

MB 500[™]

Copyright Notice

Copyright 2010-2011 Ashtech. All rights reserved. P/N 631636-01 D. February 2011.

Trademarks

All product and brand names mentioned in this publication are trademarks of their respective holders.

Ashtech Products - Limited Warranty (North, Central and South America)

Ashtech warrants their GPS receivers and hardware accessories to be free of defects in material and workmanship and will conform to our published specifications for the product for a period of one year from the date of original purchase. THIS WARRANTY APPLIES ONLY TO THE ORIGINAL PURCHASER OF THIS PRODUCT.

In the event of a defect, Ashtech will, at its option, repair or replace the hardware product with no charge to the purchaser for parts or labor. The repaired or replaced product will be warranted for 90 days from the date of return shipment, or for the balance of the original warranty, whichever is longer, Ashtech warrants that software products or software included in hardware products will be free from defects in the media for a period of 30 days from the date of shipment and will substantially conform to the then-current user documentation provided with the software (including updates thereto). Ashtech's sole obligation shall be the correction or replacement of the media or the software so that it will substantially conform to the then- current user documentation. Ashtech does not warrant the software will meet purchaser's requirements or that its operation will be uninterrupted, error-free or virus-free, Purchaser assumes the entire risk of using the software.

PURCHASER'S EXCLUSIVE REMEDY UNDER THIS WRITTEN WARRANTY OR ANY IMPLIED WARRANTY SHALL BE LIMITED TO THE REPAIR OR REPLACEMENT, AT ASHTECH'S OPTION, OF ANY DEFECTIVE PART OF THE RECEIVER OR ACCESSORIES WHICH ARE COVERED BY THIS WARRANTY REPAIRS UNDER THIS WARRANTY SHALL ONLY BE MADE AT AN AUTHORIZED ASHTECH SERVICE CENTER. ANY REPAIRS BY A SERVICE CENTER NOT AUTHORIZED BY ASHTECH WILL VOID THIS WARRANTY.

To obtain warranty service the purchaser must obtain a Return Materials Authorization (RMA) number prior to shipping by calling 1-800-229-2400 (North America) or 1-408-572-1134 (International) and leaving a voice mail at option 3, or by submitting a repair request on-line at: http://ashtech.com (fill out the RMA request from under the Support tab). The purchaser must return the product postpaid with a copy of the original sales receipt to the address provided by Ashtech with the RMA number must be clearly printed on the outside of the package.

Ashtech reserves the right to refuse to provide service free-of-charge if the sales receipt is not provided or if the information contained in it is incomplete or illegible or if the serial number is altered or removed. Ashtech will not be responsible for any losses or damage to the product incurred while the product is in transit or is being shipped for repair. Insurance is recommended. Ashtech suggests using a trackable shipping method such as UPS or FedEx when returning a product for service.

EXCEPT AS SET FORTH IN THIS LIMITED WARRANTY, ALL OTHER EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING THOSE OF FITNESS FOR ANY PARTICULAR PURPOSE, MERCHANT-ABILITY OR NON-INFRINGEMENT, ARE HEREBY DISCLAIMED AND IF APPLICABLE, IMPLIED WARRANTIES UNDER ARTICLE 35 OF THE UNITED NATIONS CONVENTION ON CONTRACTS FOR THE INTERNATIONAL SALE OF GOODS. Some national, state, or local laws do not allow limitations on implied warranty or how long an implied warranty lasts, so the above limitation may not apply to you.

The following are excluded from the warranty coverage: (1) periodic maintenance and repair or replacement of parts due to normal wear and tear; (2) batteries and finishes; (3) installations or defects resulting from installation; (4) any damage caused by (i) shipping, misuse, abuse, negligence, tampering, or improper use; (ii) disasters such as fire, flood, wind, and lightning; (iii) unauthorized attachments or modification; (5) service performed or attempted by anyone other than an authorized Ashtechs Service Center; (6) any product, components or parts not manufactured by Ashtech; (7) that the receiver will be free from any claim for infringement of any patent, trademark, copyright or other proprietary right, including trade secrets; and (8) any damage due to accident, resulting from inaccurate satellite transmissions. Inaccurate transmissions can occur due to changes in the position, health or geometry of a satellite or modifications to the receiver that may be required due to any change in the GPS. (Note: Ashtech GPS receivers use GPS or GPS+GLONASS to obtain position, velocity and time information. GPS is operated by the U.S. Government and GLONASS is the Global Navigation Satellite System of the Russian Federation, which are solely responsible for the accuracy and maintenance of their systems. Certain conditions can cause inaccuracies which could require modifications to the receiver. Examples of such conditions include but are not limited to changes in the GPS or GLONASS transmission.) Opening, dismantling or repairing of this product by anyone other than an authorized Ashtech Service Center will void this

ASHTECH SHALL NOT BE LIABLE TO PURCHASER OR ANY OTHER PERSON FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DAMAGES RESULTING FROM DELAY OR LOSS OF USE, LOSS OF OR DAMAGES ARISING OUT OF BREACH OF THIS WARRANTY OR ANY IMPLIED WARRANTY EVEN THOUGH CAUSED BY NEGLIGENCE OR OTHER FAULT OFASHTECH OR NEGLIGENT USAGE OF THE PRODUCT. IN NO EVENT WILL ASHTECH BE RESPONSIBLE FOR SUCH DAMAGES, EVEN IF ASHTECH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This written warranty is the complete, final and exclusive agreement between Ashtech and the purchaser with respect to the quality of performance of the goods and any and all warranties and representations. This warranty sets forth all of Ashtech's responsibilities regarding this product. This limited warranty is governed by the laws of the State of California, without reference to its conflict of law provisions or the U.N. Convention on Contracts for the International Sale of Goods, and shall benefit Ashtech, its successors and assigns.

This warranty gives the purchaser specific rights. The purchaser may have other rights which vary from locality to locality (including Directive 1999/44/EC in the EC Member States) and certain limitations contained in this warranty, including the exclusion or

limitation of incidental or consequential damages may not apply.

For further information concerning this limited warranty, please call or write:

Ashtech LLC., El Camino Real 451, Suite 210, Santa Clara, CA 95050, Phone: +1 408 572 1100, Fax: +1 408 572 1199 or

Ashtech SAS - ZAC La Fleuriaye - BP 433 - 44474 Carquefou Cedex - France Phone: +33 (0)2 28 09 38 00, Fax: +33 (0)2 28 09 39 39.

Ashtech Products Limited Warranty (Europe, Middle East, Africa)

All Ashtech global positioning system (GPS) receivers are navigation aids, and are not intended to replace other methods of navigation. Purchaser is advised to perform careful position charting and use good judgment. READ THE USER GUIDE CAREFULLY BEFORE USING THE PRODUCT.

1. ASHTECH WARRANTY

Ashtech warrants their GPS receivers and hardware accessories to be free of defects in material and workmanship and will conform to our published specifications for the product for a period of one year from the date of original purchase or such longer period as required by law. THIS WARRANTY APPLIES ONLY TO THE ORIGINAL PURCHASER OF THIS PRODUCT.

In the event of a defect, Ashtech will, at its option, repair or replace the hardware product with no charge to the purchaser for parts or labor. The repaired or replaced product will be warranted for 90 days from the date of return shipment, or for the balance of the original warranty, whichever is longer. Ashtech warrants that software products or software included in hardware products will be free from defects in the media for a period of 30 days from the date of shipment and will substantially conform to the then-current user documentation provided with the software (including updates thereto). Ashtech's sole obligation shall be the correction or replacement of the media or the software so that it will substantially conform to the then- current user documentation. Ashtech does not warrant the software will meet purchaser's requirements or that its operation will be uninterrupted, error-free or virus-free. Purchaser assumes the entire risk of using the software.

2. PURCHASER'S REMEDY

PURCHASER'S EXCLUSIVE REMEDY UNDER THIS WRITTEN WARRANTY OR ANY IMPLIED WARRANTY SHALL BE LIMITED TO THE REPAIR OR REPLACEMENT, AT ASHTECH'S OPTION, OF ANY DEFECTIVE PART OF THE RECEIVER OR ACCESSORIES WHICH ARE COVERED BY THIS WARRANTY REPAIRS UNDER THIS WARRANTY SHALL ONLY BE MADE AT AN AUTHORIZED ASHTECH SERVICE CENTER. ANY REPAIRS BY A SERVICE CENTER NOT AUTHORIZED BY ASHTECH WILL VOID THIS WARRANTY.

3. PURCHASER'S DUTIES

To obtain service, contact and return the product with a copy of the original sales receipt to the dealer from whom you purchased the product.

Ashtech reserves the right to refuse to provide service free-of-charge if the sales receipt is not provided or if the information contained in it is incomplete or illegible or if the serial number is altered or removed. Ashtech will not be responsible for any losses or dam-

age to the product incurred while the product is in transit or is being shipped for repair. Insurance is recommended. Ashtech suggests using a trackable shipping method such as UPS or FedEx when returning a product for service.

4. LIMITATION OF IMPLIED WARRANTIES

EXCEPT AS SET FORTH IN ITEM 1 ABOVE, ALL OTHER EXPRESSED OR IMPLIED WARRANTIES, INCLUDING THOSE OF FITNESS FOR ANY PARTIC-ULAR PURPOSE OR MERCHANTABILITY, ARE HEREBY DISCLAIMED AND IF APPLICABLE, IMPLIED WARRANTIES UNDER ARTICLE 35 OF THE UNITED NATIONS CONVENTION ON CONTRACTS FOR THE INTERNATIONAL SALE OF GOODS.

Some national, state, or local laws do not allow limitations on implied warranty or how long an implied warranty lasts, so the above limitation may not apply to you.

5. EXCLUSIONS

The following are excluded from the warranty coverage:

- (1) periodic maintenance and repair or replacement of parts due to normal wear and tear;
- (2) batteries:
- (3) finishes:
- (4) installations or defects resulting from installation;
- (5) any damage caused by (i) shipping, misuse, abuse, negligence, tampering, or improper use; (ii) disasters such as fire, flood, wind, and lightning; (iii) unauthorized attachments or modification;
- (6) service performed or attempted by anyone other than an authorized Ashtechs Service Center;
- (7) any product, components or parts not manufactured by Ashtech,
- (8) that the receiver will be free from any claim for infringement of any patent, trademark, copyright or other proprietary right, including trade secrets
- (9) any damage due to accident, resulting from inaccurate satellite transmissions. Inaccurate transmissions can occur due to changes in the position, health or geometry of a satellite or modifications to the receiver that may be required due to any change in the GPS. (Note: Ashtech GPS receivers use GPS or GPS+GLONASS to obtain position, velocity and time information. GPS is operated by the U.S. Government and GLONASS is the Global Navigation Satellite System of the Russian Federation, which are solely responsible for the accuracy and maintenance of their systems. Certain conditions can cause inaccuracies which could require modifications to the receiver. Examples of such conditions include but are not limited to changes in the GPS or GLONASS transmission)

Opening, dismantling or repairing of this product by anyone other than an authorized Ashtech Service Center will void this warranty.

6. EXCLUSION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES

ASHTECH SHALL NOT BE LIABLE TO PURCHASER OR ANY OTHER PERSON FOR ANY INDIRECT, IN CIDENTAL OR CONSEQUENTIAL DAMAGES WHAT-SOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DAMAGES RESULTING FROM DELAY OR LOSS OF USE, LOSS OF OR DAMAGES ARISING OUT OF BREACH OF THIS WARRANTY OR ANY IM-

PLIED WARRANTY EVEN THOUGH CAUSED BY NEGLIGENCE OR OTHER FAULT OFASHTECH OR NEGLIGENT USAGE OF THE PRODUCT. IN NO EVENT WILL ASHTECH BE RESPONSIBLE FOR SUCH DAMAGES, EVEN IF ASHTECH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Some national, state, or local laws do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

7. COMPLETE AGREEMENT

This written warranty is the complete, final and exclusive agreement between Ashtech and the purchaser with respect to the quality of performance of the goods and any and all warranties and representations. THIS WARRANTY SETS FORTH ALL OF Ashtech'S RESPONSIBILITIES REGARDING THIS PRODUCT.

THIS WARRANTY GIVES YOU SPECIFIC RIGHTS. YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM LOCALITY TO LOCALITY (including Directive 1999/44/EC in the EC Member States) AND CERTAIN LIMITATIONS CONTAINED IN THIS WARRANTY MAY NOT APPLY TO YOU.

8. CHOICE OF LAW.

This limited warranty is governed by the laws of France, without reference to its conflict of law provisions or the U.N. Convention on Contracts for the International Sale of Goods, and shall benefit Ashtech, its successors and assigns.

THIS WARRANTY DOES NOT AFFECT THE CUSTOMER'S STATUTORY RIGHTS UNDER APPLICABLE LAWS IN FORCE IN THEIR LOCALITY, NOR THE CUSTOMER'S RIGHTS AGAINST THE DEALER ARISING FROM THEIR SALES/PURCHASE CONTRACT (such as the guarantees in France for latent defects in accordance with Article 1641 et seq of the French Civil Code).

For further information concerning this limited warranty, please call or write:

Ashtech SAS - ZAC La Fleuriaye - BP 433 - 44474 Carquefou Cedex - France.

Phone: +33 (0)2 28 09 38 00, Fax: +33 (0)2 28 09 39 39

Table of Contents

Chapter 1. Introduction	1
Preamble	1
MB 500 Top and Bottom Views	2
List of Items	3
Specifications	5
Board Layout and Dimensions	9
I/O Connector Pin Out	10
LED Indicator	11
Communication Ports	11
Firmware Options	12
Chapter 2. First Steps	13
Using the Evaluation Kit	13
Connecting MB 500 to your Application	15
Quick Start with MB 500	17
Chapter 3. Configuring the MB 500	27
Introduction to Serial Commands	
Special Warning	30
Setting the Antenna & Receiver Parameters	30
Setting the Position Computation Mode	31
Setting Differential Data Messages	32
Setting Raw Data Messages	37
Setting the NMEA and NMEA-Like Data Messages	37
Setting the Heading Function	38
Chapter 4. Set Command Library	39
AGB: Enabling/Disabling GLONASS Bias Adjustments	
ANP, DEL: Delete User-Defined Antenna	40
ANP,OUT: Defining a Virtual Antenna	40
ANP,OWN: Naming Local Antenna	41
ANP,REF: Naming Reference Antenna	42
ANP,PCO/EDx: Entering Offset Values to User-Defined Antennas	43
ANT & ANH: Antenna Reference Point	
With Respect to Ground Mark	
ATL: Debug Messages	
ATM: Enabling/Disabling ATOM Messages	
ATM,ALL: Disabling All ATOM Messages	
CMR: Enabling/Disabling CMR Messages	
CMR,ALL: Disabling All CMR Messages	
CMP: Enabling/Disabling CMR+ Messages	
CMP, ALL: Disabling All CMR+ Messages	54
CPD,AFP - CP2,AFP: Setting the Confidence Level of Ambiguity Fixing	ΕΛ
CPD,ARR,LEN - CP2,ARR,LEN: Setting the Baseline	54
Length in Arrow Mode	55

CPD,ARR,MOD - CP2,ARR,MOD: Enabling/Disabling	
the Arrow Mode	56
CPD,ARR,OFS - CP2,ARR,OFS: Setting Heading and Elevation Offsets	57
CPD,ARR,PAR - CP2,ARR,PAR: Setting Upper Limits	
in Arrow Mode	58
CPD,BAS - CP2,BAS: Setting Static or Moving Base Mode	59
CPD,FST: RTK Output Mode	
CP2,MOD: Operating Mode for Second RTK Engine	61
CPD,NET: Network Corrections	63
CPD,RST - CP2,RST: RTK Process Reset	
CPD,VRS: VRS Assumption Mode	64
CRR: Code Correlator Mode	65
DIF,PRT: Choosing an Input Port for Differential Corrections	
to Primary RTK Engine	65
DIF,PRT,OFF: Disabling Differential Corrections on the	
Primary RTK Engine	67
DI2,PRT: Choosing an Input Port for Differential Corrections	
to Second RTK Engine	67
DI2,PRT,OFF: Disabling Differential Corrections on the	
Second RTK Engine	
DSY: Daisy Chain	
DYN: Receiver Dynamics	
ELM: Setting the Elevation Mask for Raw Data Output	
ENC: Setting Transport Mode for Differential Data	
GLO: GLONASS Tracking	
GNS,CFG: Selecting a GNSS Mode	
INI: Resetting Receiver According to Your Preferences	
KPI: Known Point Initialization	
local-loc	
MSG: Defining a User Message	
NME: Enabling/Disabling NMEA Messages	79
NME, MSG: Requesting Rover to Output Differential	
Message from Base	
NME,ALL: Disabling All NMEA and NMEA-Like Messages	
PEM: Setting the Position Elevation Mask	
PFL,TST: Switching Receiver to Test Mode	
PHE: Setting the Active Edge of the Event Marker Pulse	
PIN: Assigning Function to Programmable Pin on I/O Connector .	
POP: Setting Internal Update Rates for Measurement and PVT \dots	
POS: Setting the Antenna Position	
PPS: Setting PPS Pulse Properties	
PWR,OFF: Powering Off the Receiver	90
RAW: Enabling/Disabling Raw Data Messages	
in Legacy Ashtech Format	
RAW,ALL: Disabling All Raw Data Messages	
RCP,DEL: Deleting User-Defined Receiver Name	93
RCP,GBx: GLONASS Carrier Phase Biases for	
User-Defined Receiver	93

	RCP,OWN and RCP,REF: Naming Local and Reference Receivers .94
	REF: Enabling/Disabling External Reference Clock96
	RST: Default Settings96
	RT2: Enabling/Disabling RTCM 2.3 Messages97
	RT2,ALL: Disabling All RTCM 2.3 Messages98
	RT3: Enabling/Disabling RTCM 3.1 Messages98
	RT3,ALL: Disabling All RTCM 3.1 Messages100
	SBA: Enabling/Disabling SBAS Tracking100
	SIT: Defining a Site Name101
	SMI: Code Measurement Smoothing102
	SOM,CTT: Cumulative Tracking Time Mask103
	SOM,NAV: Navigation Data Mask104
	SOM, SNR: Signal-to-Noise Ratio Mask105
	SOM, WRN: Channel Warnings Mask106
	SPD: Setting Baud Rates for Ports A and B107
	SVM: Setting the Maximum Number of Observations in the PVT .108
	UDP: User-Defined Dynamic Model Parameters109
	UTS: Synchronizing Onto GPS Time109
	ZDA: Setting Date & Time110
:h	apter 5. Query Command Library 113
	ALM: Almanac Message
	ANP: Antenna Parameters
	ATT: Heading, Roll and Pitch
	BPS: Base Position Message
	CPD,REF: Querying Rover for Base Position Used
	DDM: Differential Decoder Message
	GBS: GNSS Satellite Fault Detection
	GGA: GNSS Position Message
	GLL: Geographic Position - Latitude/Longitude
	GRS: GNSS Range Residuals
	GSA: GNSS DOP and Active Satellites
	GST: GNSS Pseudo-Range Error Statistics
	GSV: GNSS Satellites in View
	HDT: True Heading
	LTN: Latency
	PAR: Receiver Parameters
	PAR,ATM: ATOM Data Generation Settings
	PIN: Programmable Pin
	POS: Computed Position Data
	PRT: Baud Rate Settings
	PTT: PPS Time Tag
	Asking for the Output of a Raw Data Message
	RCP: Receiver Parameters
	RID: Receiver Identification
	RIO: Receiver Options
	RMC: Recommended Minimum Specific GNSS Data
	SAT: Satellites Status
	5 Gato Julian Julian III

TTT: Event Marker	150
VEC: Vector & Accuracy Data	151
VTG: Course Over Ground and Ground Speed	153
ZDA: Time & Date	154
Chapter 6. Raw Data Messages in Ashtech Proprietary Format	157
Output Order	
DPC: Compact GPS Measurements	
ION: Ionosphere Parameters	
MCA: C/A Code Measurements	
MPC: GNSS Measurements	
PBN: Position Information	
RPC: DBEN Messages	
SAG: GLONASS Almanac Data	
SAL: GPS Almanac Data	
SAW: SBAS Almanac Data	
SBA,DAT: SBAS Data Message	
SNG: GLONASS Ephemeris Data	
SNV: GPS Ephemeris Data	
SNW: SBAS Ephemeris Data	
Chapter 7. Appendices	
Base Antenna Issues	
Rover Antenna Issues	
"Virtual Antenna" Concept	
Antenna Height Transformations	
How a Rover Reacts Dynamically to a Change of Base ID	104
or Antenna Name	186
Asynchronous Serial Communication	
Preset Antenna List	

Chapter 1. Introduction

Preamble

With the new MB 500 GPS+GLONASS+SBAS dual-frequency board, Ashtech brings to the OEM market a unique blend of technologies that increases RTK availability and data integrity.

Embedded BLADE™ technology ensures powerful performance and a patented way to use multiple GNSS constellations for high-accuracy positioning, and surveying solutions:

- Fast initialization and accuracy at long-range,
- Patented multi-constellation signal processing,
- Advanced multi-path mitigation and robust signal tracking,
- RTK solution maintained if data link is briefly dropped,
- Interoperability with any vendor's reference station transmitting GPS+GLONASS L1/L2 signals.
- Heading function with baseline auto-calibration
- RTK function against moving base
- Hot Standby RTK

This manual provides a technical description of the MB 500 allowing you to integrate the board into your application. The manual is organized as follows:

- The present chapter (**Chapter 1**) deals with technical specifications, board layout and dimensions, I/O connector pinout, LED indications, communication ports, and a list of the possible firmware options.
- **Chapter 2** reviews all required connections, including power, through which you can interface the board with your application.
- Chapter 3 is a summary of the most common configurations users will want to use in the board. All appropriate set commands are listed for these configurations.

- Chapter 4 explains how to configure the board so it can meet the specific requirements of your applications. Chapter 4 includes an introduction to serial commands and reviews the different configuration steps: antenna & receiver parameters, position computation mode, heading function, managing data messages (differential data, raw data, NMEA and NMEA-like data). This chapter also provides in-depth information about differential data messages.
- **Chapters 5 and 6** provide an exhaustive description of all the set and query commands available for the board.
- Chapter 7 provides a description of the raw data messages in Ashtech proprietary format.
- Chapter 8 gathers different topics not addressed elsewhere in the manual, such as antenna height transformations, differential data transport modes and the list of predefined antennas.

MB 500 Top and Bottom Views

Top view:

Bottom View:

List of Items

The tables below provide an overview of the different items that may be delivered with an MB500 board. Depending on your purchase, only some of the listed items may have been shipped. Please refer to the packing list for an accurate description of the items that were ordered.

Basic Supply

Item	Part No.	Picture
Dual-frequency L1+L2 GPS MB500 board, includes the following firmware options: • [K]: RTK Base • [Y]: SBAS tracking • [L]: 1 PPS • [E]: Event marker • [T]: 10-Hz output rate • [C]: Advanced multipath mitigation • [P]+[S]: GPS/GLONASS L2 frequency tracking + GPS L2CS tracking.	990609	
Single-frequency L1 GPS+GLONASS MB500 board, includes the following firmware options: • [K]: RTK Base • [Y]: SBAS tracking • [G]: GLONASS (GNSS Signal option) • [L]: 1 PPS • [E]: Event marker • [T]: 10-Hz output rate • [C]: Advanced multipath mitigation	990625	

Firmware & Hardware Options

Item	Part No.	Picture
Ashtech GNSS antenna: • L1/L2/L5 (ASH-661) • L1 (ASH-660)	802135 802133	ASH-661
Choke ring GNSS antenna, 38 dB, 4.2-15 V DC, includes "antibird" radome	111584	6
GNSS antenna & L band, 38 dB, 4.2-15 V DC	111407	
[G]: GLONASS (GNSS Signal option)	680557	(firmware option)
[J]: RTK Rover	680558	(firmware option)
Advanced RTK, includes: • [V]: Moving base • [H]: Heading Mode Requires the [J] option to be enabled as well.	680559	(firmware option)
[W]: 20 Hz position/raw data update rate	680562	(firmware option)
This option consists of two sub-items: [P]: GPS/GLONASS L2 frequency tracking [S]: GPS L2CS tracking	680574	(firmware option)

Other Accessories

Item	Part No.	Picture
Evaluation kit, includes: • Evaluation PCBA with Antenna Cable Adaptor (MMCX-RA / TNC-F) • Power supply (5 V DC) • Universal Input	990611	Picture of MB500 board mounted on Evaluation kit
10-meter TNC-TNC coaxial cable	700439	O

Specifications

GNSS Characteristics

- 75 channels:
 - GPS L1 C/A, L1/L2 P-code, L2C, L1/L2 full wavelength carrier
 - GLONASS L1 C/A, L2 C/A code, L1/L2 full wavelength carrier
 - SBAS L1 code & carrier (WAAS/EGNOS/MSAS)
 - Quick signal detection engines for fast acquisition and re-acquisition of GPS/GLONASS/SBAS signals
 - Fully independent code and phase measurements
- Ashtech BLADE™ technology for optimal performance
- Advanced multipath mitigation
- Up to 20 Hz raw data and position output
- RTK base and rover modes.

