578.073 657.246 186.778

TABLE 10. Geodesic and uncorrected grid distances (m) between all stations.

HBH1-HBH2 | HBH1-HBH3 | HBH2-HBH3

Geodesic 577.933 657.087 186.732
SPCS 977.933 657.087 186.733
UTM 578.932 657.086 186.733

TABLE 11. Geodesic and corrected grid distances (m) between all stations.

Table 10 shows the distances between the stations in the various coordinate systems. As expected,
the SPCS distances match the geodesic distances fairly closely, in this example not being different
by more than three millimeters. The UTM distances, however, are different by 140, 159, and 56
millimeters for the three distanes. The UTM scale factors for the three stations are 1.000240581,
1.000243453, and 1.000243253, with an average of 1.000242429. The SPCS scale factors for the
three stations are 0.999995519, 0.999995295, and 0.999995155, with an average of 0.999995323.
Correcting the grid distances with the average scale factor produces good agreement with the
geodesic distances, with the maximum difference being only one millimeter (Table 11).
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