Features

- Up to 20 Hz real-time GPS, GLONASS and SBAS raw data output (code and carrier)
- Real-time GPS, GLONASS and SBAS subframes output
- Ephemerides and almanacs for GPS, GLONASS and SBAS outputs
- Ionosphere data output
- NMEA 0183 message output (ALM, GGA, GLL, GRS, GSA, GST, GSV, RMC, VTG, ZDA)
- Advanced multi-path mitigation
- 1 PPS timing signal (3.3 V LV-TTL)
- Event marker

RTK Base

- Up to 20 Hz update rate
- DBEN type 0 (observations), type 1 (location)
- RTCM 2.3: Types 1, 3, 9, 16, 18, 19, 20, 21, 22, 23, 24, 31, 32, 34, 36
- RTCM 3.1: Types 1001 to 1013, 1019, 1020, 1029, 1033
- CMR: Types 0, 1, 2, 3 (i)
- CMR+: Types 0, 3 (i)

⁽i) CMR/CMR+ type 3 refers to GLONASS observations compatible with similar Leica/Topcon/Novatel messages described in the official Leica White Paper entitled "A GLONASS Observation Message Compatible With The Compact Measurement Record Format."

- ATOMTM (Ashtech proprietary format): Types 2, 3, 4, 5, 6,
 7, 14 (respectively PVT, ATR, NAV, DAT, RNX, EVT)
- Moving base operation.

RTK Rover

- BLADE technology
- Up to 10 Hz synchronized (time-tagged) RTK
- Up to 20 Hz Fast RTK
- RTCM 2.3: Types 1, 3, 9, 16, 18, 19, 20, 21, 22, 23, 24, 31, 32, 34, 36, 59 (FKP)
- RTCM 3.1: Types 1001 to 1017, 1019, 1020 to 1023, 1029 to 1033
- CMR: Types 0, 1, 2, 3 (ii)
- CMR+: Types 0, 3 (ii)
- ATOM, DBEN & TOPAZE (Ashtech proprietary format).
 ATOM types 2, 3, 4, 5, 6, 7, 14 (respectively PVT, ATR, NAV, DAT, RNX, EVT)
- Networks: VRS, FKP, MAC
- Hot Standby RTK (Backup RTK)
- RTK operation with moving base
- Heading and pitch or roll determination with autocalibration (against another board or sensor).

Accuracy

All mentioned values are RMS. See (iii)

SBAS

Horizontal < 50 cm typical

DGPS

- Horizontal < 30 cm typical
- 95%: 90 cm (2.95 ft)

Flying RTK™

- Within 50 km of baseline: 5 cm + 1 ppm (iv)(v)
- Beyond 50 km of baseline: 20 cm + 1 ppm (iv)(vi)

RTK

⁽ii) CMR/CMR+ type 3 refers to GLONASS observations.

⁽iii) Accuracy and TTFF specifications may be affected by atmospheric conditions, signal multipath, and satellite geometry. Position accuracy specifications are for horizontal positioning. Vertical error is typically < horizontal error x 2.

⁽iv) Performance values assume minimum of five satellites, following the procedures recommended in the product manual. High multi-path areas, high PDOP values and periods of severe atmospheric conditions may degrade performance.

⁽v) Steady state value for baselines < 50 km after sufficient convergence time.

⁽vi) Typical values after 3 minutes of convergence for baselines < 50 km.

• Horizontal: 1 cm + 1 ppm

• Vertical: 2 cm + 1 ppm

Heading, Pitch/Roll

Heading: 0.2 deg/baseline (m) (iv)(vii)

Pitch/roll: 0.4 deg/baseline (m) (iv)(vii)

Velocity

• 95%: 0.1 knots (iii)

Real-Time Performance

Instant-RTK® Initialization

Typically 2-second initialization for baselines < 20 km

99.9% reliability

RTK initialization range

 \bullet > 40 km

Time to First Fix See Note (iii)

Re-acquisition: 3 sec

Hot start: 11 sec

Warm start: 35 sec.

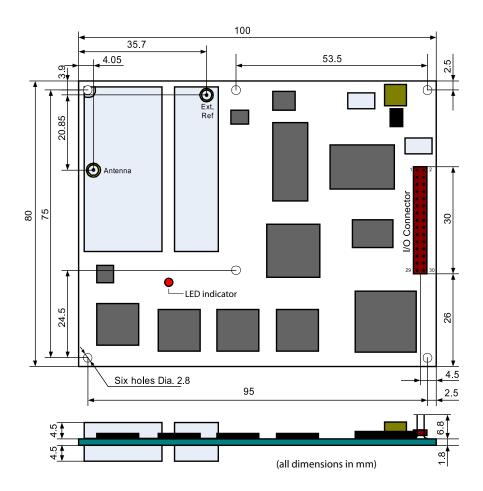
Cold start: 45 sec

Communication

- 1 Fast UART port (LV-TTL) up to 5 Mbits/sec
- 1 RS232 port up to 921.6 kbits/sec
- 1 USB Device 2.0 port up to 12 Mbits/sec

Environmental & Physical Characteristics

- Operating temperature: -30° to +70°C (-22° to +158°F)
- Storage temperature: -40° to $+85^{\circ}$ C (-40° to $+185^{\circ}$ F)
 - Power consumption: 2.4 W (GPS + GLONASS); 1.9 W (GPS only)
- Input voltage: 3.3 to 9 V DC
- Backup power: 2.6 to 3.3 V DC
- Antenna power: +5 V DC (±10%); DC current: 100 mA max., 5 mA min.
- I/O: 30-pin SAMTEC TMM-115-01-G-D-SM-P-TR connector
- Size: 100 x 80 x 13 mm (3.9 x 3.1 x 0.5 ")
- Weight: 61 g (2.18 oz)
- Antenna: MMCX straight female connector


⁽vii) Typical values for properly installed antenna on vehicle body.

- Reference Clock Input signal: MMCX straight female connector
- Dichromatic LED: power status and number of satellites locked for GPS/SBAS and GLONASS separately
- Humidity: 95%, non-condensing
- Vibration: MIL-STD-810F, Fig 514.5C-17
- Shock: MIL-STD 810F, Fig 516.5-10 (40g, 11 ms, sawtooth)

Other Configurations

MB 500 receivers are also available in a compact rugged sensor housing for easy-to-use evaluation kit or other applications.

Board Layout and Dimensions

The board can be secured onto a chassis of your choice through 6 holes dia. 2.8 mm. The above diagram gives all the dimensions allowing you to perform this operation.

I/O Connector Pin Out

Pin	Name	Туре	Description	Levels
1	+V_bulk	Input	+ Power Supply Voltage	+3.39V DC
2	+V_bulk	Input	+ Power Supply Voltage	+3.39V DC
3	GND	-	System Ground	-
4	GND	-	System Ground	-
5	LV_TXD	Output	Fast UART Transmit Data	LV-TTL
6	LV_RXD	Input	Fast UART Receive Data	LV-TTL
7	LV_RTS	Output	Fast UART Request to Send	LV-TTL
8	LV_CTS	Input	Fast UART Clear to Send	LV-TTL
9	CANL	,	(Not supported)	
10	CANH		(Not supported)	
11	+V_BU	Input	+Battery Backup Voltage	+2.63.3V
12	WAKE_UP	Input	Wake Up signal	LV-TTL, "0"-active, t=120 ms
13	воот	Input	Boot Select signal	LV-TTL, "1" or not con- nected-internal, "0"- external code storage
14	PPS	Output	Pulse per Second signal	LV-TTL, "0"-active, pulse width t=1 ms
15	GND	-	System Ground	-
16	GND	-	System Ground	-
17	EVENT	Input	External Event signal	LV-TTL, "0"-active, pulse width t=500 ns
18	ON/OFF	Input	On/Off Command	LV-TTL, "0"-OFF, "1" or not connected-ON
19	NC	-	Not Connected	-
20	REF	Output	Reference Clock signal	CMOS, 20 MHz
21	RESET	Input	Reset signal	LV-TTL, "0"-active, t=120 ms
22	TIOA1	Output	Programmable (see \$PASHS,PIN)	LV-TTL, set to "1" by default
23	GND	-	System Ground	-
24	GND	-	System Ground	-
25	DM	I/O	USB Device Data-	Standard USB Dev. 2.0
26	DP	I/O	USB Device Data+	Standard USB Dev. 2.0
27	RS-CTS	Input	RS-232 Clear to Send	Standard RS-232. Not used.
28	RS-RTS	Output	RS-232 Request to Send	Standard RS-232. Always set to "1".
29	RS-RXD	Input	RS-232 Receive Data	Standard RS-232
30	RS-TXD	Output	RS-232 Transmit Data	Standard RS-232

Connector type: SAMTEC TMM-115-01-G-D-SM

LED Indicator

A single LED indicator (see location on *page 9*) allows you to monitor both the power status and the constellations of satellites, based on the use of different colors, as explained in the table below.

Color	Meaning
Red	Power
Green	GNSS reception
Yellow	Delimiter between GPS/SBAS and GLONASS

The sequence of red, green and yellow flashes should be interpreted as follows:

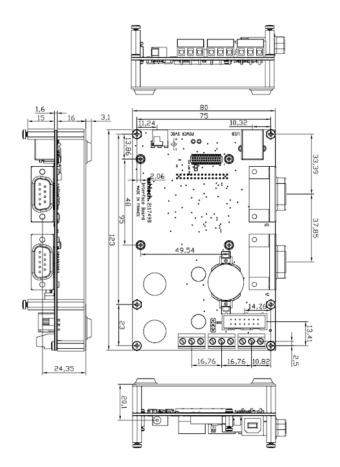
- 1. One red flash: Means the board is powered properly.
- 2. Green flashes: The number of green flashes is equal to the number of GPS and SBAS satellites tracked and locked.
- 3. One yellow flash: Ends the first sequence of green flashes (GPS+SBAS).
- 4. Green flashes: The number of green flashes is equal to the number of GLONASS satellites tracked and locked. One red flash: Ends the second sequence of green flashes (GLONASS) and resumes the whole of the above sequence of flashes from the beginning.

Communication Ports

Port	Type	Bit rate	Notes
Α	Fast UART	Up to 5 000 000 bits/s	LV-TTL levels
В	RS-232	Up to 460 800 bits/s	Standard RS-232 levels
С	USB Device	Up to 12 Mbits/s	Standard USB 2.0

Firmware Options

The list of available firmware options is given below.


- [C]: Advanced Multipath Mitigation
- [E]: Photogrammetry Event Marker
- [G]: GLONASS Tracking
- [H]: Heading function. Requires the [J] and [V] options to be installed as well.
- [J]: RTK Rover
- [K]: RTK Base
- [L]: 1 PPS (Timing Pulse Output)
- [P]: GPS/GLONASS L2 frequency tracking
- [S]: GPS L2CS tracking. Requires the [P] option to be installed as well.
- [T]: 10-Hz Position/Raw Data Update Rate (pre-installed)
- [V]: RTK with Moving Base. Requires the [J] option to be installed as well.
- [W]: 20-Hz Position/Raw Data Update Rate
- [Y]: SBAS Tracking.
- [I]: RAIM

Chapter 2. First Steps

Using the Evaluation Kit

The evaluation kit can be used at the design stage of a given application to test the performance of the board within that application.

Board Layout (All dimensions in mm)

Connector Pinout

RS232 ports A (J6) and B (J12) have the same pinout, which is as indicated in the table below. The connectors used are of the 9-pin SubD male type.

Pin	Signal
1	NC
2	RX to board
3	TX from board
4	Ground
5	Ground
6	NC
7	RTS from board
8	CTS to board
9	NC

The pinout of **Port 0 LVTTL** is provided in the table below. The connector used (J9) is of the HE10-14 male type.

Pin	Signal
1	Ground
2	RTS from board
3	Ground
4	CTS to board
5	Ground
6	RX to board
7	Ground
8	TX from board
9	Ground
10	1 PPS from board
11	Ground
12	EVT to board
13	Ground
14	Open=RS, close to ground=TTL

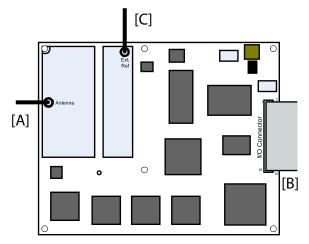
There are also three 3-pin screw terminal blocks with the following pinout:

• EVT/1PPS:

Pin	Signal	
1	EVT (to board)	
2	Ground	
3	1 PPS (from board)	

RST ON/OFF:

Pin	Signal	
1	Reset (active when low)	


Pin	Signal	
2	Ground	
3	ON/OFF (OFF when low)	

CAN BUS:

Pin	Signal	
1	NET-L (CAN bus low)	
2	Ground	
3	NET-H (CAN bus high)	

USB (J14): a standard USB2.0 connector. 5 VDC Power (J10): a standard jack connector.

Connecting MB 500 to your Application

Perform the connections required between the MB 500 and your application following the instructions below and referring to the above diagram.

• [A]: GNSS antenna input: A female MMCX straight connector. Please use a coaxial cable fitted with a male MMCX connector to apply the antenna signal to the board. The antenna used should incorporate a built-in LNA (Low-Noise Amplifier) with a gain of 23 dB minimum. An output voltage of 5 V DC ± 10% is also available on the center conductor of the GNSS antenna input. This DC voltage is used to power the antenna LNA when

connecting the antenna to the board's GNSS antenna input. The DC output current is monitored internally from which the antenna status is deduced:

Out DC current	Antenna status
5-100 mA	Normal
>100 mA	Antenna shorted
<5 mA	No antenna connected

The DC output is also protected from high DC voltages (up to 12 V) that might unintentionally be applied to the GNSS antenna input via the antenna cable.

- **[B]**: I/O connector: A 30-contact connector (see page 10 for connector pinout and type as well as signal specifications). All non-RF connections are routed through this connector. Perform the connections you need for your application:
 - Communication ports (A, B, C). Choose the port, or ports, you need for applying serial commands and output the messages you need for your application.
 - Main power supply. Used to power the board.

Input voltage range: 3.3 to 9.0 V DC

Power consumption: 2.4 W (GPS + GLONASS); 2.1 W (GPS only)

Power ON/OFF command input available.

Backup power supply. Used to power some RAM
 chipsets and clock circuitry. Permanently applying a
 backup voltage allows the board to speed up its startup
 sequence.

Input voltage range: 2.6 to 3.3 V DC Consumption: $< 3\mu A$ at $+20^{\circ}C$, $8 \mu A$ at $85^{\circ}C$

- External event signal input.
- PPS output.
- Clock output.
- Reset input.
- Miscellaneous signals (Wake up signal input, Boot select signal input, Power Supply Clock output).
- [C]: Reference Clock Input: A female MMCX straight connector. If you are using an external reference clock to drive the board, please use a coaxial cable fitted with a male MMCX connector to apply this signal to the board. The use of the reference clock in the board is controlled by the \$PASHS,REF command.

The permitted amplitude of the clock signal should be in the range 0.5 to 3 V peak to peak.

The frequency range for the external reference clock may be $5, 10 \text{ or } 20 \text{ MHz} \pm 1 \text{ ppm}$.

Quick Start with MB 500

This chapter describes the most popular setups to start with MB 500. This includes:

- Getting RTK position from MB 500
- Setting MB 500 to output raw data
- Setting MB 500 as RTK base.
- Setting MB 500 as moving RTK base
- Configuring RTK rover operated with moving RTK base
- Configuring RTK rover to work in heading mode with moving RTK base
- Configuring Hot Standby RTK (Backup RTK)
- RTK+Heading
- Requesting trouble ticket (ATL)

The MB 500 supports bidirectional communication through ports A, B and C.

In all the examples below, it is assumed that MB 500 output data are requested through port A and incoming corrections are applied to port B. For more detailed setups, please read the relevant chapters in the present manual.

Getting RTK Position from MB 500

- Run the \$PASHS,DIF,PRT,B command to choose port B as the port acquiring incoming differential corrections (the default port is A).
- Feed the corrections stream (in RTCM 2, RTCM 3, ATOM, CMR, CMR+, DBEN or TOPAZE format) into the MB 500 through port B.
- Run the \$PASHS,NME,GGA,A,ON command to enable the output of the position result on port A as a standard NMEA GGA message.

Setting MB 500 to Output Raw Data

GNSS raw data can be output in three different ways:

- Legacy Ashtech Raw messages
- Ashtech proprietary ATOM messages
- Standardized RTCM 3 messages

The resulting files can then be converted into legacy Ashtech B- or E-files, and RINEX format.

Outputting Raw Data in Legacy Ashtech Format

Run the series of commands below to enable the output of raw data messages in the legacy Ashtech format:

\$PASHS,RAW,PBN,A,ON \$PASHS,RAW,MPC,A,ON \$PASHS,RAW,SNV,A,ON \$PASHS,RAW,SNG,A,ON \$PASHS,RAW,SNW,A,ON \$PASHS,RAW,ION,A,ON

To disable all these messages, run the following command: \$PASHS,RAW,ALL,A,OFF

Outputting Raw Data in Ashtech Proprietary ATOM Format

Run the series of commands below to enable the output of raw data messages in the Ashtech proprietary ATOM format:

\$PASHS,ATM,RNX,A,ON,&SCN,0 \$PASHS,ATM,NAV,A,ON \$PASHS,ATM,ATR,A,ON

To disable all these messages, run the following command: \$PASHS.ATM.ALL.A.OFF

Outputting Raw Data in Standardized RTCM 3 Format

Run the series of commands below to enable the output of raw data messages in standardized RTCM 3 format:

\$PASHS,RT3,1004,A,ON \$PASHS,RT3,1006,A,ON \$PASHS,RT3,1012,A,ON \$PASHS,RT3,1013,A,ON \$PASHS,RT3,1019,A,ON \$PASHS,RT3,1020,A,ON \$PASHS,RT3,1033,A,ON

To disable all these messages, run the following command: \$PASHS,RT3,ALL,A,OFF

Setting MB 500 as RTK Base

First enter the receiver's known position using the \$PASHS,POS command. For example, run this command if your position is lat 55°39.358908'N, lon 37°31.607218' E and height 268.26 m:

\$PASHS,POS,5539.358908,N,3731.607218,E,268.26

Then the MB 500 can be configured as:

- RTCM 2.3 base
- RTCM 3.1 base
- ATOM base
- DBFN base
- CMR base
- CMR+ base

Setting up the MB 500 as an RTCM 2.3 Base

Run the series of commands below to enable the output of the required RTCM 2.3 messages on port A:

```
$PASHS,RT2,18,A,ON
$PASHS,RT2,19,A,ON
$PASHS,RT2,24,A,ON,13
$PASHS,RT2,23,A,ON,31
```

To disable all these messages, run the following command:

\$PASHS,RT2,ALL,A,OFF

Setting up the MB 500 as an RTCM 3.0 Base

Run the series of commands below to enable the output of the required RTCM 3.0 messages on port A:

```
$PASHS,RT3,1004,A,ON
$PASHS,RT3,1012,A,ON
$PASHS,RT3,1006,A,ON,13
$PASHS,RT3,1033,A,ON,31
```

To disable all these messages, run the following command: \$PASHS.RT3.ALL.A.OFF

Setting up the MB 500 as an ATOM Base

Run the series of commands below to enable the output of the required ATOM messages on port A:

```
$PASHS,ATM,RNX,A,ON or $PASHS,ATM,RNX,A,ON,&SCN,4
$PASHS.ATM,ATR,A,ON
```

To disable all these messages, run the following command:

\$PASHS,ATM,ALL,A,OFF

Setting up the MB 500 as a DBEN Base

Run the series of commands below to enable the output of the required DBEN messages on port A:

\$PASHS,NME,BPS,A,ON \$PASHS,RAW,RPC,A,ON

To disable all these messages, run the following commands:

\$PASHS,NME,BPS,A,OFF \$PASHS,RAW,RPC,A,OFF

Setting up the MB 500 as a CMR Base

Run the series of commands below to enable the output of the required CMR messages on port A:

\$PASHS,CMR,0,A,ON \$PASHS,CMR,3,A,ON \$PASHS,CMR,1,A,ON,13 \$PASHS,CMR,2,A,ON,31

To disable all these messages, run the following command: \$PASHS.CMR.ALL.A.OFF

Setting up the MB 500 as a CMR+ Base

Run the series of commands below to enable the output of the required CMR+ messages on port A:

\$PASHS,CMP,0,A,ON \$PASHS,CMP,3,A,ON

To disable all these messages, run the following command: \$PASHS,CMP,ALL,A,OFF

Setting MB 500 as Moving RTK Base

First, allow MB 500 to use a moving position as the reference position. This is achieved using the following command:

\$PASHS,POS,MOV

The MB 500 can then be set in one of the following configurations:

• RTCM-2.3 moving base

- RTCM-3.1 moving base
- ATOM moving base
- CMR moving base

NOTE: CMR+ and DBEN are not recommended protocols for a moving base.

Set Up MB 500 as RTCM2.3 Base With 1-Hz Rate

To start data output, run the following commands:

\$PASHS,RT2,18,A,ON,1 \$PASHS,RT2,19,A,ON,1 \$PASHS,RT2,24,A,ON,1 \$PASHS,RT2,23,A,ON,31

To stop data output, run the following command: \$PASHS,RT2,ALL.A,OFF

Set Up MB 500 as RTCM3.0 Base With 5-Hz Rate

To start data output, run the following commands:

\$PASHS,RT3,1004,A,ON,0.2 \$PASHS,RT3,1012,A,ON,0.2 \$PASHS,RT3,1006,A,ON,0.2 \$PASHS,RT3,1033,A,ON,31

To stop data output, run the following command: \$PASHS,RT3,ALL,A,OFF

Set Up MB 500 as ATOM Base With 10-Hz Rate

To start data output, run the following commands: \$PASHS,ATM,RNX,A,ON,0.1,&SCN,204 \$PASHS,ATM,ATR,A,ON

To stop data output, run the following command: \$PASHS,ATM,ALL,A,OFF

Set Up MB 500 as CMR Base With 2-Hz Rate

To start data output, run the following commands:

\$PASHS,CMR,0,A,ON,0.5 \$PASHS,CMR,3,A,ON,0.5 \$PASHS,CMR,1,A,ON,0.5 \$PASHS,CMR,2,A,ON,31

To stop data output, run the following command: \$PASHS,CMR,ALL,A,OFF

Configuring RTK Rover Operated With Moving RTK Base

- Make sure the moving base option is installed in the rover.
- Make sure the RTK base is set up as a moving RTK base.
- Run \$PASHS,DIF,PRT,B to choose port B as the port receiving incoming differential corrections (default port is A).
- Feed MB 500 with the moving base correcting stream (RTCM-2, RTCM-3 or CMR) through port B. The following commands should then be applied:

\$PASHS,CPD,BAS,1 (To state that the base is a moving base)

\$PASHS,CPD,FST,OFF (To disable FAST RTK)

\$PASHS,NME,GGA,A,ON[,x] (To output RTK position)

\$PASHS,NME,VEC,A,ON[,x] (To output moving baseline value)

NOTES:

- GGA accuracy is defined by the accuracy of the moving reference position.
- VEC accuracy is almost independent of the accuracy of the moving reference position.
- If x is omitted, GGA and VEC are output at a 1-Hz rate (default).
- x should preferably be equal to the moving base data interval.

Configuring RTK Rover to Work in Heading Mode With Moving RTK Base

- Make sure the heading option is installed in the rover.
- Make sure the RTK base is set up as a moving RTK base.
- Run \$PASHS,DIF,PRT,B to choose port B as the port receiving incoming differential corrections (default port is A).
- Feed MB 500 with the moving base correcting stream (RTCM-2, RTCM-3 or CMR) through port B. The following commands should then be applied:

\$PASHS,CPD,BAS,1 (To state that the base is a moving base) \$PASHS,CPD,FST,OFF (To disable FAST RTK) \$PASHS,CPD,ARR,MOD,ON (To enable the heading mode) (To allow baseline length self-calibration) \$PASHS,CPD,ARR,LEN,0 \$PASHS,NME,GGA,A,ON[,x] (To output RTK position) \$PASHS,NME,VEC,A,ON[,x] (To output moving baseline value) \$PASHS,NME,ATT,A,ON[,x] (To output baseline attitude and indicators) \$PASHS,NME,HDT,A,ON[,x] (To output baseline heading)

The heading mode can be disabled using the command \$PASHS,CPD,ARR,MOD,OFF.

NOTES:

- GGA accuracy is defined by the accuracy of the moving reference position.
- VEC accuracy is almost independent of the accuracy of the moving reference position.
- If x is omitted, GGA, VEC, ATT and HDT are output at a 1-Hz rate (default).
- x should preferably be equal to the moving base data interval.
- The ATT message is output for all epochs and includes an RTK "fixed/float" flag. The HDT message is output only for fixed ambiguity epochs.
- The ATT message includes heading and pitch or heading and roll. The HDT message only includes heading.
- For a given setup, a calibration stage will determine the baseline length. Once this is done, the rover receiver will automatically switch to heading mode. If the true baseline length is known, the user can enter this value and skip the calibration stage.
- If the baseline elevation and azimuth offset with respect to the vehicle center line are known, the user can enter these values, in which case vehicle attitude, instead of baseline attitude, will be output.

Setting Hot Standby RTK in a Rover

The receiver can operate in an advanced RTK mode, called "Hot Standby RTK", when two independent corrections streams enter the receiver through different ports.

In this case, the receiver has the ability to run two independent RTK engines, select the best RTK solution from the two running engines and deliver the best solution to the end user. The output message may for example be a GGA message, in which case the source of corrections from which the best solution was computed is provided as the "Base ID" field in the GGA message.

The algorithm through which the best RTK solution is chosen is an Ashtech proprietary algorithm.

To let the receiver operate in the Hot Standby RTK mode, do the following:

 Make sure two independent corrections streams are available and applied to the receiver through two different ports (e.g. one on port B, and the other on port C). Declare this situation in the receiver by running the following two commands:

\$PASHS,DIF,PRT,B \$PASHS,DI2,PRT,C

 Run the second RTK engine (for example configured to use corrections from port C):

\$PASHS,CP2,MOD,BKP

Using the Hot Standby RTK mode insures seamless RTK operation against the best base, provided that the two potentially used bases are static and leveled

To disable the Hot Standby RTK mode, run the following commands:

\$PASHS,DI2,PRT,OFF \$PASHS,CP2,MOD,OFF

RTK+Heading Mode

When two independent correction streams enter the receiver through different ports, then the receiver can be configured in the so-called "RTK+Heading" mode.

Usually, the first stream comes from a remote static base receiver via the GSM or UHF data link. The second one is applied via a cable and comes directly from a nearby sensor/antenna acting as a moving base.

In this case, the receiver can run two independent RTK engines:

- One computes precise RTK position against the remote static base.
- The other computes heading against the nearby moving sensor or antenna.

To let the receiver operate in "RTK + Heading" mode, do the following:

- Make sure two independent correcting streams are avaiable and applied to the receiver through two different ports (e.g. the first from static base to port B, and the second one to port C).
- Declare this situation in the receiver by running the following two commands:

\$PASHS,DIF,PRT,B \$PASHS,DI2,PRT,C

 Run the second RTK engine (corresponding to corrections coming to port C) by sending the following command:

\$PASHS,CP2,MOD,HED

• Configure the second RTK engine as follows:

Declare the second base as a moving base:

\$PASHS,CP2,BAS,1

Enable the heading mode:

\$PASHS,CP2,ARR,MOD,ON

Allow auto-calibration of the second baseline length:

\$PASHS,CP2,ARR,LEN,0

Using the following commands, set ATOM messages PVT and TT2 to output the resulting position and heading values at a given rate and on a given port (e.g. 1 Hz on port A):

\$PASHS,ATM,PVT,A,ON \$PASHS,ATM,TT2,A,ON

Note that only the TT2 message provides the results of the second RTK engine. Remember that all other messages, such as GGA, POS, HDT, ATT and VEC, always refer to the first RTK engine.

Requesting ATL Data

The receiver can generate the so-called "trouble ticket" in the form of ATL messages (ATL for All To Log).

When experiencing problems with their receivers, users may run the ATL command in order to be able to provide the problem data files to the Ashtech Technical Support. ATL messages are generated using a proprietary format.

To enable the generation of ATL messages on a port (e.g. port A), run the following command:

\$PASHS,ATL,A

To disable ATL messages, use this command:

\$PASHS,ATL,OFF

Chapter 3. Configuring the MB 500

Introduction to Serial Commands

Serial commands allow you to communicate directly with the receiver in its proprietary command language. Serial commands can be used for various purposes such as:

- Changing default settings
- Monitoring different receiver statuses (internal operation, constellations, etc.)
- Outputting messages on request

Serial commands fall into two categories:

- Set commands (\$PASHS,...), used to set or modify the receiver's internal parameters.
- Query commands (\$PASHQ,...), used to interrogate the receiver.

If you wish to change some internal settings in the receiver or modify the operating mode, then use the available set of \$PASHS commands.

If you want to read the instant status of the receiver, use the set of \$PASHQ commands. The receiver responds to \$PASHQ commands by returning one of the following, depending on which \$PASHQ command is sent:

- ASCII or binary formatted \$PASHR sentences, for your reading or/and automatic parsing.
- Non-formatted responses, like for example ASCII tables, only for your reading (not intended for automatic parsing).

If you want to program the receiver so that it delivers its results at regular intervals, then you should also use the set of available \$PASHS commands. The receiver will respond by delivering messages at the specified output rate. Messages fall into different groups:

- NME (standardized NMEA messages and NMEA-like Ashtech proprietary messages)
- RAW (Ashtech legacy binary data)
- ATM (Ashtech proprietary ATOM binary data)

- RT2 (Standardized RTCM-2 messages)
- RT3 (Standardized RTCM-3 messages)
- CMR (Widely used TRIMBLE CMR messages)
- CMP (Widely used TRIMBLE CMR+ messages)

A three-letter identifier is part of the \$PASHS command header clearly identifying which group of data the command deals with. For example, "\$PASHS,NME,GGA,A,ON,1" will enable the GGA NMEA message on port A at an output rate of 1 second.

In general, all the messages of a given group are output inside a dedicated transport layer. For example, NMEA-like and RAW data are output using the Ashtech legacy \$PASHR frame, whereas ATM and RT3 data are output using the standardized RTCM-3 transport protocol. For more convenience, using the \$PASHS,ENC command, you can ask the receiver firmware to output all the groups via the same port and using the same frame (e.g. \$PASHR).

The few conventions used to describe the serial commands in this manual are summarized in the table below.

C4	
String or sign	Description
\$PASHS	Header for set commands (Whole line shown in bold characters)
\$PASHQ	Header for query commands (Whole line shown in bold characters)
\$PASHR	Receiver response line, in normal characters.
\$	Header prefix for all standard NMEA messages delivered by the receiver.
[]	Optional field or parameter
,	Field delimiter
	Decimal point (used in f-type fields)
C	One-character string
d	Integer
f	Real number, with decimal places
h	Parameter in hexadecimal notation
m	Denotes specific data format used, such as angles (e.g. ddmm.mmm) or time (e.g. hhmmss.sss)
n	Used in the syntax of responses to query commands to indicate that a sequence of parameters will be repeated "n" times in the response. For example, n(f1,f2,f3) means the response will include the sequence "f1,f2,f3,f1,f2,f3,f1,f2,f3". The value of n is specific to each command.
S	Character string
*cc	Checksum

In response to a well recognized and properly executed set command, the receiver will return the message:

\$PASHR.ACK*3D

A set command is said to be "NAKed" when it is not accepted or acknowledged. The following message is then returned: \$PASHR.NAK*30

If this happens, check that the command has been typed correctly and the number and format of parameters are correct. In some cases, the execution of a set command may be contingent upon the prior activation of the corresponding firmware option.

Checksum Calculation: The checksum is computed by "exclusive-ORing" all of the bytes in the message between, but not including, the "\$" and the "*". The result is "*hh" where h is a hexadecimal character.

Coordinate Transformations: The receiver is not designed to perform internally coordinate transformations. So all the positions the receiver delivers refer to a "default" datum. The cartesian coordinates the receiver delivers (for example

The cartesian coordinates the receiver delivers (for example through the PBN message) are expressed on the following datum:

- Current ITRF realization used in broadcast ephemeris data (to date IGS05)
- Datum of reference position (applicable only for DGNSS and RTK modes)

A priori and generally speaking, the receiver does not know anything about the datum used by the local corrections provider to express the reference position it receives from that provider. As a result, the standalone position the receiver determines is tagged to the IGSO5 and the differential position is the sum of the reference position (on whichever datum it is expressed) and the baseline estimate (on the IGSO5 datum).

For internal transformations from cartesian (e.g. PBN) to geographical (e.g. POS) coordinates, the receiver uses the IGS05 (WGS-84 ellipsoid model).

Special Warning

Some legacy **GPS only** receivers (like Ashtech DG14 or Trimble 5800) *cannot* process incoming corrections containing GPS+GLONASS data *inside some protocols*. It is therefore highly recommended to run the \$PASHS,GLO,OFF command in any MB 500 base used by such GPS-only rovers.

Setting the Antenna & Receiver Parameters

Query or Set Command	Description
ANTENNA	
\$PASHS,ANT/ANH	Antenna Reference Point With Respect to Ground Mark
\$PASHS,ANP,DEL	Deleting User-Defined Antenna
\$PASHS,ANP,OUT	Enabling/Disabling Raw Data Reduction for a Specific Antenna
\$PASHS,ANP,OWN/REF	Naming Local and Reference Antennas
\$PASHS,ANP,PCO	Entering Offset Values to User-Defined Antennas
\$PASHS,POS	Setting the Antenna Position
\$PASHQ,ANP	Antenna Parameters
RECEIVER	
\$PASHS,AGB	Enable/disable GLONASS bias adjustments
\$PASHS,CRR	Code Correlator Mode
\$PASHS,GLO	Enabling/disabling GLONASS Tracking
\$PASHS,GNS,CFG	Selecting a GNSS mode
\$PASHS,INI	Resetting Receiver to Preferences
\$PASHS,LCS	Enabling/disabling use of local coord system
\$PASHS,POP	Setting Internal Update Rates for Measurement and PVT
\$PASHS,RCP,GBx	GLONASS Carrier Phase Biases for User-Defined Receiver
\$PASHS,RCP,OWN/REF	Naming Local and Reference Receivers
\$PASHS,REF	Enabling/Disabling Ext. Reference Clock
\$PASHS,RST	Default Settings
\$PASHS,SBA	Enabling/Disabling SBAS Tracking
\$PASHS,SMI	Code Measurement Smoothing
\$PASHS,ZDA	Setting Date & Time
\$PASHQ,PAR	Receiver Parameters
\$PASHQ,RID	Receiver Identification
\$PASHQ,RIO	Receiver Options
OBSERVATION & ELEVAT	ION MASKS
\$PASHS,ELM	Setting Elevation Mask for Raw Data Output

Query or Set Command	Description
\$PASHS,SOM,CTT	Cumulative tracking time mask
\$PASHS,SOM,NAV	Navigation data mask
\$PASHS,SOM,SNR	Signal-to-noise ratio mask
\$PASHS,SOM,WRN	Channel warnings mask
I/O SETTINGS	
\$PASHS,PHE	Setting Active Edge of Event Marker Pulse
\$PASHS,PIN	Setting programmable pin on I/O connector
\$PASHS,PPS	Setting PPS Pulse Properties
\$PASHS,SPD	Setting Baud Rates for Ports A and B
\$PASHQ,PRT	Baud Rate Settings
OTHER	
\$PASHS,ENC	Setting Transport Mode for Differential Data
\$PASHS,MSG	Entering User Data for Insertion into Standard Messages
\$PASHS,NME,MSG	Requesting Rover to Output Differential Message from Base
\$PASHS,SIT	Defining a Site Name
RECEIVER TEST MODE	
\$PASHS,PFL,TST	Switching Receiver to Test Mode

Setting the Position Computation Mode

Use the following set of commands to set the position computation mode used in the receiver.

Set Command	Description	
\$PASHS,CPD,AFP	Setting the Confidence Level of Ambiguity Fixing	
\$PASHS,CP2,AFP	Setting the Confidence Level of Ambiguity Fixing, second RTK engine	
\$PASHS,CPD,BAS	Setting Static or Moving Base Mode	
\$PASHS,CP2,BAS	Setting Static or Moving Base Mode, second RTK engine	
\$PASHS,CPD,NET	Network Corrections	
\$PASHS,CP2,MOD	Operating mode for second RTK engine	
\$PASHS,DIF,PRT	Choosing an Input Port for Differential Corrections to Pri-	
ψι / ιοι ιο, Βιι ,ι τι τ	mary RTK Engine	
\$PASHS,DI2,PRT	Choosing an Input Port for Differential Corrections to	
ψι / (Οι 10,Β12,1 T (1	Second RTK Engine	
\$PASHS,DYN	Receiver Dynamics	
\$PASHS,CPD,FST	Fast RTK Output Mode	
\$PASHS,CPD,RST	RTK Process Reset	
\$PASHS,CP2,RST	RTK Process Reset, second RTK engine	
\$PASHS,CPD,VRS	VRS Assumption Mode	
\$PASHS,KPI	Known Point Initialization	
\$PASHS,PEM	Setting the Position Elevation Mask	
\$PASHS,SVM	Setting the Maximum Number of Observations in the PVT	
\$PASHS,UTS	Synchronizing onto GPS Time	

Set Command	Description
\$PASHS,UDP	User-Defined Dynamic Model Parameters
\$PASHQ,BPS	Base position message
\$PASHQ,CPD,REF	Querying Rover for Base Position Used

Setting Differential Data Messages

Differential Data Messages Generated by the MB 500

The following messages can be generated by the MB 500:

- RTCM-3.1 message types 1001-1013, 1019, 1020, 1029, 1033
- RTCM-2.3 message types 1, 3, 9, 16, 18, 19, 20, 21, 22, 23, 24, 31, 32, 34, 36
- CMR message types 0, 1, 2, 3
- CMR+ message types 0, 3
- ATOM messages of types 4 and 7
 For each protocol, some default configurations can be recommended.

As a reminder, the content of some typical differential data messages are listed below:

- RTCM-3.1 message types 1001-1004 generate GPS and SBAS data.
- RTCM-3.1 message types 1009-1012 generate GLONASS data.
- RTCM-2.3 message types 18, 19, 20, 21 generate GPS and GLONASS data.
- CMR message types 0, 1, 2, 3 generate GPS observation, location, description and GLONASS observation data.
- CMR+ message type 0 generates GPS observation, location and description data.
- CMR+ message type 3 generates GLONASS observation data.
- CMR/CMR+ message type 3 is compatible with similar Leica/Topcon/Novatel messages described in the official Leica White Paper entitled "A GLONASS Observation Message Compatible With The Compact Measurement Record Format."
- ATOM messages contain GPS,GLONASS,SBAS observation, location and description data.

Data Transport Modes

The data transport mode is controlled by the \$PASHS,ENC command. The different data formats available can be output using the following transport modes:

- RTCM-3.1 messages can be output in native (RTCM-3 standard) or ASH transport mode.
- RTCM-2.3 messages can be output in native (RTCM-2 standard), RT3 or ASH transport mode.
- CMR messages can be output in native (CMR standard), RT3 or ASH transport mode.
- CMR+ messages can be output in native (CMP standard), RT3 or ASH transport mode.
- ATOM messages can be output in native (RT3) or ASH transport mode.

Setting ATOM Messages

Use the following set of commands to control the output of ATOM data messages.

Set Command	Description
\$PASHS,ATM	Enabling/Disabling ATOM Messages
\$PASHQ,PAR,ATM	ATOM Data Generation Settings
\$PASHS,ATM,ALL	Disabling All ATOM Messages

For more information on the ATOM protocol and data, refer to the *ATOM Reference Manual*.

Setting RTCM Messages

Use the following set of commands to control the output of RTCM data messages.

Set Command	Description
\$PASHS,RT2	Enabling/Disabling RTCM 2.3 Messages
\$PASHS,RT2,ALL	Disabling All RTCM 2.3 Messages
\$PASHS,RT3	Enabling/Disabling RTCM 3.1 Messages
\$PASHS,RT3,ALL	Disabling All RTCM 3.1 Messages

Setting CMR and CMR+ Messages

Use the following set of commands to control the output of CMR or CMR+ data messages.

Set Command	Description
\$PASHS,CMR	Enabling/Disabling CMR Messages
\$PASHS,CMR,ALL	Disabling All CMR Messages
\$PASHS,CMP	Enabling/Disabling CMR+ Messages
\$PASHS,CMP,ALL	Disabling All CMR+ Messages

Understanding How MB 500 Generates Differential Data Messages

All differential data messages may be output independently (if requested). The MB 500 may support a different output rate for each message.

However, because some messages include some others, there is no need to output them all (e.g. message type 1002 may not be output if message type 1004 is, because all data in message type 1002 are also included in message type 1004).

The order in which messages are output cannot be changed. Regardless of the order in which these are requested, the MB 500 will always keep the following order within each epoch:

- 1. Location messages (e.g. 1006)
- 2. Data messages (e.g. 1004,1012)
- 3. Description messages (e.g. 1033)

Location messages should go first for more effective support of the moving base RTK mode.

As recommended by the RTCM, for each epoch, GPS data go first (e.g. 1004), then GLONASS (e.g. 1012).

GPS and GLONASS data are output for the same physical time (the only exception can be for differential message types 1 and 31).

When the CMR or CMR+ format is used, GLONASS data always go first, owing to backward compatibility problems.

The intervals of time between messages cannot be chosen arbitrarily.

- For "fast" messages, only the following intervals are valid: 0.05, 0.1, 0.2, and 0.5 seconds.
 - The phase of these messages is chosen in such a way that messages are output at an integer number of seconds of GPS time.
- For "slow" messages, time intervals of entire seconds are admissible. However, for data messages such as 1001-1004 or 1009-1012, only the following time intervals are recommended: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 seconds and an integer number of minutes.

The phase of these messages is chosen in such a way that messages are output at an integer number of minutes of GPS week time.

These intervals and time shifts are recommended in the RTCM-2 standard and "kept in mind" in all the other standards. For "slow" location/description messages however, where exact time tagging is not important, any time interval with an integer number of seconds is permissible

(e.g. a 31-second interval is recommended fro message type 1033).

All messages (except ephemeris message types 1019 and 1020) are output on an "on-time" basis, i.e. they strictly comply with the requested time intervals. However, outputting these ephemeris messages follows the same philosophy as when outputting SNV and SNG messages, which means they are output independently and there can't be more than one 1019 and one 1020 message for each epoch.

There can be three types of output requirements:

- On new: messages start to be output only after they've been requested.
- On change: messages are output only when their contents have changed (e.g. new IODE).
- On time: messages are output at regular intervals of time whether or not their contents are changing.

All differential data messages can serve two different receiver modes:

- Base mode, when data are generated to be sent to a remote receiver (rover).
- Data collection mode, when data are recorded for further post-processing.

While almost the same data are used in both receiver modes, some setup differences may exist:

- When the RTCM or CMR (CMR+) format is used in base mode, the reference position inserted in differential data messages is a stationary position entered externally (either by specifying the exact coordinates of this position or through \$PASHS,POS,CUR). The message rate is typically 10 to 30 seconds. There is no need to generate ephemeris data, because this information is available on the rover side.
- When the RTCM or CMR (CMR+) format is used in data collection mode, the position inserted in differential data messages is the one currently computed for the receiver position (cf. \$PASHS,POS,MOV). It is desirable to generate the messages with the same rate as the one used for observations.

To use recorded data effectively in post-processing, there is a need to record ephemeris data if the format allows it (e.g. RTCM-3). Rough position and ephemeris are very desirable in this mode, because many of the messages (e.g. CMR Type 0) require that an integer value of

milliseconds of ambiguity in pseudo-range and carrier data be restored.

Differential Data Messages Received by the MB 500

The MB 500 can receive the following reference data:

- RTCM-3.1 message types 1001-1017, 1019-1023, 1029-1033
- RTCM-2.3 message types 1, 3, 9, 16, 18, 19, 20, 21, 22, 23, 24, 31, 32, 34, 36, 59.adv (FKP)
- CMR message types 0, 1, 2, 3
- CMR+ message types 0, 3
- ATOM message types 4 and 7
- DBEN message types 0 (GPS observations) and 1 (location)
- TOPAZE messages (single-frequency GPS/WAAS/EGNOS pseudo-ranges in satellite time, and dual-frequency GPS pseudo-ranges in satellite time).

The \$PASHS,DIF,PRT command can be used to specify the port dedicated to receiving the differential data stream (the differential decoder is then requested to "listen to" only one port).

To minimize decoder workload in the case of high-speed incoming data, the same command also allows you to specify the differential protocol used.

Differential decoders and processors do not make any *a priori* assumptions about the sequence of messages that follow and their intervals.

Why There is No Need for Specifying Base or Rover Mode

By default, the MB 500 starts operating as a rover as soon as a differential data stream is detected according to the settings of the \$PASHS,DIF,PRT command.

Operating the MB 500 in base mode results from the simple fact that commands are executed in the MB 500 that enable the generation of differential data messages.

So in no case does the base or rover mode in the MB 500 result from a specific command that would be applied to the board.

All generated differential data messages can be used not only to support the RTK base mode, but also to allow their further post-processing (if they are also recorded). In that respect, all available differential data formats (ATOM, RTCM, CMR) are equivalent to legacy MPC (etc.) messages.

Setting Raw Data Messages

Use the following set of commands to control the output of raw data messages.

Set or Query Command	Description
\$PASHS,RAW	Enabling/Disabling Raw Data Messages in Ashtech Format
\$PASHS,RAW,ALL	Disabling All Raw Data Messages
\$PASHQ, <message_name> Where <message_name>: ION, MCA, MPC, PBN, SNV, SNG, SNW, SAL, SAG, SAW or SBD.</message_name></message_name>	Asking for the Output of the Requested Raw Data Message

Setting the NMEA and NMEA-Like Data Messages

Enable/Disable Commands:

Query Command	Description
\$PASHS,NME	Enabling/Disabling NMEA and NMEA-like Messages
\$PASHS,NME,ALL	Disabling All NMEA and NMEA-Like Messages

NMEA Messages:

Query Command	Description	Resulting NMEA Message
\$PASHQ,ALM	Almanac Message	\$GPALM
\$PASHQ,GGA	GNSS Position Message	\$GPGGA
\$PASHQ,GLL	Geographic Position - Latitude/ Longitude	\$GPGLL
\$PASHQ,GRS	GNSS Range Residuals	\$GPGRS, \$GLGRS or
ψι Aoriα,ono	Green Range Residuals	\$GNGRS
\$PASHQ,GSA	GNSS DOP and Active Satellites	\$GPGSA, \$GLGSA or
VEASITY, GOA	GN33 DOF and Active Satellites	\$GNGSA
¢DACHO CCT	GNSS Pseudo-Range Error Sta-	\$GPGST, \$GLGST or
\$PASHQ,GST	tistics	\$GNGST
\$PASHQ,GSV	GNSS Satellites in View	\$GPGSV or \$GLGSV
\$PASHQ,HDT	True Heading	\$GPHDT
\$PASHQ,RMC	Recommended Minimum Specific GNSS Data	\$GPRMC
\$PASHQ,VTG	Course Over Ground and Ground Speed	\$GPVTG
\$PASHQ,ZDA	Time & Date	\$GPZDA

NMEA-like Messages:

Query Command	Description	Resulting NMEA-Like Message
\$PASHQ,ATT	Heading, Roll and Pitch	\$PASHR,ATT
\$PASHQ,LTN	Latency	\$PASHR,LTN
\$PASHQ,POS	Computed Position Data	\$PASHR,POS
\$PASHQ,PTT	PPS Time Tag	\$PASHR,PTT
\$PASHQ,SAT	Satellites Status	\$PASHR,SAT
\$PASHQ,VEC	Vector & Accuracy Data	\$PASHR,VEC
(External Event Signal)	Event Marker	\$PASHR,TTT

Setting the Heading Function

Use the following set of commands to set the heading mode in the receiver.

Set Command	Description
\$PASHS,CPD,ARR,LEN	Setting the Baseline Length in Heading Mode
\$PASHS,CPD,ARR,MOD	Enabling/Disabling the Heading Mode
\$PASHS,CPD,ARR,OFS	Setting Heading and Elevation Offsets
\$PASHS,CPD,ARR,PAR	Setting Upper Limits in Heading Mode

Chapter 4. Set Command Library

AGB: Enabling/Disabling GLONASS Bias Adjustments

Function

This command is used to enable or disable the adjustment of L1 & L2 GLONASS carrier biases in the receiver so that the GLONASS Double-Difference carrier residuals between the receiver and the *golden Ashtech receiver* are equal to zero (± noise errors).

MB 500 is considered as the golden Ashtech receiver. After activating the adjustment function, the receiver name provided by any message supposed to deliver that name (e.g. RTCM-3 MT 1033) will appear in the form:

ASHTECH<space><name>

Where <space> is a space character between the two words and <name> is the receiver name entered through the \$PASHS,RCP,OWN command.

Command Format

Syntax

\$PASHS,AGB,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enabling (ON) or disabling (OFF) adjustment of GLONASS biases	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	

Example

Enabling adjustment of GLONASS biases:

\$PASHS,AGB,ON*1C

ANP, DEL: Delete User-Defined Antenna

Function

This command allows you to delete the definition of a userdefined antenna.

Command Format

Syntax

\$PASHS,ANP,DEL,s1[*cc]

Parameters

Parameter	Description	Range
s1	User-defined antenna name (case-sensitive)	31 characters max.
*cc	Optional checksum	*00-*FF

Example

Deleting RZ510A antenna definition:

\$PASHS,ANP,DEL,RZ510A*1A

ANP,OUT: Defining a Virtual Antenna

Function

This command allows you to specify the name of an antenna that raw data will be adjusted to. By specifying the name of a virtual antenna, you ask the receiver to correct ("reduce") the raw and differential data it generates from the received GNSS signals to make them available as if they had been received through *that* antenna.

Command Format

Syntax

\$PASHS,ANP,OUT[,s1][*cc]

Parameters

Parameter	Description	Range
s1	Virtual antenna name (case-sensitive). Running this command with s1 omitted means that no virtual antenna is used (data reduction disabled).	31 characters max.
*cc	Optional checksum	*00-*FF

Examples

Setting the ADVNULLANTENNA as the virtual antenna:

Disabling the use of the virtual antenna:

\$PASHS,ANP,OUT*48

Comments

- By default, the receiver observables are not corrected for the type of GNSS antenna used. It's only by providing separately the name of the GNSS antenna used (declared as the OWN antenna) that the antenna corrections can be performed when processing the receiver observables. Now precisely, the ANP,OUT command allows you to directly generate the raw and differential observables for the type of antenna you specify in the command (e.g. ADVNULLANTENNA).
- Be aware that the raw data reduction process is possible only if the name of the antenna physically used by the receiver has been specified through the \$PASHS,ANP, OWN command and declared in the receiver's antenna database as one of the default or user-defined antennas. Otherwise, the command will be NAKed.
- Raw data reduction will not be performed on data from any satellite located below the elevation mask.
- When raw data reduction is effective, any antenna name messages generated by the receiver will include the name of the virtual antenna, and not the antenna serial number or the setup ID.
- If no reference position has been entered in the receiver, raw data reduction is performed in such a way that the location of the L1 phase center is left unchanged.
- If a reference position has been specified through the \$PASHS,POS command, raw data reduction is performed in such a way that this reference position is left unchanged. If the reference position is explicitly given for the L1 phase center or the ARP, raw data reduction is made in such a way that the location of respectively the L1 phase center or the ARP is left unchanged.

See Also \$PASHS,ANP,OWN

ANP,OWN: Naming Local Antenna

Function

This command is used to enter the name of the antenna connected to the receiver (local antenna).

\$PASHS,ANP,OWN,s1[,s2[,d3]][*cc] or \$PASHS,ANP,OWN,s1,,d3[*cc]

Parameters

Parameter	Description	Range
s1	User-defined antenna name (case-sensitive). There is no default name (s1 empty). The command will be "NAKed" if s1 consists of more than 31 characters.	31 characters max.
s2	Antenna serial number	31 characters max.
d3	Antenna setup ID	0-255
*cc	Optional checksum	*00-*FF

Comments

- The antenna name must be chosen to be consistent with the built-in antenna database, which is a hard-coded database. The firmware has the capability to extract numerical values from the parameters entered under a given antenna name.
- Parameters s2 and d3 have little interest for a rover (that's why they are optional). If however they are specified, they should be inserted in such RTCM messages as type 1008 or 1033, in which room is reserved for these parameters.
- With the receiver used as an RTK base, the s1 parameter (and also the s2 and d3 parameters if available) are inserted into antenna name messages (e.g. RTCM 23 or RTCM 1007, 1008 or 1033). If needed, the receiver performs the transformation of the entered base position from ARP to APC, or vice versa.
- With the receiver used as an RTK rover, the numerical values corresponding to the s1 parameter are used to appropriately correct the local antenna data.

Example

Entering "ASH111661" as the name of the receiver antenna: \$PASHS,ANP,OWN,ASH111661*26

ANP, REF: Naming Reference Antenna

Function

This command is used to enter the name of the antenna used by the reference station the receiver is working with.

\$PASHS,ANP,REF,s1[,d2][*cc]

Parameters

Parameter	Description	Range
s1	User-defined antenna name (case-sensitive). There is no default name (s1 is empty)	31 characters max.
d2	Antenna name preference (see note below)	0 (default) or 1
*cc	Optional checksum	*00-*FF

Comments

- Antenna names must be chosen to be consistent with the built-in antenna database, which is a hard-coded database. The firmware has the capability to extract numerical values from the parameters entered under a given antenna name.
- With the receiver used as an RTK rover, the numerical values corresponding to the s1 parameter are used to correct the data from the reference antenna.
- When the receiver is used as an RTK rover and d2=0, the
 antenna name (s1) will be ignored if the incoming
 reference data contain the reference antenna name.
 Reciprocally, in the same context and with d2=1, the
 antenna name entered as s1 will be used, and the antenna
 name decoded from the incoming reference data will be
 ignored.

Example

Entering "ASH802111" as the name of the reference antenna (ignored if messages from base include reference antenna name):

\$PASHS.ANP.REF.ASH802111*2A

ANP,PCO/EDx: Entering Offset Values to User-Defined Antennas

Function

These commands are used to enter offset values to the definition of a given user-defined antenna.

Up to 5 user-defined antennas can be added to the existing antenna list. Being kept in the Battery Backup Unit (BBU), the list is preserved after a usual power cycle but can however be deleted through a receiver cold reset.

\$PASHS,ANP,PCO,s1,f2,f3,f4,f5,f6,f7[,F8][*cc]

\$PASHS,ANP,ED1,s1,f2,f3,f4,...,f20[*cc]

\$PASHS,ANP,ED2,s1,f2,f3,f4,...,f20[*cc]

Parameters

ANP,PCO

Parameter	Description	Range
Headers	ANP stands for Antenna Parameters PCO stands for Phase Center Offset	-
s1	User-defined antenna name (case-sensitive).	31 characters max.
f2, f3, f4	North/East/Up phase center offset for L1, in mm (with respect to Antenna Reference Point)	Full range of real variable allowed
f5, f6, f7	North/East/Up phase center offset for L2, in mm (with respect to Antenna Reference Point)	Full range of real variable allowed
f8	Antenna class: O: High-grade antenna (default) 1: Low-grade antenna	0, 1
*cc	Optional checksum	*00-*FF

ANP,ED1 and ANP,ED2

Parameter	Description	Range
Headers	ANP stands for Antenna Parameters ED1 (ED2) stands for Elevation Dependent	
ricaucis	for L1 (L2)	
s1	User-defined antenna name (case-sensitive).	31 characters max.
f2 to f20	Elevation-dependent delays for L1 (L2) in mm. These parameters correspond to elevations from 90 degrees to 0 degrees in 5-degree steps.	Full range of real variable allowed
*cc	Optional checksum	*00-*FF

Comments

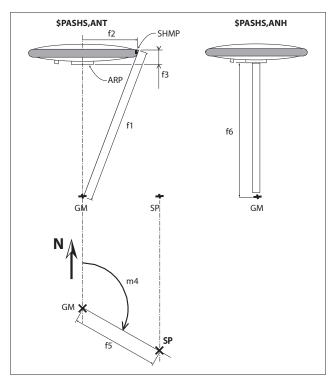
- Applying either of these commands to an existing antenna name causes the firmware to modify the corresponding parameters of this antenna accordingly and save them to backup memory. All other predefined parameters of the antenna not addressed by the command will be left unchanged.
- You may not apply the three commands necessarily for a given antenna name. The firmware will assume that the parameters corresponding to the non-applied commands

- will be all zero, if it's a newly created antenna name, or all as predefined if it's an already existing antenna name.
- Each antenna record kept in the database has an additional indicator to tell whether the antenna is a highor low-grade class antenna.

When a user-defined antenna is specified using the above commands, defining the antenna grade class is recommended. In most cases, all antennas used are of the high-grade class type. However, if you wish to integrate an Ashtech GNSS board into a handheld device fitted with a cheap antenna element, then specifying this antenna as of the low-grade type is recommended. Usually such an antenna does not provide high SNR and is more affected by multipath errors. In this case, it is better for the algorithms of the internal GNSS board to be informed that the board is working with a low-grade class antenna.

Example

Entering offset parameters for "LEIAT504 LEIS" antenna: \$PASHS,ANP,PCO,LEIAT504 LEIS,2.5,1.3,106.5,-0.7,1.3,125.4*0C \$PASHS,ANP,ED1,LEIAT504 LEIS,0.0,0.0,-0.3,-0.8,-1.1,-1.4,-1.6,-1.8,-1.9,-1.9,-1.9,-1.8,-1.6,-1.4,-1.2,-1.0,-0.7,-0.3,0.0*4A \$PASHS,ANP,ED2,LEIAT504 LEIS,0.0,0.0,0.8,0.5,0.2,0.0,-0.1,-0.2,-0.2,-0.1,-0.1,0.0,0.1,0.1,0.2,0.2,0.2,0.1,0.0*6C


ANT & ANH: Antenna Reference Point With Respect to Ground Mark

Function

These two commands allow you to define the 3D location of the Antenna Reference Point (ARP) with respect to the survey point.

The offset parameters entered through ANT allow the receiver to deduce the position of the ARP from the entered reference position for the survey point (SP). The antenna offset parameters are never used to correct internally the computed receiver position, unless this position is generated as a reference position in differential protocol. The value entered for the vertical offset can also be included in some reference data messages.

When the antenna is placed just above the survey point and the vertical distance to the ARP is known, this distance can be entered through the more straightforward ANH command.

You will necessarily choose only one of these commands to define the ARP and discard the other. Whether the last command run is ANT or ANH, it will in any case supersede the settings made with the ANT or ANH command run previously.

Command Format

Syntax

\$PASHS,ANT,f1,f2,f3,m4,f5[*cc] or

\$PASHS,ANH,f6[*cc]

Parameters

See also the above two diagrams for reference.

Parameter	Description	Range
f1	Slant height measurement, from ground mark (GM) to antenna edge (SHMP).	0-6.5535 m
f2	Antenna radius: horizontal distance from ARP to SHMP (antenna edge).	0-6.5535 m

Parameter	Description	Range
f3	Vertical offset from ARP to SHMP, negative if SHMP is above ARP, positive otherwise. See also comments below.	-3.2768 to 3.2767 m
m4	Horizontal azimuth [dddmm.mm] for the horizontal line connecting the ground mark (GM) to the survey point (SP), measured with respect to WGS84 North.	0-35959.99 (from 0° to 359° 59.99")
f5	Horizontal offset from the ground mark (GM) to the survey point (SP).	0-6.5535 m
*cc	Optional checksum	*00-*FF
f6	Antenna height from ARP to ground mark (GM).	0-6.5535 m
*cc	Optional checksum	*00-*FF

Example

Entering the vertical measurement (2 m) of a rover antenna: \$PASHS,ANH,2.0000*02

Comments

- The ground mark (GM) is defined as the vertical projection of the ARP to the ground.
- The vertical height from ARP to ground mark can also be entered through the ANT command, which in this case should be used as follows:
 - Set **f1** to "0.0"
 - Enter the antenna height from ARP to ground mark as
 f3 (which by the way in this case is equal to f6). Only when f1=0.0 can you define f3 this way.

ATL: Debug Messages

Function

This command allows you to enable or disable the output of the binary ATL message on the specified port. The ATL message is output at its own output rate (not user-settable). ATL messages report useful data flowing in, and generated by the receiver for debugging purposes.

After you have disabled the output of ATM messages, you should save all the messages collected by the connected device (e.g. Hyperterminal running on a computer) as a file, typically named "atl.log".

Normally you don't have to enable this message but the Ashtech Technical Support may ask you to do so if a problem

occurs in your receiver and Technical Support needs to analyze the resulting log file (atl.log) to fix the problem.

The content of the atl.log file can only be analyzed by Ashtech as the ATL message uses a proprietary, undisclosed data format, which in addition is subject to change without notice.

Command Format Sy

Syntax

\$PASHS,ATL,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	ID of port on which the ATL message is output or "OFF" to disable data recording and close the file.	A, B, C, OFF	OFF
*cc	Optional checksum	*00-*FF	

Example

Enabling the ATL message on port A:

\$PASHS,ATL,A*41

Disabling the ATL message:

\$PASHS,ATL,OFF*4F

Comments

- The ATL message is in binary format. Only the header (\$ATL) of the message appears in plain format for easy recognition of the data stream.
- The ATL message can only be output on a single port at a time. If you need to change the output port (e.g. from A to B), then you should first stop the message on port A and re-enable the output on port B.
- The ATL setting is not affected by power cycles. If the output of ATL messages is enabled when the receiver is turned off, it will still be enabled when the receiver is turned back on (and reciprocally).
- The ATL message can be output on a given port without affecting the messages you have programmed on this port. This is because ATL uses a specific format, different from the one used for all the other output messages. See however the recommendations below.

Although normally ALT messages will not interfere with your own messages on the same port, here are a few recommendations for best use of the ATL command:

Use a specific output port for ATL messages whenever possible.

- The size of ATL messages may vary significantly, depending on internal receiver settings (CGF, POP, etc.) and the availability of corrections data (see throughput requirement estimates below). Ashtech recommends you set the port accordingly, in order to have sufficient data throughput assuring ATL data and your other messages to be output uncorrupted. It is therefore advisable to use the highest possible baud rate for the port delivering the ATL messages.
- You should ask for ATL messages only after the receiver has been set in the configuration that needs debugging, otherwise ATL messages will be of little help to Technical Support.

ATL messages should be enabled only when you think that the receiver is not operating as expected. With some heavy user configurations (e.g. 20 Hz RTK + 10 Hz heading, numerous data outputs enabled), enabling ATL messages may to some extent affect data output (corrupted data, missing epochs, increased latency), especially if they are output on the same port as user data.

On the other hand, ATL messages will have no impact whatsoever on the internal receiver algorithms.

Below are rough estimates of the data throughput requirements for typical receiver operating modes. These are averaged figures. The instant figures may vary by as much as $\pm 50\%$ depending on the operating conditions.

Receiver Operating Mode	Data Throughput (bytes/second)
Standalone, POP,10	2,500
Standalone, POP,20	3,000
Fast RTK (10-Hz corrections input), POP,10	9,000
Fast RTK (10-Hz corrections input), POP,20	10,000

ATM: Enabling/Disabling ATOM Messages

Function

This command allows you to enable or disable ATOM messages on the specified port. For more details about the ATOM format, please refer to the *AshTech Optimized Messaging (ATOM) Reference Manual*.

Command Format Syntax

\$PASHS,ATM,s1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range
s1	ATOM message type	MES, PVT, TT1, TT2, ATR, NAV, DAT, RNX, EVT, STA
c2	Port ID	A, B, C
s3	Enable (ON) or disable (OFF) this ATOM message type.	ON, OFF
f4	Output rate, in seconds.	See ATOM Reference Manual
*cc	Optional checksum	*00-*FF

Examples

Enabling ATOM message type PVT on serial port A at a 1-second output rate:

\$PASHS,ATM,PVT,A,ON,1*0E

Enabling ATOM message type RNX on serial port A: \$PASHS.ATM.RNX.A.ON*05

Comments

Defining output rates for ATOM messages should follow the rules presented in *Understanding How MB 500 Generates Differential Data Messages on page 34*.

ATM, ALL: Disabling All ATOM Messages

Function

This command disables all ATOM messages currently enabled on the specified port.

Command Format

Syntax

\$PASHS,ATM,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Example

Disabling all ATOM messages on port A:

\$PASHS,ATM,ALL,A,OFF*4E

CMR: Enabling/Disabling CMR Messages

Function

This command is used to enable or disable the continuous output of CMR messages.

Command Format

Syntax

PASHS,CMR,d1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range	Default
d1	Data message	See table below	-
c2	Port ID	A, B, C	-
s3	Enabling/disabling command	ON, OFF	OFF
f4	Output interval, in seconds	See table below.	1
*cc	Optional checksum	*00-*FF	-

The list of supported data messages is the following:

Data	Description	f4 Range
0	GPS observations	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. integer minutes, up to 960.
1	Reference WGS84 position (location) tagged to L1 phase center	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, etc. integer seconds, up to 999.
2	Reference site description (as entered through \$PASHS,MSG)	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, etc. integer seconds, up to 999.
3	GLONASS observations	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. integer minutes, up to 960.

Example

Setting default CMR messages at a base:

\$PASHS,POS,<coordinates of position> or \$PASHS,POS,CUR*51

\$PASHS,CMR,0,A,ON,1*68 \$PASHS,CMR,1,A,ON,13*5A \$PASHS,CMR,2,A,ON,31*59 \$PASHS,CMR,3,A,ON,1*6B

Comments

Defining output rates for CMR messages should follow the rules presented in *Understanding How MB 500 Generates Differential Data Messages on page 34*.

CMR,ALL: Disabling All CMR Messages

Function

This command is used to disable all the CMR messages currently enabled on the specified port.

Command Format

Syntax

\$PASHS,CMR,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Example

Disabling all CMR messages on port A:

\$PASHS,CMR,ALL,A,OFF*4A

CMP: Enabling/Disabling CMR+ Messages

Function

This command is used to enable or disable the continuous output of CMR+ messages.

Command Format Syntax

\$PASHS,CMP,d1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range	Default
d1	Data message	See table below	-
c2	Port ID	A, B, C	-
s3	Enabling/disabling command	ON, OFF	OFF
f4	Output interval, in seconds	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., integer minutes, up to 960	1
*cc	Optional checksum	*00-*FF	-

The list of supported data messages is the following:

Data	Description	
0	GPS observations, location, description	
3	GLONASS observations	

Comments

- The output interval refers to the time interval between observations.
- Location and description data are spread over a number of consecutive observation epochs regardless of the output interval.
- The number of epochs required to output the complete message depends on the length of the description data. If there is no description data, then this number is 7 epochs, which means the complete location information has a fixed period of 7 epochs.

Example

Setting default CMR+ messages at a base:

\$PASHS,POS,<coordinates of position> or \$PASHS,POS,CUR*51

\$PASHS,CMP,0,A,ON,1*6A \$PASHS,CMP,3,A,ON,1*69

Comments

Defining output rates for CMP messages should follow the rules presented in *Understanding How MB 500 Generates Differential Data Messages on page 34*.

CMP, ALL: Disabling All CMR+ Messages

Function

This command is used to disable all the CMR+ messages currently enabled on the specified port.

Command Format

Syntax

\$PASHS,CMP,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Example

Disabling all CMR+ messages on port A:

\$PASHS,CMP,ALL,A,OFF*48

CPD,AFP - CP2,AFP: Setting the Confidence Level of Ambiguity Fixing

Function

This command is used to set the confidence level required of the ambiguity fixing process. The higher the confidence level, the more likely the ambiguities are fixed correctly, but the longer the time it takes to fix them.

Command Format

Syntax

For primary RTK engine:

\$PASHS,CPD,AFP,f1[*cc]

For second RTK engine:

\$PASHS,CP2,AFP,f1[*cc]

Parameters

Parameter	Description	Range	Default
f1	Confidence level, in percent, required of ambiguity fixing process. Choosing "0" means the receiver will not try to fix ambiguities but instead will stay indefinitely in Float mode.	0, 95.0, 99.0, 99.9	99.0
*cc	Optional checksum	*00-*FF	-

Example

Setting the confidence level to 99.9% for primary RTK engine:

\$PASHS,CPD,AFP,99.9*62

CPD,ARR,LEN - CP2,ARR,LEN: Setting the Baseline Length in Arrow Mode

Function

This command is used to set the baseline length between the base and the rover in arrow mode.

Command Format

Syntax

For the primary RTK engine:

\$PASHS,CPD,ARR,LEN,f1[*cc]

For the second RTK engine:

\$PASHS,CP2,ARR,LEN,f1[*cc]

Parameters

Parameter	Description	Range	Default
f1	Baseline length in meters. When setting f1 to"0" and the arrow mode is ON, the receiver switches to calibration mode. Once the baseline length is determined, the receiver automatically switches from calibration to arrow operating mode.	0 or 0.05 to 1000 m	0
*cc	Optional checksum	*00-*FF	-

Example

Setting the baseline length to 2.5 meters for the primary RTK engine:

\$PASHS,CPD,ARR,LEN,2.5*21

CPD,ARR,MOD - CP2,ARR,MOD: Enabling/Disabling the Arrow Mode

Function

This command is used to enable or disable the arrow mode in the receiver. The arrow mode is defined as a special RTK mode primarily used when the receiver (whether a base or a rover) is mounted on a solid body (e.g. a vehicle) and the baseline length is constant, to determine the vehicle's heading and pitch or roll.

Command Format

Syntax

In the primary RTK engine: \$PASHS,CPD,ARR,MOD,s1[*cc]

In the second RTK engine: \$PASHS,CP2,ARR,MOD,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enabling/disabling command.	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	-

Example

Turning on the arrow mode in the primary RTK engine: \$PASHS,CPD,ARR,MOD,ON*08

Comments

- If the baseline length has not been set yet (using \$PASHS,CPD,ARR,LEN) when the \$PASHS,CPD,ARR,MOD command is run, the receiver automatically switches to the arrow calibration mode. Only after the baseline length has been determined (or entered through \$PASHS,CPD,ARR,LEN) will the receiver switch to the arrow operating mode.
- As the arrow mode uses an extra baseline constraint, the resulting solution is provided with higher availability and reliability.
- Since in most of the heading applications the base is moving, the \$PASHS,CPD,BAS,1 command also needs to be run when enabling the arrow mode.

CPD,ARR,OFS - CP2,ARR,OFS: Setting Heading and Elevation Offsets

Function

This command is used to set the heading and elevation offsets from the vehicle centerline.

Command Format

Syntax

For the primary RTK engine: \$PASHS,CPD,ARR,OFS,f1[,f2][*cc] or \$PASHS,CPD,ARR,OFS,,f2[*cc]

For the second RTK engine: \$PASHS,CP2,ARR,OFS,f1[,f2][*cc] or \$PASHS,CP2,ARR,OFS,,f2[*cc]

Parameters

Parameter	Description	Range	Default
f1	Baseline azimuth offset angle.	0° to 359.99°	0°
f2	Baseline elevation offset angle	-90° to +90°	0°
*cc	Optional checksum	*00-*FF	-

Comments

- The default value for f2 is applicable only if the baseline length is user entered. It is not applicable if the baseline length results from a calibration process.
- It is recommended to use a baseline elevation offset as close as possible to zero and a baseline heading offset as close as possible to nx90 degrees.
- If the azimuth offset is close to 0 or 180°, then the vehicle's pitch and heading will be estimated and output.
- If the azimuth offset is close to 90 or 270°, then the vehicle's roll and heading will be estimated and output.
- If the heading offset from either North, South, West or East exceeds 15 degrees, then the receiver delivers the heading component of attitude, but does not output pitch and roll.
- If the elevation offset is greater than 45 degrees or less than -45 degrees, then the receiver considers installation to be invalid and does not output any attitude information (i.e. no pitch, no roll and no heading).

- The specified values of offsets have an effect only when the rover is operating in arrow mode.
- Sending the command without f1 or f2 will not change the corresponding offset value currently used, which will stay either that entered previously through a valid CPD,ARR, OFS command, or 0° (default value) if no such command was run.

Example

Setting the baseline offsets to 90° azimuth and 2° elevation for the primary RTK engine:

\$PASHS,CPD,ARR,OFS,90,2*02

CPD,ARR,PAR - CP2,ARR,PAR: Setting Upper Limits in Arrow Mode

Function

This command is used to set the upper limits of baseline elevation and expected maximum error in the entered baseline length.

Command Format

Syntax

For the primary RTK engine: \$PASHS,CPD,ARR,PAR,d1[,f2][*cc]

or

\$PASHS,CPD,ARR,PAR,,f2[*cc]

For the second RTK engine:

\$PASHS,CP2,ARR,PAR,d1[,f2][*cc]

or

\$PASHS,CP2,ARR,PAR,,f2[*cc]

Parameters

Parameter	Description	Range	Default
d1	Maximum value of expected baseline elevation (absolute value), in degrees. Parameter d1 only affects the arrow operating mode and is not applied during baseline length auto-calibration.	0° to 90°	15
f2	Maximum value of tolerated baseline length error, in meters.	0.001 to 10	0.01
*cc	Optional checksum	*00-*FF	-

Comments

Sending the command without d1 or f2 will not change the corresponding limit currently used, which will stay either that entered previously through a valid CPD,ARR,PAR command, or the default value if no such command was run.

The default value for f2 is applicable only if the baseline length is user entered. It is not applicable if the baseline length results from a calibration process.

Example

Setting the limits to 10° for elevation and 0.02 m for baseline length error for the primary RTK engine:

\$PASHS,CPD,ARR,PAR,10,0.02*3D

CPD,BAS - CP2,BAS: Setting Static or Moving Base Mode

Function

This command is used to set the operating mode for the receiver with either a static or moving base.

Command Format

Syntax

Primary RTK engine:

\$PASHS,CPD,BAS,d1[*cc]

Second RTK engine:

\$PASHS,CP2,BAS,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	=0: Base is assumed to be static =1: Base is assumed to be moving	0, 1	0
*cc	Optional checksum	*00-*FF	-

Example

Setting the receiver to operate with a moving base (primary RTK engine):

\$PASHS,CPD,BAS,1*43

Comments

- The [V] firmware option is required for this command to work.
- When setting the receiver to operate with a moving base (primary RTK engine), it is advisable to choose the timetagged RTK mode, rather than the Fast RTK mode, using \$PASHS,CPD,FST,OFF.

CPD,FST: RTK Output Mode

Function

This command enables or disables the fast RTK output mode (Fast CPD mode). By default, the Fast CPD mode is enabled. When working with a moving base, Ashtech recommends you turn off the Fast CPD output mode.

Command Format

Syntax

\$PASHS,CPD,FST,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) the fast RTK output mode	ON, OFF	ON
*cc	Optional checksum	*00-*FF	-

Example

Enabling the fast RTK output mode:

\$PASHS,CPD,FST,ON

CP2,MOD: Operating Mode for Second RTK Engine

Function

This command is used to set the operating mode in the second RTK engine.

Command Format

Syntax

\$PASHS,CP2,MOD,s1[*cc]

Parameters

Parameter		Range	Default
s1	Choice of operating mode for second RTK engine	HED, BKP, OFF; See table below.	OFF
*cc	Optional checksum	*00-*FF	

s1 parameter	Description
HED	Switches second RTK engine to heading mode.
BKP	Switches second RTK engine to backup mode.
OFF	Turns off second RTK engine.

Example

Enabling backup mode (Hot Standby RTK) in second RTK engine:

\$PASHS,CP2,MOD,BKP*4B

Comments

- Whether s1=HED or BKP, the resulting output for the second RTK engine is controlled by the ATM,TT2 command. The output data are available as an extra ATM,PVT message, the header of which clearly identifies the second RTK engine as the provider of the position solution. Being wrapped into Ashtech transport, this message is provided to end users as a \$PASHR,TT2 message.
- Using s1=BKP is recommended in all cases where the receiver can potentially get two independent corrections streams (usually acquired at 1 Hz each) from different static bases and entering the receiver through different physical or virtual ports.

In this mode, the position delivered by the receiver (through messages ATM,PVT or GGA, or other) is the best of the two solutions provided by the two RTK engines used (the primary and backup ones).

Determining which solution is the best is done by the receiver itself, taking into account all the internal parameters and indicators at its disposal. At any given

time, users can identify the RTK engine from which the delivered position originates by reading the base station ID provided in the position message.

When used in Backup mode (s1=BKP), the second RTK engine will only accept time-tagged reference data determined for integer seconds of time.

 Using s1=HED is possible when the receiver is fed with two independent corrections streams, entering the receiver through different physical or virtual ports.

The primary stream usually comes from a remote static base at 1-Hz rate and should serve the conventional RTK function.

The secondary stream typically comes from a nearby sensor (at a rate usually greater than 1 Hz) and should serve the heading function.

In this mode, the position delivered by the receiver (through messages ATM,PVT or GGA, or other) will always originate from the primary RTK engine. The heading result, delivered by the second RTK engine, can be read by enabling the ATM,TT2 output message.

Still in heading mode, the second RTK engine will only provide a time-tagged solution, at an update rate of up to 10 Hz, matching the update rate of the incoming corrections. It is recommended to set "POP,10" in this case. The position and heading are then available at an output rate no greater than 10 Hz each. It is still possible to work with "POP,20" but in this case, there may be a noticeable percentage of missing epochs with a number of tracked satellites greater than about 16.

Setting the second RTK engine to operate in heading mode affects the way the primary RK engine works: It can still provide Fast RTK solutions at up to 20 Hz, but can only provide time-tagged solutions at maximum 1 Hz.

Since in most heading applications the base is moving, then the following command should be run additionally when enabling the heading mode:

\$PASHS,CP2,BAS,1

 If the base and rover are fixed on a solid body, i.e. the baseline length is fixed and constant in time, the second RTK engine can advantageously be set to Arrow mode. See CP2,ARR,MOD.

In this case, different heading and elevation offsets can be introduced. See CP2,ARR,OFS.

See also DIF, PRT and DI2, PRT.

CPD, NET: Network Corrections

Function

This command sets the behavior of the receiver with relation to network corrections, i.e. RTK correction data delivered by a network. When using master base data (and only in this case), ignoring network corrections means ignoring MAC and FKP corrections.

Command Format

Syntax

\$PASHS,CPD,NET,d1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
d1	RTK network operating mode relative to GPS corrections: 0: GPS corrections from network are not used. 1: FKP/MAC GPS corrections from network are used when available and healthy, otherwise they are rejected.	0-1	1
d2	RTK network operating mode relative to GLONASS corrections: 0: GLONASS corrections from network are not used. 1: FKP/MAC GLONASS corrections from network are used when available and healthy, otherwise they are rejected.	0-1	0
*cc	Optional checksum	*00-*FF	

Example

Setting the receiver to process GPS and GLONASS network corrections:

\$PASHS,CPD,NET,1,1*51

Comments

This command is NAKed if the [J] firmware option is not installed.

CPD,RST - CP2,RST: RTK Process Reset

Function This command resets the RTK processing.

In the primary RTK engine:

\$PASHS,CPD,RST[*cc]

In the second RTK engine:

\$PASHS,CP2,RST[*cc]

Parameters

None.

Example

Resetting the RTK processing in the primary RTK engine: \$PASHS,CPD,RST*5B

CPD, VRS: VRS Assumption Mode

Function

This command is used specifically to set the receiver (a rover) to operate in the so-called "compulsory VRS mode" through which it is forced to consider that the differential corrections it receives are always VRS corrections (this impacts the way corrections are processed internally).

When not operated in this mode, the receiver will automatically detect whether the received corrections are, or are not, VRS corrections (Automatic detection).

Command Format

Syntax

\$PASHS,CPD,VRS,d[*cc]

Parameters

Parameter	Description	Range	Default
d	VRS assumption mode: • 0: Automatic detection • 1: Compulsory VRS mode • 2: Never switches to VRS mode	0, 1, 2	0
*cc	Optional checksum	*00-*FF	

Example

Enabling the compulsory VRS mode:

\$PASHS.CPD.VRS.1*44

CRR: Code Correlator Mode

Function

This command is used to select the type of code correlator used for multipath mitigation.

Command Format

Syntax

\$PASHS,CRR,c1[*cc]

Parameters

Parameter	Description	Range	Default
c1	Code correlator type: E: Edge correlator S: Strobe correlator	E, S	See below
*cc	Optional checksum	*00-*FF	-

Example

Selecting the strobe correlator type:

\$PASHS,CRR,S*49

Comments

- The [C] firmware option (Advanced Multipath Mitigation) is required for this command to work.
- The Ashtech multipath mitigation technique can generally reduce the code multipath error.
- The default setting depends on whether the [C] option is enabled or not:
 - "Edge correlator" is used if option [C] is disabled.
 - "Strobe correlator" is used if option [C] is enabled.

DIF,PRT: Choosing an Input Port for Differential Corrections to Primary RTK Engine

Function

This command is used to choose the input port (and protocol) of the incoming differential corrections for use in the primary RTK engine.

Command Format Syntax

\$PASHS,DIF,PRT,c1[,s2][*cc]

Parameter	Description	Range	Default
c1	Input port ID Physical port: A, B or C (Virtual port: V, W, X, Y or Z)	A, B, C, (V, W, X, Y, Z)	А
s2	Protocol	ALL, ATM, CMR, DBN, RT2, RT3, TPZ	ALL
*cc	Optional checksum	*00-*FF	

Example

Choosing port A and protocol RT3 for the incoming differential corrections:

\$PASHS,DIF,PRT,A,RT3*30

Comments

- If s2 is omitted or set to ALL, then any of the possible differential protocols received on the specified port (c1) will be decoded.
- Specifying the protocol, if known a priori, will improve the throughput of the differential decoder. The choice of a protocol, and implicitly of the corresponding differential decoder, will indeed result in disabling all the other differential decoders.
- Both the CMR and CMR+ protocols are detected if CMR is specified.
- When the requested differential protocol is received on the specified port and detected, the corresponding differential messages are decoded and, when requested, the \$PASHR,DDM message is output.
- When the requested differential protocol is received on the specified port, the resulting corrections are fed to the primary RTK engine. These may be RTK corrections or DGPS corrections, in which case a code-differential position will be determined.
- Whatever differential stream is applied to another port, it will be ignored and so will not be fed to the primary RTK engine.
- Choosing a protocol on the specified port implies that any other protocol received on that port will be ignored.
- For more information on virtual ports, see ATOM,DAT,EXT message in the ATOM Reference Manual.

DIF,PRT,OFF: Disabling Differential Corrections on the Primary RTK Engine

Function

This command is used to disable all differential decoders through which corrections are normally applied to the primary RTK engine.

Command Format

Syntax

\$PASHS,DIF,PRT,OFF[*cc]

Parameters

None.

Example

Disabling differential decoders:

\$PASHS,DIF,PRT,OFF*27

DI2,PRT: Choosing an Input Port for Differential Corrections to Second RTK Engine

Function

This command is used to choose the input port (and protocol) of the incoming differential corrections for use in the second RTK engine.

Command Format

Syntax

\$PASHS,DI2,PRT,c1[,s2][*cc]

Parameters

Parameter	Description	Range	Default
c1	Input port ID Physical port: A, B or C (Virtual port: V, W, X, Y or Z)	A, B, C, (V, W, X, Y, Z)	A
s2	Protocol	ALL, ATM, CMR, DBN, RT2, RT3, TPZ	ALL
*cc	Optional checksum	*00-*FF	

Example

Choosing port A and protocol RT3 for the incoming differential corrections:

\$PASHS,DI2,PRT,A,RT3*44

Comments

- If s2 is omitted or set to ALL, then any of the possible differential protocols received on the specified port (c1) will be decoded.
- Specifying the protocol, if known a priori, will improve the throughput of the differential decoder. The choice of a protocol, and implicitly of the corresponding differential decoder, will indeed result in disabling all the other differential decoders.
- Both the CMR and CMR+ protocols are detected if CMR is specified.
- When the requested differential protocol is received on the specified port and detected, the corresponding differential messages are decoded and, when requested, the \$PASHR,DDM message is output.
- When the requested differential protocol is received on the specified port, and the second RTK engine has been enabled through \$PASHS,CP2,MOD, then these corrections are fed to the second RTK engine.
- If \$PASHS,DIF,PRT and \$PASHS,DI2,PRT specify the same port and same protocol, then \$PASHR,DDM messages will be output twice when requested.
- Whatever differential stream is applied to another port, it will be ignored and so will not be fed to the second RTK engine.
- Choosing a protocol on the specified port implies that any other protocol received on that port will be ignored.
- For more information on virtual ports, see ATOM, DAT, EXT message in the ATOM Reference Manual.

DI2,PRT,OFF: Disabling Differential Corrections on the Second RTK Engine

Function

This command is used to disable all differential decoders through which corrections are normally applied to the scond RTK engine.

Command Format

Syntax

\$PASHS,DI2,PRT,OFF[*cc]

Parameters

None.

Example

Disabling differential decoders:

\$PASHS,DI2,PRT,OFF*53

DSY: Daisy Chain

Function

This command is used to redirect all the characters flowing through a given serial port (source port) to another (destination port), without interpreting the flow of redirected data.

Once the daisy chain mode is on, only the command used to discontinue this mode can be interpreted on the source port. Redirection can be in both directions, in which case two DSY commands, instead of one, are required to allow bidirectional data flow.

Command Format

Syntax

Redirecting data from a source port to a destination port: \$PASHS,DSY,c1,c2[*cc]

Discontinuing the daisy chain mode from a specified source port:

\$PASHS,DST,c1,OFF[*cc]

Discontinuing the daisy chain mode for all source ports:

\$PASHS,DSY,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Source port ID	A, B, C
c2	Destination port ID	A, B, C
*cc	Optional checksum	*00-*FF

Examples

Redirecting port B to port A:

\$PASHS,DSY,B,A*38

Redirecting port B to port A and port A to port B:

\$PASHS,DSY,B,A*38

\$PASHS,DSY,A,B*38

For a connection to the board through port A, enter \$PASHS,DSY,B,A first. For a connection to the board through port B, enter \$PASHS,DSY,A,B first.

Discontinuing the daisy chain mode from port A:

\$PASHS,DSY,A,OFF*35

Discontinuing the daisy chain mode from all source ports: \$PASHS.DSY.OFF*58

DYN: Receiver Dynamics

Function

This command allows you to define the receiver dynamics. The chosen number best represents the receiver motion.

Command Format

Syntax

\$PASHS,DYN,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Receiver dynamics: 1: Static 2: Quasi-static 3: Walking 4: Ship 5: Automobile 6: Aircraft 7: Unlimited 8: Adaptive 9: User-defined	1-9	8
*cc	Optional checksum	*00-*FF	

Example

Setting rover dynamics to "Walking":

\$PASHS,DYN,3*39

Comments

- If the receiver is set as an RTK rover using a moving base mode, then the DYN setting will be ignored. The "8" option (adaptive) will always be used instead. If the receiver is set as an RTK rover using a moving base mode, it is recommended to use d1=8 (Adaptive).
- In the adaptive mode (8), the receiver analyzes its own motion and automatically chooses one of the dynamic models that is the most suitable. The possible dynamic

models are those corresponding to the other choices in the command (i.e. 2 to 7, but not 1 or 9). Using the adaptive mode rejects the possible use of the user-defined dynamic model.

ELM: Setting the Elevation Mask for Raw Data Output

Function

This command is used to set the minimum satellite elevation for the output of raw and differential measurement data. The following data are impacted: MPC, MCA, RT2, RT3, CMR, CMR+, ATM regardless of their use (i.e. as input protocol for differential data or in raw data recording).

Command Format

Syntax

\$PASHS,ELM,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Elevation mask, in degrees.	0-90°	5
*cc	Optional checksum	*00-*FF	

Example

Setting the elevation mask to 10 degrees:

\$PASHS,ELM,10*1C

ENC: Setting Transport Mode for Differential Data

Function

This command defines the transport mode used for every differential data message flowing through the specified port.

Command Format

Syntax

\$PASHS,ENC,c1,s2[*cc]

Parameter	Description	Range	Default
c1	Port ID.	A, B, C	-
s2	Transport identifier.	See table below	NTV
*cc	Optional checksum	*00-*FF	

The list of transport identifiers is the following:

Data	Description
ASH	\$PASHR transport used for encapsulation of all non-Ashtech messages
RT3	Standardized RTCM-3 transport for encapsulation of all non-RT3 mes-
KIJ	sages.
NTV	NaTiVe transport, i.e. no encapsulation for all output messages.

Example

Setting the data encapsulation mode to "NTV" for port A:

\$PASHS.ENC.A.NTV*30

Comments

When a differential data message flowing through a given port has a native transport mode different from the one defined for the port, then its data are *encapsulated* to comply with the transport mode selected for the port.

The table below lists the message formats that are encapsulated depending on the transport mode selected for the port. A bullet point means the data are encapsulated. A blank cell means the transport mode selected for the port corresponds to the native transport mode of the message and so the message data will not be encapsulated.

Message Format	ASH	RT3	NTV
RTCM 3.1	•		
RTCM 2.3	•	•	
CMR	•	•	
CMR+	•	•	
ATOM	•		
DBEN		•	

GLO: GLONASS Tracking

Function

This command is used to enable or disable GLONASS tracking. It is valid only if the GLONASS option has been activated in the receiver. See also \$PASHS,GNS,CFG.

Command Format Syntax

\$PASHS,GLO,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) GLONASS tracking.	ON, OFF	ON
*cc	Optional checksum	*00-*FF	

Example

Enabling GLONASS:

\$PASHS,GLO,ON*1C

GNS,CFG: Selecting a GNSS Mode

Function

This command allows you to select the GNSS mode that the receiver should use. The GNSS mode refers to the constellations and frequencies used.

Command Format

Syntax

\$PASHS,GNS,CFG,d1[*cc]

Parameters

Parameter	Description	Range
	GNSS mode:	
	• 0: GPS L1	
	1: GPS L1 & GLONASS L1	0, 1, 2, 3, 4,
d1	• 2: GPS L1/L2P	0, 1, 2, 3, 4, 5
	• 3: GPS L1/L2C	3
	 4: GPS L1/L2P & GLONASS L1/L2 	
	5: GPS L1/L2C & GLONASS L1/L2	
*cc	Optional checksum	*00-*FF

Default Setting

The default setting depends on the firmware options installed:

	[G] Option Enabled	No [G] option
[P] Option Enabled	4	2
No [P] Option	1	0

Example

Setting the receiver GNSS mode to GPS L1/L2P & GLONASS L1/L2:

\$PASHS,GNS,CFG,4*59

Comments

- Changing the GNSS mode setting causes GNSS reception to be reset (the number of received/used satellites drops to 0 straight away and then rapidly comes back to normal).
- The command will be NAKed if the firmware option corresponding to the requested change has not been activated.
 - Modes "1", "4" and "5" will be NAKed as long as the [G] option (GLONASS) is kept inactive.
 - Modes "2", "3", "4" and "5" will be NAKed as long as the [P] option (L2) is kept inactive.
 - Modes "3" and "5" will be NAKed as long as the [S] option (L2CS) is kept inactive.
- When GLONASS is disabled (mode 0, 2 or 3), the following actions will be NAKed:
 - Attempt to run \$PASHS,GLO
 - Attempt to set the following messages: SNG, SAG, RTCM-3 MT 1009-1012 and CMR/CMR+ MT3

INI: Resetting Receiver According to Your Preferences

Function

This command resets the receiver processor and memory according to the different options you choose.

Command Format

Syntax

\$PASHS,INI,d1,d2,d3[*cc]

Parameter	Description	Range
d1	Port A baud rate code	2-15 See "Baud Rate Codes" table below.
d2	Port B baud rate code	2-11 See "Baud Rate Codes" table below
d3	Memory reset code: 0: No memory reset 1: Cold start 5: Warm start (ephemeris data cleared, but almanac and position/time data preserved)	0, 1, 5 See Memory Reset Codes table below
*cc	Optional checksum	*00-*FF

Baud Rate Codes:

Code	Baud Rate						
2	1 200	6	19 200	10	230 400	14	2 500 000
3	2 400	7	38 400	11	460 800	15	5 000 000
4	4 800	8	57 600	12	921 600		
5	9 600	9	115 200	13	1 428 571		

Memory Reset Codes:

Reset Code:	0	1	5
Clear receiver parameters in BBU		•	
Clear ephemeris data		•	•
Clear almanac data		•	
Clear latest position		•	
Clear RTC time		•	
Reset channels	•	•	•
Restart processor	•	•	•
Clear receiver parameters in RAM		•	•

Example

Resetting ports A and B to 115 200 Bd and asking for a cold start:

\$PASHS,INI,9,9,1*26

KPI: Known Point Initialization

Function

This command is used to force the receiver to perform PVT initialization on a point with known geographical coordinates (expressed in the ITRF model used).

Command Format

Syntax

\$PASHS,KPI,m1,c2,m3,c4,f5[,f6,f7,f8][,c9][*cc]

Parameters

Parameter	Description	Range	Default
m1	Latitude in degrees, decimal minutes (ddmm.mmmmmmm)	0-90	-
c2	North (N) or South (S)	N,S	-
m3	Longitudes in degrees, decimal minutes (dddmm.mmmmmmm)	0-180	-
c4	East (E) or West (W)	E,W	-
f5	Height in meters	±9999.9999	-
f6	Accuracy (rms) in lat direction	0-99.999 m	0.01
f7	Accuracy (rms) in lon direction	0-99.999 m	0.01
f8	Accuracy (rms) in alt direction	0-99.999 m	0.01
с9	Position attribute	PC1,ARP,SPT See table below	PC1
*cc	Optional checksum	*00-*FF	-

Position Attributes:

Parameter	Description
PC1	Position is referenced to L1 phase center.
ARP	Position is referenced to ARP.
SPT	Position is referenced to survey point.

Example

Forcing the receiver to initialize from lat $37^{\circ}22.2912135'$ N, lon 121° 59.7998217' W, height 15.25 m:

\$PASHS,KPI,3722.2912135,N,12159.7998217,W,15.25

Comments

 Obviously, the KPI command should be used only for a static receiver occupying the specified point. The receiver can however start moving a few seconds after it has accepted the command.

- On receiving the KPI command, the receiver performs automatic PVT reset and initialization against the specified point.
- Any attempt to assign a value less than "0.001 m" to f6, f7 or f8 will be rejected. The firmware will automatically assign the value "0.001" instead.
- To prevent the receiver from bad initialization, it is your responsibility to provide the exact coordinates of the point where initialization takes place, and also to make a sensible assessment of the accuracy figures you provide in the command.

In fact, when the KPI command is executed, an internal watchdog routine protects the receiver from obviously wrong initialization. The routine checks that:

- An internally computed receiver position is available.
- The difference between internal receiver position and KPI position is less than 100 meters for each component.

If at least one of the two conditions above is not met, then the KPI command is NAKed.

LCS: Enabling/Disabling Use of the Local Coordinate System

Function

This command is used to enable or disable the use of the local coordinate system in the receiver. Having the receiver using a local coordinate system requires that it receives RTCM 3.1 message type 1021-1027 from the base.

Command Format

Syntax

\$PASHS,LCS,s1[*cc]

Parameters

Parameter	Description	Range	Default
	ON: Local coordinate system used if RTCM 3.1 messages received OFF: Coordinate system used is WGS84	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	-

Example

Enabling the use of the local coordinate system in the receiver:

\$PASHS,LCS,ON*04

Comments

When this command is set to ON, the board is allowed to decode RTCM-3 MT 1021 to 1027 and further process MT 1021 to 1023, which are currently generated by some SAPOS networks. The processing of message types 1024 to 1027 is currently not supported.

All legacy position messages (e.g. GGA, POS, PBN, or ATM,PVT,COO) are not affected by coordinate transformation messages. When this command is set to ON, local coordinates are delivered in extra-block ATM,PVT,LDP.

"LDP" stands for Local Datum Position. The extra-block is output only if the receiver considers that the transformation parameters are valid and match the ATM,PVT,COO position. Positions in ATM,PVT,COO and ATM,PVT,LDP always refer to the same position, but are expressed in a different datum. The LDP block also provides information on the name of the local datum.

MSG: Defining a User Message

Function

This command is used to define a user message to be generated "as is" or for insertion into one or more of the following standard messages:

- ATOM, ATR, UEM, if requested
- RTCM message type 16, 36 or 1029
- CMR type 2
- CMR+ type 0

Any new MSG command you send to the receiver overwrites the user message previously defined through the same command.

Command Format

Syntax

\$PASHS,MSG,[c1],s2[*cc]

Parameter	Description	Range	Default
c1	Message interpreter (provision for future uses): 0: ASCII message generated periodically. If c1 is omitted, this is interpreted as c1=0	0	0
s2	User message	100 characters max.	"MB500" (receiver name)
*cc	Optional checksum	*00-*FF	

Example

Sending ASCII message "going to stop at 11pm" periodically: \$PASHS,MSG,0,going to stop at 11pm*5F

Comments

Warning! Only the first 90 characters from the user message will actually be transferred through RTCM-2 message types 16 and 36.

NME: Enabling/Disabling NMEA Messages

Function

This command is used to enable or disable NMEA messages and Ashtech NMEA-like messages.

Command Format

Syntax

\$PASHS,NME,s1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range
s1	Data message type	See tables below
c2	Port ID	A, B, C
s3	Enables (ON) or disables (OFF) the message. OFF by default.	ON, OFF
f4	Output rate, in seconds. Default is 1 second.	See tables below
*cc	Optional checksum	*00-*FF

NMEA messages:

Data	Description	f4 Range
ALM	LGPS almanac nata	1, 2, 3, 4, 5, etc. any integer second up to 999

Data	Description	f4 Range
GBS	GNSS Satellite Fault Detection	
GGA	GPS fix data	
GLL	Geographic position - Latitude / Longitude	
GRS	GNSS range residual	
GSA	GNSS DOP and active satellites	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30,
GST	GNSS pseudo-range error statistics	60, 120 s, etc. any integer
GSV	GNSS satellites in view	minute up to 960 s (16
HDT	True heading	min).
RMC	Recommended minimum specific GNSS data	,
VTG	Course over ground and ground speed	
ZDA	Time and date	

Ashtech NMEA-like messages:

Data	Description	f4 range
ATT	Heading, roll and pitch	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. (integer minutes up to 960)
BPS	Base position 1, 2, 3, 4, 5, etc. (integ seconds up to 999). Default: 30 seconds	
DDM	Differential decoder message	Not Applicable
LTN	Latency	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. (integer minutes up to 960)
POS	Position	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. (integer minutes up to 960)
PTT	1 PPS time tag	Not Applicable
SAT	Satellite status	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. (integer minutes up to 960)
TTT	Event marker Not Applicable	
VEC	Baseline vector	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. (integer minutes up to 960)

Example

Setting GGA message on USB port at 1-second output rate:

\$PASHS,NME,GGA,C,ON,1*01

Comments

- For ALM messages, the f4 parameter can only take an integer value of seconds (by default 3600) and refers to the interval between messages related to the same satellite and with the same content.
- For a given satellite, the ALM messages are therefore renewed every "x" seconds (x=f4), or following a change in the message content ("on change"), whichever occurs first.
- ALM messages cannot be output more than once over a given period of 1 second.

NME,MSG: Requesting Rover to Output Differential Message from Base

Function

This command is used in a rover to output the incoming differential stream as a user-readable message. The message is available on the specified port at the same output rate. The incoming differential stream may enter the rover through any of its ports but the resulting output message can only be the one defined through DIF,PRT (and not DI2,PRT).

Command Format

Syntax

Activating message output: \$PASHS,NME,MSG,c1,ON[,f1][*cc]

Deactivating message output:

\$PASHS,NME,MSG,c1,OFF[,f1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
f1	For future use	
*cc	Optional checksum	*00-*FF

Example

Enabling message on port A:

\$PASHS,NME,MSG,A,ON*06

Response Format

The message delivered on the specified port is in the form: \$PASHR,MSG,message[*cc]

Where "message" can be one of the following decoded data:

- RTCM3 MT 1029
- RTCM2 MT 16 or 36
- ATOM, ATR MT UEM

Example:

\$PASHR.MSG.ProMark500

See Also

\$PASHQ,DDM

This command can be used to read all the differential streams, and not only the one defined by DIF,PRT.

NME, ALL: Disabling All NMEA and NMEA-Like Messages

Function

This command is used to disable all NMEA messages and Ashtech NMEA-like messages currently enabled on the specified port.

Command Format

Syntax

\$PASHS,NME,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Example

Disabling all NMEA and NMEA-like messages on port A: \$PASHS,NME,ALL,A,OFF*50

PEM: Setting the Position Elevation Mask

Function

This command is used to set the elevation mask used in the position processing.

Command Format Syntax

\$PASHS,PEM,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Elevation mask angle, in degrees	0-90°	5
*cc	Optional checksum	*00-*FF	

Example

Setting the elevation mask for position processing to 15 degrees:

\$PASHS,PEM,15*05

PFL,TST: Switching Receiver to Test Mode

Function

This command is used to switch the receiver in test mode. The receiver then automatically performs a series of tests (see below).

- Digital section tests:
 - Internal communications (UARTs, HPI) test
 - Fast UART test
 - SDRAM tests
 - Backup SRAM test
 - NOR Flash test
 - Real Time Clock test
 - MMU test
- RF section tests:
 - P/S voltages test
 - GPS L1/L2 and GLONASS L1/L2 AGC voltages test
 - LO2 control voltage test
 - Antenna LNA current consumption test
 - PLLs lock test

At the end of the tests, the receiver returns a test report (see below) and is then re-started (cold start).

Command Format Syntax

\$PASHS,PFL,TST[*cc]

None.

Response Format Example

\$PASHR.WAT.250000*1D

\$PASHR,ACK*3D

\$PASHR,DGT,TST,00000000*70

\$PASHR,ACK*3D

\$PASHR,ADC,0,1023*02

\$PASHR,ADC,1,699*35

\$PASHR,ADC,2,1023*00

\$PASHR,ADC,3,691*3F

\$PASHR,ADC,4,551*37

\$PASHR,ADC,5,627*34

\$PASHR,ADC,6,594*3C

\$PASHR,ADC,7,815*39

\$PASHR,ADC,8,597*31

\$PASHR,ADC,9,29*00

\$PASHR.APW.OK*1A

\$PASHR,LCK,3*2F

\$PASHR,ACK*3D \$PASHR,RID,DG34,G100*59

All zeros in \$PASHR,DGT,TST mean that all digital section tests were performed and the receiver passed them all.

PHE: Setting the Active Edge of the Event Marker Pulse

Function

This command is used to set the active edge (rising or falling) of the event marker pulse used in photogrammetry timetagging. The Event Marker firmware option [E] must be installed for this command to work.

Command Format

Syntax

\$PASHS,PHE,c1[*cc]

Parameters

Parameter	Description	Range	Default
c1	Active edge code: • "R" for rising edge • "F" for falling edge	R, F	R
*cc	Optional checksum	*00-*FF	

Example

Making the falling edge active:

\$PASHS,PHE,F*42

PIN: Assigning Function to Programmable Pin on I/O Connector

Function

This command is used to assign a specific function to the programmable pin on the board's I/O connector.

Command Format

Syntax

\$PASHS,PIN,d1,s2,d3[*cc]

Parameters

Parameter	Description	Range	Default
d1	Programmable pin ID (0: TIOA1)	0	-
s2	Function: OFF: no function assigned PAV: Position available (see comment 1) RSP: Radar simulated pulse (see comment 2)	OFF, PAV or RSP	OFF
d3	Depends on s2 value: s2=OFF: d3 should be omitted s2= PAV: d3 is the number of consecutive seconds while position is not computed that causes the signal on the pin to switch to low level. s2= RSP: d3 should be set to "1" to make Radar Simulated Pulse output available on the pin.	Omitted 1-3600	-
*cc	Optional checksum	*00-*FF	

Example

Assigning the PAV function to the programmable pin and asking for a low-level signal on that pin after 60 seconds of position unavailability:

\$PASHS,PIN,0,PAV,60*7F

Comment

- 1. By default, the programmable pin provides a high-level signal. When the PAV function is assigned to the pin, a low level will occur on the pin in the following cases:
 - Immediately after the \$PASHS,PIN,d1,PAV command has been executed and the position has not been computed yet at that time.

- If for any reason, the position has not been computed for more than the time specified as d3.
- After running the \$PASHS,INI,x,y,0 or \$PASHS,INI,x,y,5 command.
- After running the POP and GNS,CFG commands following a re-start of the board.

High level is restored on the pin right after the board has re-started computing the position.

2. By default, the programmable pin is at a high level. After the \$PASHS,PIN,d1,RSP,1 command has been accepted, and if the ground speed is within the range 0.8 to 322 km/hr, an LV-TTL pulse signal with a 50% duty cycle is made available on the pin. The frequency conversion is then 94 Hz/(m/s).

If the ground speed is out of range, the pin level is kept at a high level.

POP: Setting Internal Update Rates for Measurement and PVT

Function

This command allows you to set the updates rates used internally in the measurement and position processing.

Command Format

Syntax

\$PASHS,POP,f1[*cc]

Parameters

Parameter	Description	Range	Default
f1	Internal update rate, in Hz, for measurement.		Firmware option dependent (see below)
*cc	Optional checksum	*00-*FF	

Example

Setting both update rates to 20 Hz:

\$PASHS,POP,20*14

Comments

- When f1 is changed, the receiver is reset in the same way as it would be if you used \$PASHS,INI,d1,d2,0, where d1 and d2 would keep their current values.
- Changing the POP setting causes all the update rates of the output messages to be reset to their default values. It

- is therefore recommended to set these update rates only after having run the \$PASHS,POP command.
- The default POP setting depends on which firmware option has been installed:
 - Default is "10 Hz" with the [T] option
 - Default is "20 Hz" with the [W] option

POS: Setting the Antenna Position

Function

This command is used to enter the position of the receiver (geographical coordinates expressed in the ITRF model used). The command is either used in a rover to speed up the receiver start-up, in which case the entered position may be very approximate (to within a few kilometers), or on the contrary, it is used to enter the accurate coordinates of a base, coordinates that will be inserted in all ATM, RTCM or CMR data messages.

Command Format S

Syntax

To set receiver's position (estimate in a rover, reference position in a base): \$PASHS,POS,m1,c2,m3,c4,f5[,s6][*cc] or, to set the computed position as a reference position: \$PASHS,POS,s7[*cc]

Parameter	Description	Range
m1	Latitude in degrees and minutes with 7 decimal places (ddmm.mmmmmmmm)	0-90
c2	North (N) or South (S)	N, S
m3	Longitude in degrees, minutes with 7 decimal places (ddmm.mmmmmmm)	0-180
c4	West (W) or East (E)	W, E
f5	Height in meters	±0-9999.9999
s6	Position attribute (see table below)	PC1, ARP, SPT
*cc	Optional checksum	*00-*FF
s7	=CUR: Position is equal to the currently computed position at the moment the command is issued. After this, the reference position is kept constant. =MOV: Position is always equal to the receiver's computed position and can change arbitrarily as the receiver moves. This computed position may be standalone or DGPS position, but never RTK position.	CUR, MOV
*cc	Optional checksum	*00-*FF

Position Attributes:

Parameter	Description
PC1	Position is referenced to L1 phase center (default).
ARP	Position is referenced to ARP.
SPT	Position is referenced to survey point.

Examples

Setting the antenna position to 37°22.2912135'N, 121°59.7998217'W and 15.25 m:

\$PASHS,POS,3722.2912135,N,12159.7998217,W,15.25*1F

Defining the computed position as the reference position: **\$PASHS,POS,CUR*51**

Comments

• You can enter a reference position tagged to either of the points (PC1, ARP or SP) on the antenna.

If the local antenna name (OWN) is known, the receiver will be able to re-compute internally the reference position entered, from SP to ARP or vice versa.

If the ANT/ANH parameters are known, the receiver will be able to re-compute internally the reference position entered, from SP to ARP or vice versa.

Before entering the coordinates of a reference position using \$PASHS,POS, you should be aware that depending on the protocol you will use to let the base generate its differential data, the reference position needs to be expressed exclusively on one of these points. For example, the reference position in RTCM-3 protocol needs to be tagged to ARP whereas in CMR, this position should be tagged to PC1.

- The reference position inserted in RTCM, CMR or ATM messages is either the position you entered manually, or a position resulting from \$PASHS,POS,CUR or \$PASHS,POS,MOV, whichever was issued last.
- If no position was entered manually and no \$PASHS,POS, CUR is applied, then the receiver operates as if \$PASHS,POS,MOV had been applied. The RTCM, CMR or ATM messages will be generated accordingly.
- The reference position generated in RTCM, CMR and ATM messages is either entered manually, or defined as a "CUR" or "MOV" position, whichever of these actions occurred last. If no position was entered manually and the position is defined as a "CUR" position, then the MOV mode is applied to the data generated in all RTCM, CMR and ATM messages.
- The reference position generated in ATM,RNX messages using scenario SCN 1, 2, 3, 4, 100 or 101 should be entered either manually or through \$PASHS,POS,CUR, whichever occurs last.

If no such command has been issued, or the last position has been specified as a "MOV" not a "CUR" position, then the moving position will be used for these messages.

Please note, that ATOM super-compact is designed for static reference receivers only. It is therefore the user's responsibility to ensure that a correct position is entered. The reference position generated in ATM,RNX messages SCN 0, 201, 202, 203, 204 and 300 is always a "MOV" position.

PPS: Setting PPS Pulse Properties

Function

This command is used to set the period, offset and GPS synchronized edge (rising or falling) of the PPS pulse.

Command Format

Syntax

\$PASHS,PPS,f1,f2,c3[*cc]

Parameters

Parameter	Description	Range	Default
f1	PPS time period, a multiple or fraction of 1 second. • 0: 1 PPS disabled	0, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60	0
f2	Time offset in milliseconds.	± 999.9999	0
c3	GPS-synchronized edge code: • "R" for rising edge • "F" for falling edge	R, F	R
*cc	Optional checksum	*00-*FF	

Example

Setting the PPS signal to a period of 2 seconds, with an offset of 500 ms and a GPS-synchronized rising edge:

\$PASHS,PPS,2,+500,R*74

Comment

- The PPS time period (f1) cannot be less than the internal update rate (see \$PASHS,POP).
- The 1PPS sifgnal is not output until the receiver time scale is corrected to GPS time.

PWR, OFF: Powering Off the Receiver

Function

This command is used to prepare the board before it is turned off. Using this command allows all the settings and parameters to be saved in the non-volatile memory. This command DOES NOT switch off the on-board power supply.

Command Format

Syntax

\$PASHS,PWR,OFF[*cc]

Parameters

None.

Example

Preparing the board to be turned off: \$PASHS,PWR,OFF*43

Relevant Query Command None.

RAW: Enabling/Disabling Raw Data Messages in Legacy Ashtech Format

Function

This command is used to enable or disable the standard, continuous output of raw data in legacy Ashtech format.

Command Format

Syntax

\$PASHS,RAW,s1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range	Default
s1	Raw data message type	See table below	
c2	Port ID	A, B, C	-
s3	Enables (ON) or disables (OFF) the raw data message	ON, OFF	OFF
f4	Output rate in seconds.	See table below	1
*cc	Optional checksum	*00-*FF	

Raw data message types:

Data	Description	f4 range	
MCA	GPS/GLONASS/SBAS C/A code		
IVIOA	measurements	0.05, 0.1, 0.2, 0.5, 1, 2, 3,	
MPC	GPS/GLONASS/SBAS raw data	4, 5, 6, 10, 12, 15, 20, 30,	
DPC	Compact GPS raw data	60, 120 sec., etc.(integer	
RPC	DBEN messages	minutes up to 960 sec.)	
PBN	Position information		
SNV	GPS ephemeris data		
SNG	GLONASS ephemeris data		
SNW	SBAS ephemeris data	1 0 0 4 5 ata /intagar	
SAL	GPS almanac data	1, 2, 3, 4, 5, etc. (integer seconds up to 999 sec.)	
SAG	GLONASS almanac data	occords up to 555 sec.)	
SAW	SBAS almanac data		
ION	Ionospheric parameters		
SBD	SBAS data message	Not applicable	

Examples

Enabling output of MPC message type on port A to 1 second: \$PASHS,RAW,MPC,A,ON,1*1E

Enabling output of SNV message type on port A to 300 seconds:

\$PASHS,RAW,SNV,A,ON,300*09

Comments

For each of the SNV, SNG, SNW, SAL, SAG, SAW and ION messages, the f4 parameter can only take an integer value of seconds and refers to the interval between messages related to the same satellite and with the same content.
 For a given satellite, each of these messages is therefore renewed every x seconds (where x=f4), or following a change in the message content ("on change"), whichever occurs first.

Each of these messages cannot be output more than once over a given period of 1 second.

By default, f4 is set as follows:

Output message	f4 Default Value
SNV, SNG, ION	900
SAL, SAG	3600
SNW	120
SAW	300

 The SBD message output rate is always 1 second (as decoded). Parameter f4 is ignored.

RAW, ALL: Disabling All Raw Data Messages

Function

This command is used to disable all the currently active raw data messages on the specified port.

Command Format Sy

Syntax

\$PASHS,RAW,ALL,c1,OFF[*cc]

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Example

Disabling all raw data messages on port A:

\$PASHS,RAW,ALL,A,OFF*52

RCP, DEL: Deleting User-Defined Receiver Name

Function This command is used to delete a user-defined receiver

name.

Command Format Syntax

\$PASHS,RCP,DEL,s1[*cc]

Parameters

Parameter	Description	Range
s1	Receiver name you want to delete (case sensi-	31 characters
	tive)	max.
*cc	Optional checksum	*00-*FF

Example

Deleting receiver name "MyReceiver":

\$PASHS,RCP,DEL,MyReceiver*74

RCP,GBx: GLONASS Carrier Phase Biases for User-Defined Receiver

Function

This set of two commands is used to define GLONASS carrier phase biases for a given receiver. One command deals with the GLONASS L1 band and the other with the GLONASS L2 band.

Command Format Syntax

For the L1 band:

\$PASHS,RCP,GB1,s1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17[*c c]

For the L2 band:

\$PASHS,RCP,GB2,s1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16[*cc]

Parameters

Parameter	Description	Range
s1	Name of user-defined receiver for which GLONASS biases must be defined (case sensitive)(12 characters max. recommended)	31 characters max.
f2	When a linear pattern is assumed for GLONASS biases, f2 represents the delta bias between two adjacent GLONASS frequency numbers (cycle of local L1 [or L2] frequency).	Full range of Real variables allowed
f3-f16	When an arbitrary pattern is assumed for GLONASS biases, f3-f16 represent biases for GLONASS frequency numbers from -7 to 6(cycle of local L1 [or L2] frequency).	Full range of Real variables allowed
f17	Mean pseudo-range bias (in meters) between L1 [or L2] GPS and L1 [or L2] GLONASS constellations.	
*cc	Optional checksum	*00-*FF

Comments

- Only fractional parts of GLONASS carrier phase biases are of practical importance.
- Running one of these commands on a receiver already stored in the list of user-defined receivers will save all the submitted parameters to permanent memory and keep all the others unchanged.
- You may not run the two commands (GB1 and GB2) for a given user-defined receiver. If you run just one of them, then the parameters corresponding to the other command will all be assumed to be invalid (i.e unknown). All userdefined receivers created from this receiver will also inherit these invalid parameters.
- The board will interpret any missing parameter in a command as a parameter for which there is currently no known valid value for this parameter.

RCP,OWN and RCP,REF: Naming Local and Reference Receivers

Function

These commands are used to enter the receiver's own name as well as the reference receiver name.

Command Format Syntax

\$PASHS,RCP,OWN,s1[,s2[,s3]][*cc] or \$PASHS,RCP,OWN,s1,,s3[*cc] \$PASHS,RCP,REF,s1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
	Deseiver neme (see see	21 abarastara	"MB500" for local
s1	Receiver name (case-sen-	31 characters	receiver,
	sitive).	max.	Empty field for refer-
			ence receiver
s2	Receiver firmware version	31 characters	
52	Receiver illiliwate version	max.	
s3	Receiver serial number	31 characters	
30	TROCCIVCI SCHAI HAIHDOI	max.	
d2	Receiver name preference	0 or 1	0
*cc	Optional checksum	*00-*FF	

Comments

- With the receiver used as an RTK base, the s1 parameter is inserted into receiver name messages (e.g. RTCM-1033).
- When the receiver is used as an RTK rover, it will use the bias values corresponding to the entered local and receiver names to correct the local and reference data accordingly.
- When the receiver is used as an RTK rover and d2=0, the receiver name (s1) will be ignored if the incoming reference data contain the base receiver name.
 Reciprocally, in the same context and with d2=1, the receiver name entered as s1 will be used, and the receiver name decoded from the incoming reference data will be ignored.
- Because the RINEX format reserves only 20 characters for receiver names, including the 8 characters used when the \$PASHS,AGB command is set to "ON", Ashtech recommends you specify receiver names in 12 characters max. so that they can be converted to RINEX format without being truncated.

Example

Entering "Unknown" as the name of the local receiver: \$PASHS,RCP,OWN,UNKNOWN*2A

REF: Enabling/Disabling External Reference Clock

Function

This command is used to enable or disable the external reference clock mode. By default, the external reference clock is disabled and the internal clock is used.

Command Format

Syntax

\$PASHS,REF,ON[,d1][*cc] \$PASHS,REF,OFF[*cc]

Parameters

Parameter	Description	Range	Default
d1	Frequency, in MHz, of the external reference clock	5, 10, 20	20
*cc	Optional checksum	*00-*FF	-

Examples

Enabling a 20-MHz external reference clock:

\$PASHS,REF,ON,20*27

Disabling the external reference clock:

\$PASHS,REF,OFF*47

RST: Default Settings

Function

This command is used to reset the receiver parameters to their default values. All parameters are reset except:

- Ephemeris data
- Almanac data
- Position
- GPS time.

Command Format

Syntax

\$PASHS,RST[*cc]

Parameters

None.

Example

Resetting the receiver:

\$PASHS,RST*20

RT2: Enabling/Disabling RTCM 2.3 Messages

Function

This command is used to individually enable or disable RTCM 2.3 message types on the specified port.

Command Format

Syntax

\$PASHS,RT2,s1,c2,s3[,f4][*cc]

Parameters

Parameter	Description	Range	Default
s1	RTCM 2.3 message type	See table below	-
c2	Port ID	A, B, C	-
s3	Enables (ON) or disables (OFF) RTCM 2.3 message type	ON, OFF	OFF
f4	Output rate in seconds	See table below	1
*cc	Optional checksum	*00-*FF	-

Supported Data Messages:

Data	Description	f4 range	
1, 9	GPS corrections		
24	Geographical coordinates (ITRF) tagged to ARP for reference position	0.05, 0.1, 0.2, 0.5, 1, 2, 3,	
3, 22	Geographical coordinates (ITRF) tagged to L1 phase center for reference position	4, 5 sec., etc. (integer seconds up to 999	
23	Antenna name		
18, 19	GPS and GLONASS raw observations	0.05, 0.1, 0.2, 0.5, 1, 2, 3,	
20, 21	GPS and GLONASS RTK corrections	4, 5, 6, 10, 12, 15, 20, 30, 60, 120 sec., etc. (integer minutes up to 960 sec.)	
16, 36	User messages (those entered through \$PASHS,MSG)	0.05, 0.1, 0.2, 0.5, 1, 2, 3 4, 5 sec., etc. (integer	
31, 34	GLO corrections	seconds up to 999 sec.)	
32	Reference PZ 90 position	100001100 up to 000 300.)	

Example

Setting the default RTCM 2.3 configuration in a base:

\$PASHS,POS,<position coordinates> or \$PASHS,POS,CUR*51

\$PASHS,RT2,18,A,ON,1*39

\$PASHS,RT2,19,A,ON,1*38

\$PASHS,RT2,24,A,ON,13*05

\$PASHS,RT2,23,A,ON,31*02

[\$PASHS,RT2,16,A,ON,59*0A]

Comments

- With RTCM 2.3, the last command (bracketed) in the above example is the only way a rover can be informed of the base receiver name (provided the corresponding \$PASHS,MSG is used on the base). However, the RTCM 2 standard only allows message type 16 to be used for viewing purposes, and not in further automatic processing steps.
- Defining output rates for RTCM 2.3 messages should follow the rules presented in *Understanding How MB 500* Generates Differential Data Messages on page 34.

RT2, ALL: Disabling All RTCM 2.3 Messages

Function

This command is used to disable all the currently active RTCM 2.3 data messages on the specified port.

Command Format

Syntax

\$PASHS,RT2,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Example

Disabling all RTCM 2.3 messages on port A:

\$PASHS,RT2,ALL,A,OFF*22

RT3: Enabling/Disabling RTCM 3.1 Messages

Function

This command is used to individually enable or disable RTCM 3.1 message types on the specified port.

Command Format Syntax

\$PASHS,RT3,s1,c2,s3[,f4][*cc]

Parameter	Description	Range	Default
s1	RTCM 3.1 message type	See table below	-
c2	Port ID	A, B, C	-
s3	Enables (ON) or disables (OFF) RTCM 3.1 message type	ON, OFF	OFF
f4	Output rate in seconds	See table below	1
*cc	Optional checksum	*00-*FF	-

Supported Data Messages:

Data	Description	f4 range
1001-1004	GPS+SBAS raw observations	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 sec, etc. (integer minutes up to 960 sec.)
1005-1006	ITRF coordinates of reference posi-	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4,
1000 1000	tion, tagged to ARP	5 sec., etc. (integer seconds
1007-1008	Antenna name	up to 999 sec.)
1009-1012	GLONASS raw observations	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 sec., etc. (integer minutes up to 960 sec.)
1013	System information	
1019	GPS ephemeris data	0.05.04.02.05.4.2.2.4
1020	GLONASS ephemeris data	0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5 sec., etc. (integer seconds
1029	User unicode message (as entered through \$PASHS,MSG)	up to 999 sec.)
1033	Antenna and receiver names	

Examples

Setting the default RTCM 3.1 configuration to serve the base mode:

```
$PASHS,POS,<position coordinates> or $PASHS,POS,CUR*51
$PASHS,RT3,1004,A,ON,1*34
$PASHS,RT3,1012,A,ON,1*33
$PASHS,RT3,1006,A,ON,13*05
$PASHS,RT3,1033,A,ON,31*03
```

Setting the default RTCM 3.1 configuration to serve the raw data collection mode:

```
$PASHS,POS,MOV*41

$PASHS,RT3,1004,A,ON,1*3

$PASHS,RT3,1012,A,ON,1*33

$PASHS,RT3,1006,A,ON,1*36

$PASHS,RT3,1013,A,ON,61*04

$PASHS,RT3,1033,A,ON,300*32
```

\$PASHS,RT3,1019,A,ON,600*3F \$PASHS,RT3,1020,A,ON,600*35

Comments

Defining output rates for RTCM 3.1 messages should follow the rules presented in *Understanding How MB 500 Generates Differential Data Messages on page 34*.

RT3,ALL: Disabling All RTCM 3.1 Messages

Function This command is used to disable all the currently active

RTCM 3.1 data messages on the specified port.

Command Format Syntax

\$PASHS,RT3,ALL,c1,OFF[*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Example

Disabling all RTCM 3.1 messages on port A: \$PASHS,RT3,ALL,A,OFF*23

SBA: Enabling/Disabling SBAS Tracking

Function This command is used to enable or disable SBAS tracking.

Command Format Syntax

\$PASHS,SBA,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enables (ON) or disables (OFF) SBAS tracking	ON, OFF	ON
*cc	Optional checksum	*00-*FF	

Example

Enabling SBAS tracking:

\$PASHS,SBA,ON*08

SIT: Defining a Site Name

Function

This command is used to define the site name occupied by the receiver.

Command Format

Syntax

\$PASHS,SIT,s1[*cc]

Parameters

Parameter	Description	Range
16.1	Site name, a 4-character string where alphanumeric symbols are allowed.	See tables below
*cc	Optional checksum	*00-*FF

Example

Defining site name "1001":

\$PASHS,SIT,1001

Comments

- In rover mode, the site name can be set "on line" in the field to name occupation points. The site name appears in the PBN raw data message, and in the ATM,PVT message, and probably in some other messages. Historically, "????" refers to an unknown site name or a kinematic sequence in progress.
- In base mode, the site name refers to the reference station ID. The table below lists the permitted range of values for the reference station ID, depending on the message format used to route this information.

Message format	Permitted range of reference station ID
CMR/CMR+	0000-0031
RTCM 2	0000-1023
RTCM 3	0000-4095

The resulting reference station ID may be different from $\rm s1$ if $\rm s1$ does not fall within the permitted range. The table below lists the resulting values of the reference station ID, depending on which $\rm s1$ value was entered through

\$PASHS,SIT, and depending on the message format carrying the reference station ID information.

s1 value set to:	RTCM 3	RTCM 2	CMR/ CMR+	ATOM 2, 4, 5, 6, 7, 14	ATOM 3 PBN
Default (not set)	31	31	31	31	????
0017	17	17	17	17	0017
0123	123	123	31	123	0123
1666	1666	31	31	1666	1666
5000	31	31	31	31	5000
A5CD	31	31	31	31	A5CD

SMI: Code Measurement Smoothing

Function

This command is used to set the smoothing interval in code measurements.

Command Format

Syntax

\$PASHS,SMI,d1[,d2[,d3]][*cc] or \$PASHS,SMI,d1,,d3[*cc] or \$PASHS,SMI,,,d3[*cc]

Parameters

Parameter	Description	Range	Default
d1	Time constant in seconds for the simplest first-order smoothing, when there is no L1-L2 smoothing applied. "0" means no smoothing applied.	0-100	100
d2	Time constant in seconds for the second- order smoothing, when there is no L1-L2 smoothing applied. "0" means no 2nd-order smoothing applied.	0 100-600	600
d3	Time constant in seconds for the first-order L1-L2 smoothing. "0" means no L1-L2 smoothing applied.	0-3600	1800
*cc	Optional checksum	*00-*FF	-

Example

Setting code measurement smoothing to 100 seconds:

\$PASHS,SMI,100

Comments

- The smoothing correction is provided in the MCA/MPC raw data message along with the smoothing count. If the internal smoothing count is greater than 255, then the smoothing count in the MCA/MPC message is set to 255.
- Sending the command without d1, d2 or d3 will not change the corresponding value currently used, which will stay either that entered previously through a valid SMI command, or the default value if no such command was run.

SOM,CTT: Cumulative Tracking Time Mask

Function

This command is used to mask the signal observations that do not meet the minimum continuous tracking time you specify. This means that only the observations meeting this requirement will be output (all the others will be rejected).

Command Format

Syntax

\$PASHS,SOM,CTT,d1[,d2][*cc]

Parameters

Parameter	Description	Range	Default
d1	Minimum continuous tracking time for differential data, in seconds. "0" means no mask.	0-255	10
d2	Minimum continuous tracking time for raw data, in seconds. If d2 is omitted, then the receiver will assume d2=d1. "0" means no mask.	0-255	10
*cc	Optional checksum *00-*		

Raw Data Masked by d2	Differential Data Masked by d1
MCA	
MPC	
DPC	All other messages
ATM,MES	
ATM,RNX,SCN,0	

Comments

- "Continuous" tracking means tracking "without cycle slips".
- This command can only mask some particular signal data.
 If however at the same time the L1CA data are disabled, then ALL the satellite observations, and not only the masked ones, will be rejected.

• This command equally affects all GNSS and their signals.

Examples

Setting CTT masks for differential and raw data to 20 s: \$PASHS.SOM.CTT.20*65

Enabling all signal observations to be output regardless of the continuous tracking time requirement (no CTT mask):

\$PASHS,SOM,CTT,0*57

SOM, NAV: Navigation Data Mask

Function

This command is used to mask the signal observations that are not consistent with the relevant navigation data. This means that only the observations meeting this requirement will be output (all the others will be rejected).

Command Format

Syntax

\$PASHS,SOM,NAV,s1[,s2][*cc]

Parameters

Parameter	Description	Range	Default
s1	Differential data mask	ON, OFF	ON
s2	Raw data mask. If s2 is omitted, then the receiver will assume s2=s1	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	

Raw Data Masked by s2	Differential Data Masked by s1
MCA	
MPC	
DPC	All other messages
ATM,MES	-
ATM,RNX,SCN,0	

Comments

- Stating that signal observations are consistent with the corresponding navigation data means the following:
 - GNSS time, receiver position and receiver clock offsets are available and valid.
 - L1CA pseudo-range for a given satellite is measured and valid.
 - The corresponding satellite navigation data are available and valid.

- The L1CA pseudo-range and computed range are in agreement with each other.
- Elevation and azimuth angles are available and valid.

If at least one of the above requirements is not met, then signal observations are found to be not consistent with navigation data.

- The \$PASHS,SOM,NAV command will mask all signals (all observables) corresponding to a given satellite, even if some other pseudo-ranges (e.g. L2C) can be consistent with the navigation data.
- The \$PASHS,SOM,NAV command equally affects all GNSS systems.

Examples

Setting NAV masks for both differential and raw data:

\$PASHS,SOM,NAV,ON*7C

Enabling all signal observations to be output regardless of whether they are consistent with navigation data or not (no NAV mask):

\$PASHS,SOM,NAV,OFF*32

SOM, SNR: Signal-to-Noise Ratio Mask

Function

This command is used to mask the signal observations that do not meet the minimum signal-to-noise ratio you specify. This means that only the observations meeting this requirement will be output (all the others will be rejected).

Command Format

Syntax

\$PASHS,SOM,SNR,f1[,f2][*cc]

Parameter	Description	Range	Default
f1	Differential data mask. "0" means no mask.	0-60 dBHz	28
f2	Raw data mask. If s2 is omitted, then the receiver will assume s2=s1. "0" means no mask.	0-60 dBHz	28
*cc	Optional checksum	*00-*FF	

Raw Data Masked by f2	Differential Data Masked by f1
MCA	
MPC	
DPC	All other messages
ATM,MES	
ATM,RNX,SCN,0	

Comments

- The \$PASHS,SOM,SNR command can only mask particular signal data for which the SNR does not meet your requirement. If however at the same time the L1CA data are disabled, then all the satellite observations will also be masked.
- The \$PASHS,SOM,SNR command equally affects all GNSS systems and their signals, except GPS L1P(Y) and L2P(Y). For these two signals, a hard-coded SNR threshold is applied.

Examples

Setting SNR masks for both differential and raw data to 30 dBHz:

\$PASHS,SOM,SNR,30*68

Enabling all signal observations to be output regardless of the signal-to-noise ratio:

\$PASHS,SOM,SNR,0*5B

SOM, WRN: Channel Warnings Mask

Function

This command is used to mask the signal observations for those signals flagged with channel warnings (MPC/MCA warning bits are counted from 1 to 8). This means that only the observations from non-flagged signals will be output (all the others will be rejected).

Command Format

Syntax

\$PASHS,SOM,WRN,s1[,s2][*cc]

Parameter	Description	Range	Default
s1	Differential data mask	ON, OFF	ON
s2	Raw data mask. If s2 is omitted, then the receiver will assume s2=s1	ON, OFF	OFF
*cc	Optional checksum	*00-*FF	

Raw Data Masked by s2	Differential Data Masked by s1
MCA	
MPC	
DPC	All other messages
ATM,MES	
ATM,RNX,SCN,0	

Comments

- A signal is considered as flagged in at least one of the following cases:
 - Carrier phase tracking is not stable (Bit 3 of MPC/MCA warning is set).
 - Pseudo-range data quality is bad (Bit 5 of MPC/MCA warning is set).
 - Polarity is not resolved (MPC/MCA Phase Tracking Polarity flag is set to 0).
- The \$PASHS,SOM,WRN command will mask only some particular signal data (e.g. L1CA or L2P) corresponding to a given satellite. If at the same time the L1CA data are disabled, then ALL the satellite observations, and not only those masked, will be rejected.
- The \$PASHS,SOM,WRN command equally affects all GNSS systems.

Examples

Setting WRN masks for both differential and raw data: \$PASHS,SOM,WRN,ON*6E

Enabling all signal observations to be output regardless of whether some signals are flagged or not (no WRN mask):

\$PASHS,SOM,WRN,OFF*20

SPD: Setting Baud Rates for Ports A and B

Function

This command is used to set the baud rates of ports A and B individually.

Command Format

Syntax

\$PASHS,SPD,c1,d2[*cc]

Parameter	Description	Range
c1	Port ID	A, B
d2	David sata and	2-15 (port A) (Default: 9) 2-11 (port B) (Default: 9) See Baud Rate Codes in table below
*cc	Optional checksum	*00-*FF

Baud Rate Codes:

Code	Baud Rate						
2	1 200	6	19 200	10	230 400	14	2 500 000
3	2 400	7	38 400	11	460 800	15	5 000 000
4	4 800	8	57 600	12	921 600		
5	9 600	9	115 200	13	1 428 571		

Example

Setting port A and B to 19 200 Bd:

\$PASHS,SPD,A,6*45

Comments

If the baud rate chosen for a port is too slow to meet the volume of data output requested on this port, then the following message is output on the port, after the board has detected that data messages were skipped:

\$PASHR.SKP*3C

SVM: Setting the Maximum Number of Observations in the PVT

Function:

This function is used to set the maximum number of code and doppler observations used in the PVT calculation.

Command Format

Syntax

\$PASHS,SVM,d1[*cc]

Parameters

Parameter	Description	Range	Default
d1	Maximum number of observations	0-26	14
*cc	Optional checksum	*00-*FF	-

Example

Setting the number of observations to 25:

\$PASHS,SVM,25*16

Comments

This setting affects all the positioning modes, except for the time-tagged RTK mode for which this limit is hardware coded and set to 14 satellites.

UDP: User-Defined Dynamic Model Parameters

Function

This command is used to set the upper limits of the dynamic model (velocity, acceleration).

Command Format

Syntax

\$PASHS,UDP,f1,f2,f3,f4[*cc]

Parameters

Parameter	Description	Range	Default
f1	Maximum expected horizontal velocity in m/s.	0-100 000	100 000
f2	Maximum expected horizontal acceleration in m/s/s.	0-100	100
f3	Maximum expected vertical velocity in m/s.	0-100 000	100 000
f4	Maximum expected vertical acceleration in m/s/s.	0-100	100
*cc	Optional checksum	*00-*FF	-

Example

Setting the dynamic model:

\$PASHS,UDP,10,1,2,0.5*1D

Comments

The user-defined dynamic model is activated by the \$PASHS,DYN,9 command. Note that when the adaptive dynamic mode (DYN,8) is selected, the user-defined model is automatically excluded from the possible models that could best describe the current receiver dynamics.

UTS: Synchronizing Onto GPS Time

Function:

This function is used to enable or disable a clock steering mechanism that synchronizes measurements and coordinates

with the GPS system time rather than with the local (receiver) clock.

Command Format

Syntax

\$PASHS,UTS,s1[*cc]

Parameters

Parameter	Description	Range	Default
s1	Enabling (ON) or disabling (OFF) syn- chronization with GPS time	ON, OFF	ON
*cc	Optional checksum	*00-*FF	-

Example

Enabling synchronization:

\$PASHS,UTS,ON*0A

Comments

- All output data, except for legacy MPC, MCA, DPC and RPC, are always clock steered.
- Legacy MPC, MCA, DPC and RPC data appear as steered or not steered depending on the last \$PASHS,UTS command run.
- The PBN message contains internal clock and clock drift estimates when UTS is OFF and reports zeros for these estimates when UTS is ON.
- The ATOM,RNX message with scenario 0 contains original clock and clock drift estimates that can be used on decoding side to restore the original (not steered) observables, if needed.

ZDA: Setting Date & Time

Function

This command is used to set the date and time in the receiver.

Command Format

Syntax

\$PASHS,ZDA,m1,d2,d3,d4[*cc]

Parameter	Description	Range
m1	UTC time (hhmmss.ss)	000000.00-235959.99
d2	Current day	01-31
d3	Current month	01-12
d4	Current year	0000-9999
*cc	Optional checksum	*00-*FF

Example

\$PASHS,ZDA,151145.00,13,03,2008*0A

Chapter 5. Query Command Library

Function

This command allows you to output the latest GPS almanac data on the specified port, or on the port on which the query is made if no port is specified. Each response line describes the almanac data from a given GPS satellite.

Command Format

Syntax

\$PASHQ,ALM[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$GPALM,d1,d2,d3,d4,h5,h6,h7,h8,h9,h10,h11,h12,h13,h14,h15*cc

Parameter	Description	Range
d1	Total number of messages	01-32
d2	Number of this message	01-32
d3	Satellite PRN number	01-32
d4	GPS week	4 digits
h5	SV health (in ASCII hex)	2 bytes
h6	e: Excentricity (in ASCII hex)	4 bytes
h7	toe: Almanac reference time, in seconds (ASCII hex)	2 bytes
h8	lo: Inclination angle, in semicircles (ASCII hex)	4 bytes
h9	OMEGADOT: Rate of ascension, in semicircles/second	
h10 A1/2: Square root of semi-major axis, in meters 1/2 (ASCII hex)		6 bytes
h11 OMEGA: Argument of perigee, in semicircles (ASCII hex)		6 bytes

Parameter	Description	
h12	OMEGA0: Longitude of ascension mode, in semicircles (ASCII hex)	6 bytes
h13	Mo: Mean anomaly, in semi-circles (ASCII hex)	6 bytes
h14	n14 af0: Clock parameter, in seconds (ASCII hex)	
h15	af1: Clock parameter, in seconds/second (ASCII hex)	3 bytes
*cc	Checksum	*00-*FF

Example

\$PASHQ,ALM

\$GPALM,31,1,01,65535,00,39A8,4E,1FEA,FD65,A10C8C,B777FE,935A86,C 994BE.0C6.001*73

\$GPALM,31,2,02,65535,00,4830,4E,00D9,FD49,A10D24,64A66D,3B6857,E 6F2A3.0BA,001*7A

\$GPALM,31,3,03,65535,00,552B,4E,F572,FD3B,A10CE1,20E624,0CD7E1,D 10C32,0CA,001*0D

\$GPALM,31,4,04,65535,00,4298,4E,0069,FD46,A10D5C,0EE3DC,3C2E3E,5 1DDF9.FF0.FFF*0A

...

Automatic Output of ALM Messages

This is a reminder on how to output ALM messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,ALM,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output ALM messages on port A at a rate of 15 seconds:

\$PASHS,NME,ALM,A,ON,15

ANP: Antenna Parameters

Function

This command allows you to read the antenna parameters of the specified antenna name, or of the complete antenna database if no antenna name is specified.

Command Format

Syntax

\$PASHQ,ANP[,s1][,c2][*cc]

Parameter	Description	Range
s1	Antenna name (case sensitive)	31 characters max.
c2	ID of the port through which the receiver provides the reply line. If no port ID is specified, the reply is sent to the port routing the query command.	A, B, C
*cc	Optional checksum	*00-*FF

Response Format Example

\$PASHQ,ANP,ProMark500

BEGIN ANTENNA ProMark500

L1 N: -000.80 E: -001.40 U: +101.8

L1 PAE:+000.0 +000.9 +001.9 +002.8 +003.7 +004.7 +005.4 +006.0 +006.4 +006.5 +006.3 +005.8 +004.8 +003.2 +001.1 -001.6 -005.1 +000.0 +000.0

L2 N: +000.80 E: -001.10 U: +086.20

L2 PAE:+000.0 -000.9 -001.1 -000.6 +000.2 +001.1 +002.0 +002.7 +003.0 +002.6 +001.7 +000.5 -001.1 -003.0 -004.9 -006.8 +000.0 +000.0

END ANTENNA

ATT: Heading, Roll and Pitch

Function

This command allows you to output the heading, roll and pitch message on the specified port, or on the port routing the query command if no output port is specified.

Command Format

Syntax

\$PASHQ,ATT[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,ATT,f1,f2,f3,f4,f5,f6,d7*cc

Parameter	Description	Range
f1	Week time in seconds.	000000.00- 604799.99
f2	True heading angle in degrees.	000.00-359.99
f3	Pitch angle in degrees.	±90.00
f4	Roll angle in degrees.	±90.00
f5	Carrier measurement RMS error, in meters.	Full range of real variables
f6	Baseline RMS error, in meters.	Full range of real variables
d7	Integer ambiguity is "Fixed" or "Float": O: Fixed >0: Float	0, >0
*cc	Optional checksum	*00-*FF

Comments

- The command is NAKed if the [H] option is not installed.
- With the heading mode disabled, but the Heading option [H] still installed, this command will provide baseline azimuth (instead of heading) and baseline elevation (instead of pitch)
- When the heading mode is disabled, or it's enabled but baseline calibration is in progress, the baseline RMS error field (f6) stays equal to zero. This field is indicative of a baseline calibration currently in progress.

Example

Querying the heading and roll/pitch message on the current port:

\$PASHQ.ATT

\$PASHR,ATT,310080.0,248.57,+04.22,,0.0027,0.0000,0*2B

Automatic Output of ATT Messages

This is a reminder on how to output ATT messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,ATT,<port ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output ATT messages on port A at a rate of 0.5 second:

\$PASHS,NME,ATT,A,ON,0.5

BPS: Base Position Message

Function

This command returns the base position message on the specified port, or on the port routing the query command if no output port is specified. The command will be "NAKed" if the RTK Base option [K] is not installed.

Command Format

Syntax

\$PASHQ,BPS[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

The base station position message is transmitted along with the DBEN RPC message.

This message contains the base station's coordinates, always tagged to the L1 phase center of the antenna. When generating the response to this command, the receiver always ignores the optional tagging parameter set in \$PASHS,POS and the antenna offset parameters (between f5 and s11) are all unconditionally set to zero.

The BPS response message is in the form below \$PASHR,BPS,m1,c2,m3,c4,f5,0.0000,0.0000,00.0000,00000.00,00.0000,s11*

Parameter	Description	Range
m1	Latitude, in degrees and decimal minutes	0-90° 00-59.9999999
c2	Direction of latitude	N, S
m3	Longitude, in degrees and decimal minutes	0-180° 00-59.9999999'
c4	Direction of longitude	E, W
f5	Altitude, in meters	±99999.9999
s11	Status byte in hexadecimal notation	See table below
*cc	Checksum	*00-*FF

Bit	Description
1 (LSB)	Coordinates of base station not entered
2	Not used
3	Base station is not computing position from raw pseudo-ranges
4	Entered coordinates for base are more than 500 meters away (in each direction) from the computed position, based on raw pseudo-ranges.
5	Base station is not tracking satellites properly
6, 7, 8	Not used

Example

\$PASHQ,BPS

\$PASHR,BPS,5539.3790930,N,03731.5553470,E,+00268.4450,0.0000,0.000 0,00.0000,0000.00.00.0000.000

Automatic Output of BPS Messages

This is a reminder on how to output BPS messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,BPS,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output BPS messages on port A at a rate of 30 seconds:

\$PASHS,NME,BPS,A,ON,30

CPD,REF: Querying Rover for Base Position Used

Function

This command returns the base position, as available from a rover that uses it or will use it when possible. The reply is returned on the specified port, or on the port routing the query command if no output port is specified.

The base position can be returned "as is" or tagged to some specified point (L1 phase center or ARP) if the rover knows about the antenna used at the base (through the antenna name).

If the base antenna name is unknown, then no coordinate transformation will be possible and the receiver will assume the L1 phase center and the ARP of the base antenna are physically the same point in space.

Command Format Syntax

 ${\tt \$PASHQ,CPD,REF[,s1][,c2][*cc]}$

Parameters

Parameter	Description	Range
s1	Requested base position: ORG: Original base position (as originally presented in decoded differential message) PC1: Base position tagged to L1 phase center ARP: Base position tagged to ARP Omitting s1 is equivalent to using ORG for this parameter.	ORG, PC1, ARP
c2	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format Syntax

\$PASHR,CPD,REF,f1,f2,f3,m4,c5,m6,c7,f8,s9,s10,s11*cc

Parameter	Description	Range
f1	X component, in meters	±99999999.9999
f2	Y component, in meters	±99999999.9999
f3	Z component, in meters	±99999999.9999
m4	Latitude in degrees, decimal minutes (ddmm.mmmmmmm)	0-90
c5	North (N) or South (S)	N, S
m6	Longitude in degrees, decimal minutes (dddmm.mmmmmmm)	0-180
c7	East (E) or West (W)	E, W
f8	Ellipsoidal height, in meters	±9999.9999
s9	Position attribute: PC1: Reference position tagged to L1 phase center ARP: Reference position tagged to ARP	PC1, ARP, SPT
s10	Position source: REC: Received via a differential message. May be referenced to a local datum, depending on the differential data provider. ENT: As entered in the rover. Refers to the current ITRF. CPT: As computed by the rover. May refer to the current ITRF.	REC, ENT, CPT
s11	Reference base station ID	
*cc	Checksum	*00-*FF

Comments

- The coordinates refer to the original datum on which the reference position of the base is expressed.
 - In response to the CPD,REF command, and although most often providers only send cartesian coordinates expressed on an unknown local datum, the receiver will return both the cartesian and geographical coordinates of the reference position. The IGSO5 realization (WGS-84 ellipsoid model) will be used in the receiver to transform the cartesian coordinates into geographical coordinates.
- In most cases, the reference position of the base is that decoded from the incoming differential data (REC), e.g. from RTCM-3 MT 1006. But with further firmware versions, using the s10 parameter, there will be a possibility to either enter base coordinates on the rover (ENT), or compute approximate base coordinates (CPT) directly from the received base observations. If the three types of base positions are available from the rover, then the command will only return the one with the highest internal priority (i.e. the one currently used or the one that will be used when this is possible).
- If there is no reference base position available from a rover, then the command will only return empty fields.
- Most of the known differential protocols (RTCM-2, RTCM-3, CMR/CMR+) generate reference position tagged either to the ARP or to the L1 phase center (PC1).

Some proprietary protocols, such as Ashtech DBEN, transmit reference coordinates tagged to some survey point (SVP) that differ from the ARP in both the vertical and horizontal directions.

Usually these protocols contain internally offset values allowing the original SVP position to be transformed into ARP.

Since only PC1 tagging and ARP tagging are currently supported, for such proprietary protocols, the command will automatically return the ARP position when the s1 parameter is omitted or the ORG position is implicitly requested.

Example

\$PASHQ,CPD,REF,ARP*32

\$PASHR,CPD,REF,2860347.6069,2196947.3233,5243149.9374,5539.35890 84,N,03731.6072193,E,268.158,ARP,REC,0031*64

DDM: Differential Decoder Message

Function

This command returns a report about the decoded differential messages on the specified port, or on the port routing the query command if no output port is specified.

The report may refer to several types of differential messages that the built-in Differential Decoder gets from different receiver ports.

If the second RTK engine is enabled, the DD2 message is output as well.

Command Format

Syntax

\$PASHQ,DDM[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,DDM,c1,s2,s3,d4,s5,f6,f7,s8*cc

If the second RTK engine is enabled, the response also includes the following:

\$PASHR,DD2,c1,s2,s3,d4,s5,f6,f7,s8*cc

Parameter	Description	Range
c1	Port receiving corrections	A, B, C
s2	Message transport	RT2, RT3, CMR, CMP, DBN, TPZ or ATM
s3	Message number/identifier	e.g. 1004 for RT3, RNX for ATM, etc.
d4	Counter of decoded messages	0-9999
s5	Base ID (empty if Base ID not available)	
f6	Time tag, in seconds, as read from the decoded message	
f7	Age of corrections, in seconds	
s8	Attribute	60 characters max.
*cc	Checksum	*00-*FF

Comments

- Corrections can come from more than one receiver port.
- Parameter d4 counts the number of decoded messages modulo 10000. It is incremented by one each time a new message is decoded.

Each receiver port has its own counter. All counters are initialized to 0 after the \$PASHS,RST or \$PASHS,INI command has been issued. Counters are very useful to check if some DDM messages are lost at the output.

 Parameter f6 is the time tag, in seconds, as read from the decoded message. Regardless of its original presentation, the time tag provided in the DDM message is always expressed in GPS time, within the GPS week.

For example the time tag from message RTCM-3 MT 1012 (referring to GLONASS time) will be transformed to a GPS time tag in the DDM message.

Another example is the time tag from message RTCM-2 MT 18. It is originally presented modulo 3600 seconds, but appears as a complete time tag in the DDM message. If the decoded message does not contain any time tag (e.g. RT3 1005), the f6 field is empty.

- The age of corrections is defined as the difference, in seconds, between the receiver time at the end of the decoding process and the time tag read from the decoded message. If no tag time is provided in the message (e.g. RT3 1005), the f7 field is empty.
- Parameter s8 holds some vital attributes from the decoded message. It contains a number of parameters delimited by "slash" characters (/). It may also be empty.
- Although controlled by the \$PASHS,NME,DDM command, the DDM message is independent of the NMEA period. It is output every time a new differential message is decoded.

Example Eanbling the receiver to output the DDM message on port A: \$PASHS.NME.DDM.A.ON*12

Generating the differential decoder message on port A: \$PASHQ,DDM,A*57 \$PASHR,DDM,A.RT2,18,6832,0000,461334.0,0.5,G:1/S:8/L:0/M:1*5A

GBS: GNSS Satellite Fault Detection

Function

This command returns the GBS message supporting RAIM (Receiver Autonomous Integrity Monitoring) on the specified port, or on the port routing the query command if no output port is specified.

Command Format

Syntax

\$PASHQ,GBS[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

The response complies with the *Standard for Interactive Marine Electronic Devices – NMEA 0183 3.00*. The message header is in the form:

\$--GBS

If only GPS satellites are used in the position solution, the message header is:

\$GLGBS

If only GLONASS satellites are used in the position solution, the message header is:

\$GPGBS

If several types of satellites are used in the position solution, the message header is:

\$GNGBS

While the receiver is operated in RTK mode, the delivered GBS messages will only consist of empty fields.

Syntax

\$--GBS,m1,f2,f3,f4,d5,f6,f7,f8*cc

Parameter	Description	Range
m1	UTC time of the GGA or GNS fix associated with this message (hhmmss.ss)	000000.00- 235959.99
f2	Expected error in latitude, in meters, due to bias, with noise= 0	-

Parameter	Description	Range
f3	Expected error in longitude, in meters, due to bias, with noise= 0	-
f4	Expected error in altitude, in meters, due to bias, with noise= 0	-
d5	ID number of most likely failed satellite	1-32 for GPS 33-64 for SBAS 65-96 for GLONASS
f6	Probability of missed detection for most likely failed satellite	-
f7	Estimate of bias, in meters, on most likely failed satellite	-
f8	Standard deviation of bias estimate	-
*cc	Checksum	*00-*FF

Automatic Output of GBS Messages

This is a reminder on how to output GBS messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GBS,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GBS messages on port A at a rate of 120 seconds:

\$PASHS,NME,GBS,A,ON,120

GGA: GNSS Position Message

Function

This command is used to output a GGA message containing the last computed position on the specified port, or on the port on which the query is made if no port is specified. If no position is computed, the message will be output anyway, but with some blank fields.

Command Format

Syntax

\$PASHQ,GGA[,c1][*cc]

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$GPGGA,m1,m2,c3,m4,c5,d6,d7,f8,f9,M,f10,M,f11,d12*cc

Parameters

Parameter	Description	Range
m1	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
m2	Latitude of position (ddmm.mmmmmm)	0-90 0-59.999999
c3	Direction of latitude	N, S
m4	Longitude of position (dddmm.mmmmmm)	0-180 0-59.999999
c5	Direction of longitude	E,W
d6	Position type: O: Position not available or invalid 1: Autonomous position 2: RTCM Differential or SBAS Differential 3: Not used 4: RTK fixed 5: RTK float	0-5
d7	Number of GNSS Satellites being used in the position computation	0-26
f8	HDOP	0-99.9
f9,M	Altitude, in meters, above mean seal level. "M" for meters	± 99999.999,M
f10,M	Geoidal separation in meters. "M" for meters. Based on the official NATO's standard mean- sea-level algorithm (5-degree grid of height).	± 999.999,M
f11	Age of differential corrections, in seconds	0-600
d12	Base station ID (RTCM only)	0-4095
*cc	Checksum	*00-*FF

Example

\$PASHQ,GGA

\$GPGGA,131745.00,4717.960847,N,00130.499476,W,4,10,0.8,35.655,M, 47.290,M,3.0,1000*61

Automatic Output of GGA Messages

This is a reminder on how to output GGA messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GGA,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GGA messages on port A at a rate of 0.5 second:

\$PASHS,NME,GGA,A,ON,0.5

GLL: Geographic Position - Latitude/Longitude

Function

This command is used to output a GLL message containing the last computed position. The message is output on the specified port, or on the port on which the query is made if no port is specified. If no position is computed, the message will be output anyway, but all position-related fields will be blank.

Command Format

Syntax

\$PASHQ,GLL[*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$GPGLL,m1,c2,m3,c4,m5,c6,c7*cc

Parameter	Description	Range
m1	Latitude of position (ddmm.mmmmmm)	0-90
"""	Lautade of position (dunim.minimini)	0-59.999999
c2	Direction of latitude	N, S
m3	Longitude of position (dddmm.mmmmmm)	0-180
IIIS	Longitude of position (additini.minimini)	0-59.999999
c4	Direction of longitude	E,W
m5	Current UTC time of position (hhmmss.ss)	000000.00-
1110	outlette of to time of position (imminos.ss)	235959.99
	Status	
c6	A: Data valid	A, V
	V: Data not valid	

Parameter	Description	Range
c7	Mode indicator: A: Autonomous mode D: Differential mode N: Data not valid	A, D, N
*cc	Checksum	*00-*FF

Example

\$PASHQ,GLL

\$GPGLL,4717.960853,N,00130.499473,W,132331.00,A,D*7D

Automatic Output of GLL Messages

This is a reminder on how to output GLL messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GLL,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GLL messages on port A at a rate of 0.5 second:

\$PASHS,NME,GLL,A,ON,0.5

GRS: GNSS Range Residuals

Function

This command is used to output a GRS message containing the satellite range residuals. The message is output on the specified port, or on the port on which the query is made if no port is specified. No message will be output if there is no position computed.

Command Format

Syntax

\$PASHQ,GRS[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$--GRS,m1,d2,n(f3)*cc

Parameter	Description	Range
"\$GRS" Header	\$GPGRS: Only GPS satellites are used. \$GLGRS: Only GLONASS satellites are used. \$GNGRS: Several constellations (GPS, SBAS, GLONASS) are used.	\$GPGRS, \$GLGRS, \$GNGRS
m1	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
d2	Mode used to compute range residuals	Always "1"
f3	Range residual for satellite used in position computation (repeated "n" times, where n is the number of satellites used in position computation). Residuals are listed in the same order as the satellites in the GSV message so that each residual provided can easily be associated with the right satellite.	±999.999
*cc	Checksum	*00-*FF

Example

\$PASHQ,GRS

\$GNGRS,141003.50,1,1.14,-0.48,0.26,0.20,-0.94,-0.28,-1.18*61 \$GNGRS,141003.50,1,-0.20*4F

Automatic Output of GRS Messages

This is a reminder on how to output GRS messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GRS,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GRS messages on port A at a rate of 0.5 second:

\$PASHS,NME,GRS,A,ON,0.5

GSA: GNSS DOP and Active Satellites

Function

This command is used to output a GSA message containing data related to DOP values and satellites used in the position solution. The message is output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,GSA[,c1][*cc]

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$--GSA,c1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,f15,f16,f17*cc

Parameters

Parameter	Description	Range
"\$GSA" Header	\$GPGSA: Only GPS satellites are used. \$GLGSA: Only GLONASS sats are used. \$GNGSA: Several constellations (GPS, SBAS, GLONASS) are used.	\$GPGSA, \$GLGSA, \$GNGSA
c1	Output mode: • M: Manual • A: Automatic	M, A
d2	Position indicator: 1: No position available 2: 2D position 3: 3D position	1-3
d3-d14	Satellites used in the position solution (blank fields for unused channels)	GPS: 1-32 GLONASS: 65-96 SBAS: 33-64
f15	PDOP	0-9.9
f16	HDOP	0-9.9
f17	VDOP	0-9.9
*cc	Checksum	*00-*FF

Example

\$PASHQ,GSA

\$GNGSA,A,3,20,11,13,23,17,04,31,,,,,1.6,0.9,1.3*21 \$GNGSA,A,3,81,83,68,,,,,,,1.6,0.9,1.3*2C

Automatic Output of **GSA Messages**

This is a reminder on how to output GSA messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GSA,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GSA messages on port A at a rate of 0.5 second:

\$PASHS,NME,GSA,A,ON,0.5

GST: GNSS Pseudo-Range Error Statistics

Function

This command is used to output a GST message containing standard deviations relevant to the position solution. The message is output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,GST[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$--GST,m1,f2,f3,f4,f5,f6,f7,f8*cc

Parameters

Parameter	Description	Range
"\$GST" Header	\$GPGST: Only GPS satellites are used. \$GLGST: Only GLONASS satellites are used. \$GNGST: Several constellations (GPS, SBAS, GLONASS) are used.	\$GPGST, \$GLGST, \$GNGST
m1	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
f2	RMS value of standard deviation of range inputs (DGNSS corrections included), in meters	0.000-99.999
f3	Standard deviation of semi-major axis of error ellipse, in meters	0.000-99.999
f4	Standard deviation of semi-minor axis of error ellipse, in meters	0.000-99.999
f5	Orientation of semi-major axis of error ellipse, in degrees from true North	0.000-99.999
f6	Standard deviation of latitude error, in meters	0.000-99.999
f7	Standard deviation of longitude error, in meters	0.000-99.999
f8	Standard deviation of altitude error, in meters	0.000-99.999
*cc	Checksum	*00-*FF

Example

\$PASHQ,GST

\$GNGST,154013.80,0.642,1.746,1.303,27.197,1.663,1.407,2.456*79

Automatic Output of GST Messages

This is a reminder on how to output GST messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GST,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GST messages on port A at a rate of 0.5 second:

\$PASHS,NME,GST,A,ON,0.5

GSV: GNSS Satellites in View

Function

This command is used to output a GSV message containing information on the satellites in view. The message is output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,GSV[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$--GSV,d1,d2,d3,n(d4,d5,d6,f7)*cc

The set of parameters (d4,d5,d6,f7) can be repeated up to 4 times in a single response line, corresponding to the description of 4 different satellites. The number of response lines is therefore dependent on the number of satellites in view (e.g. three response lines if between 9 and 12 satellites are visible).

Parameter	Description	Range
"\$GSV"	\$GPGSV: GPS and SBAS satellites.	\$GPGSV,
Header	\$GLGSV: GLONASS satellites	\$GLGSV
d1	Total number of messages	1-4
d2	Message number	1-4
d3	Total number of satellites in view	1-15
d4	Satellite PRN	GPS: 1-32 GLONASS: 65-96 SBAS: 33-64
d5	Elevation in degrees	0-90
d6	Azimuth in degrees	0-359
f7	SNR in dB.Hz	30.0-60.0
*cc	Checksum	*00-*FF

Example

\$PASHQ,GSV

\$GPGSV,2,1,07,20,61,066,50,11,30,146,36,13,41,200,50,23,73,134,52*7C \$GPGSV,2,2,07,33,34,198,42,17,40,242,50,04,37,304,48*47 \$GLGSV,1,1,04,77,29,098,46,84,19,332,46,83,49,276,52,68,57,300,52*67

Automatic Output of GSV Messages

This is a reminder on how to output GSV messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GSV,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GSV messages on port A at a rate of 10 seconds:

\$PASHS,NME,GSV,A,ON,10

HDT: True Heading

Function

This command is used to output an HDT message (last computed true heading in degrees) on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,HDT[,c1][*cc]

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$GPHDT.f1.T*cc

Parameters

Parameter	Description	Range
f1,T	Last computed heading value, in degrees "T" for "True".	0-359.9°
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,HDT

\$GPHDT,121.2,T*35

Automatic Output of HDT Messages

This is a reminder on how to output HDT messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,HDT,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output HDT messages on port A at a rate of 1 second:

\$PASHS,NME,HDT,A,ON,1

LTN: Latency

Function

This command returns the current value of latency on the specified port, or on the port routing the query command if no output port is specified.

Command Format

Syntax

\$PASHQ,LTN[,c1][*cc]

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,LTN,d1*cc

Parameters

Parameter	Description	Range
d1	The state of the s	Typically less than 100 ms in FAST
uı		RTK mode
*cc	Optional checksum	*00-*FF

Example

Querying the value of latency:

\$PASHQ,LTN \$PASHR,LTN,60*08

Comments

Latency refers to the time it takes for the receiver to compute a position from the measurement time tag and prepare data to be transmitted through the serial port. The value of latency depends on the number of locked satellites.

In time-tagged mode, the value of latency also includes the time required for the correction stream to go through the data communication link before arriving at the receiver.

Automatic Output of LTN Messages

This is a reminder on how to output LTN messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,LTN,<port ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output LTN messages on port A at a rate of 10 seconds:

\$PASHS,NME,LTN,A,ON,10

PAR: Receiver Parameters

Function

This command lists the currently used parameters for the specified type of receiver settings. The response is returned through the specified port, or on the port routing the query command if no output port is specified.

Command Format

Syntax

\$PASHQ,PAR[,[s1][,c2]][*cc]

Parameters

Parameter	Description	Range
s1	Type of receiver settings. If s1 is omitted, the response lists the parameters for all types of settings.	See table below.
c2	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Type	Description	
INP	Input information.	
OUT	Output information.	
RCV	Receiver settings.	
RTK	RTK and ARROW settings.	
STA	Status information.	

Response Format

Examples

Querying receiver parameters for output information settings:

\$PASHQ,PAR,OUT

NOTE: When running the \$PASHQ,PAR,OUT command, the returned parameters should be interpreted as follows:

- "OFF" means the message is currently not output.
- "ON" means it is currently output with the default output rate.
- A specified output rate means this rate was user-set through the appropriate command.

Querying receiver parameters for input information settings:

\$PASHQ,PAR,INP

	+======================================
INPUT INFORMATION	
RTK1 CORR SOURCE	A,ALL
RTK2 CORR SOURCE	OFF,ALL
RTK3 CORR SOURCE	OFF,ALL
PORTS SPEED	A:9 B:9 C:0
	<u> </u>

Omitting s1 in the command is equivalent to asking for all receiver parameters, one type after the other. A typical response is given below.

\$PASHQ.PAR

```
-----
STATUS INFORMATION
 STORED POSITION
                                            5539.358898,N,03731.606905,E,267.567 (
                                          16.09.2010
133135.30
1601(4):394310300(7)
5372(4):59495300(7)
21 (GPS:12 SBA:2 GLO:7)
14 (GPS:8 SBA:0 GLO:6)
DATE (dd.nm.yyyy)
UTC TIME (hhmmss.ms)
GPS TIME SCALE
GLO TIME SCALE
SVS TRACKED
 SVS USED
 SOLUTION STATUS
EXTERNAL ANTENNA STATUS
                                           SHORTED
------
______
COMMON SETTINGS:
 INTERNAL RECEIVER NAME
FIRMWARE VERSION
                                            MB500
Gh23
 REFERENCE CLOCK
GNSS CONFIGURATION
                                            INTERNAL
GPS ALLOWED TO TRACK ON
GLO ALLOWED TO TRACK ON
SBA ALLOWED TO TRACK ON
INTERNAL UPDATE PERIOD [msec] 50
CHANNELS-SVS ASSIGNMENT AU
                                             AUT
                                             ADAPTIVE
DYNAMIC
USER DYNAMIC PARAMETERS
CLOCK STEERING
OUTPUT ADJUSTMENT TO ANTENNA
                                             100000.0,100.0,100000.0,100.0
 CODE CORRELATOR MODE | STROBE CORRELATOR
CODE SMOOTHING INTERVAL [sec] 100,600,1800
ADJUST GLONASS BIASES | OFF
 POSITION ELEVATION MASK [deg] | 05
MAX SVS IN PVT
PPS PERIOD [sec]
PPS OFFSET [msec]
PPS SYNCHRONIZED EDGE
EVENT MARKER EDGE
                                             14
DIFF GENERATOR SETTINGS:
OWN ANTENNA NAME
OWN RECEIVER NAME
                                           MB500
 SITE NAME
TEXT MESSAGE
                                           MB500
  etc.
```

PAR,ATM: ATOM Data Generation Settings

Function

This command lists the currently used settings to generate ATOM messages. The response is returned through the specified port, or on the port routing the query command if no output port is specified.

Command Format

Syntax

\$PASHQ,PAR,ATM[,[s1][,c2]][*cc]

Parameters

Parameter	Description	Range
s1		MES, PVT, TT1, TT2, ATR, NAV, DAT, RNX, EVT, STA
c2	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Data	Description	
MES	Settings for generating ATOM, MES messages	
PVT	Settings for generating ATOM, PVT messages (best RTK)	
TT1	Settings for generating ATOM, PVT messages (first RTK)	
TT2	Settings for generating ATOM, PVT messages (second RTK)	
ATR	Settings for generating ATOM, ATR messages	
NAV	Settings for generating ATOM, NAV messages	
DAT	Settings for generating ATOM, DAT messages	
RNX	Settings for generating ATOM, RNX messages	
EVT	Settings for generating ATOM, EVT messages	
STA	Settings for generating ATOM, STA messages	

Response Format

The response is in a user-readable format. See *ATOM Reference Manual*.

PIN: Programmable Pin

Function

This command returns the current settings of the specified programmable pin on the I/O connector. The response is returned on the port routing the query command.

Command Format

Syntax

\$PASHQ,PIN[,d1][*cc]

Parameters

Parameter	Description	Range
	Identification of the programmable pin ID. If d1 is not specified, the response will include information about all the available programmable pins.	0
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,PIN,d1,s2[,d3]*cc

Parameters

Parameter	Description	Range
d1	Programmable pin ID recalled in this field (0: TIOA1)	0
s2	Pin function status: OFF: no function assigned PAV: Position available RSP: Radar simulated pulse	OFF, PAV or RSP
d3	If s2=PAV, d3 is the number of consecutive seconds while position is not computed that causes the signal on the pin to switch to low level. If s2=RSP, d3 has been set to "1" to make Radar Simulated Pulse output available on the pin. if s2=OFF, d3 has been omitted	1-3600 or 1
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,PIN,0,A*51 (or \$PASHQ,PIN*20)

\$PASHR,PIN,0,PAV,60*7E

or

\$PASHR,PIN,0,OFF*5C

POS: Computed Position Data

Function

This command allows you to query the computed position. The message is output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,POS[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,POS,d1,d2,m3,m4,c5,m6,c7,f8,f9,f10,f11,f12,f13,f14,f15,f16,s17*cc

Parameters

Parameter	Description	Range
d1	Position mode: • 0: Autonomous • 1: RTCM code differential or SBAS differential • 2: RTK float • 3: RTK fixed • 5: Extrapolated	
d2	Count of satellites used in position computation	0-26
m3	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
m4	Latitude of position (ddmm.mmmmmm)	0-90° 00-59.999999 minutes
c5	North (N) or South (S)	N, S
m6	Longitude of position (ddmm.mmmmmm)	0-180° 0059.999999 minutes
c7	East (E) or West (W)	E, W
f8	Altitude above the WGS84 ellipsoid	±9999.000
f9	Age of Differential data, in seconds	0.0-600.0
f10	True Track/Course Over Ground, in degrees	0.0-359.9
f11	Speed Over Ground, in knots	0.0-999.9
f12	Vertical velocity in dm/s	±999.9
f13	PDOP	0-99.9
f14	HDOP	0-99.9
f15	VDOP	0-99.9
f16	TDOP	0-99.9
s17	Firmware version ID	4-char. string
*cc	Checksum	*00-*FF

Example

\$PASHQ,POS

\$PASHR,POS,3,10,151858.00,4717.960848,N,00130.499487,W,82.972,,0.0, 0.0,-0.0,2.0,1.1,1.7,1.3,G010*49

Automatic Output of POS Messages

This is a reminder on how to output POS messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,POS,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output POS messages on port A at a rate of 0.2 second:

\$PASHS,NME,POS,A,ON,0.2

PRT: Baud Rate Settings

Function

This command is used to query the baud rate setting for port A or B. The message is output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,PRT[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,PRT,c1,d2*cc

Parameters

Parameter	Description	Range
c1	Queried port ID	A, B
		2-15 for port A
d2	Baud rate code	2-11 for port B
		(see table below)
*cc	Checksum	*00-*FF

Code	Baud Rate						
2	1 200	6	19200	10	230400	14	2500000
3	2 400	7	38400	11	460800	15	5000000

Code	Baud Rate						
4	4 800	8	57600	12	921600		
5	9 600	9	115200	13	1428571		

Example

\$PASHQ,PRT,A

\$PASHR,PRT,A,6*55

PTT: PPS Time Tag

Function

This command asks for the PPS time tag message to be output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,PTT[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,PTT,d1,m2*cc

Parameters

Parameter	Description	Range
	Day of week:	
d1	• 1: Sunday	1-7
	• 7: Saturday	
m2	GPS time tag in hours, minutes, seconds	0-23:59:59.9999999
*cc	Checksum	*00-*FF

Example

Enabling the receiver to output the PTT message on port A:

\$PASHS,NME,PTT,A,ON

Generating the PPS time tag message on port A:

\$PASHQ,PTT,A

\$PASHR,PTT,6,20:41:02.0000000*2D

Comments

- The response to this command will be sent out once, right after the next PPS pulse is generated.
- The response contains the GPS time at which the PPS pulse was sent, including the offset if an offset was set when the PPS pulse was enabled.
- This message is not output unless the PPS pulse is enabled and the PPS option [L] is activated in the receiver. Being set to a periodical output by the \$PASHS,NME,PTT command, this message is independent of the NMEA period. It is only linked to the PPS period.

Asking for the Output of a Raw Data Message

Function

This command is used to output the specified raw data message on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,s1[,c2][*cc]

Parameters

Parameter	Description	Range
s1	Raw data message identification	See table below
c2	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Data	Description
MCA	GPS/GLONASS/SBAS L1 CA data
MPC	GPS/GLONASS/SBAS measurements
DPC	Compact GPS raw data
PBN	Position information
SNV	GPS ephemeris data
SNG	GLONASS ephemeris data
SNW	SBAS ephemeris data
SAL	GPS almanac data
SAG	GLONASS almanac data
SAW	SBAS almanac data
ION	Ionospheric parameters
SBD	SBAS data message

Response Format

See detailed description of each of these messages in the chapter *Raw Data Messages in Ashtech Proprietary Format on page 157*.

RCP: Receiver Parameters

Function

This command returns the parameters of the receiver whose case-sensitive name is specified in the command. The response is returned through the specified port, or on the port routing the query command if no output port is specified.

Command Format

Syntax

\$PASHQ,RCP[,[s1][,c2]][*cc]

Parameters

Parameter	Description	Range
s1	Name of the receiver (case sensitive). If s1 is omitted, the parameters for all the receivers described in the database are listed.	31 characters max.
c2	ID of the port returning the response	A, B, C
*cc	Checksum	*00-*FF

Response Format

The response is in user-readable form. Only fractional parts of the GLONASS carrier phase biases are of practical importance.

Below is an example of a response to this command:

\$PASHQ,RCP,ProMark500

RECEIVER:

ProMark500:

L1 BIAS: +0.000,+0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000

+0.000 +0.000 +0.000 +0.000 +0.000 +0.000

L2 BIAS: +0.000,+0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000

+0.000 +0.000 +0.000 +0.000 +0.000 +0.000

For pre-defined receivers, only receiver names are provided. For user-defined receivers, all bias parameters are provided as well. Examples:

\$PASHQ,RCP,MyReceiver

PREDEFINED RECEIVER LIST (1):

BEGIN RECEIVER

MyReceiver:

L1 BIAS: +0.059.+0.613 +0.671 +0.729 +0.786 +0.829 +0.898 +0.949

+0.000 +0.059 +0.112 +0.182 +0.253 +0.312 +0.373

L2 BIAS: +0.049.+0.667 +0.714 +0.761 +0.808 +0.849 +0.893 +0.947

+0.000 +0.044 +0.102 +0.153 +0.201 +0.254 +0.292

FND RECEIVER

\$PASHQ,RCP

PREDEFINED RECEIVER LIST (13):

BEGIN RECEIVER

ASHTECH:

END RECEIVER

BEGIN RECEIVER

ProMark500:

END RECEIVER

BEGIN RECEIVER

ProFlex500:

END RECEIVER

BEGIN RECEIVER

MB500:

END RECEIVER

BEGIN RECEIVER

MMapper100:

END RECEIVER

BEGIN RECEIVER

ProMark200:

END RECEIVER

BEGIN RECEIVER

MB100:

END RECEIVER

BEGIN RECEIVER

NOVATEL:

END RECEIVER

BEGIN RECEIVER

TRIMBLE:

END RECEIVER

BEGIN RECEIVER

SEPTENTRIO:

END RECEIVER

BEGIN RECEIVER

TOPCON:

END RECEIVER

BEGIN RECEIVER

MyReceiver:

L1 BIAS: +0.059,+0.613 +0.671 +0.729 +0.786 +0.829 +0.898 +0.949

+0.000 +0.059 +0.112 +0.182 +0.253 +0.312 +0.373

L2 BIAS: +0.049.+0.667 +0.714 +0.761 +0.808 +0.849 +0.893 +0.947

+0.000 +0.044 +0.102 +0.153 +0.201 +0.254 +0.292

END RECEIVER

RID: Receiver Identification

Function

This command allows you to read the receiver identification parameters. The message is sent through the specified port, or through the port where the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,RID[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,RID,s1,s2*cc

Parameters

Parameter	Description	Range
s1	Receiver type	GNSS
s2	GNSS board firmware version. The firmware version contains one letter to identify the type of firmware and 3 characters for the version number (e.g. V1.00=G100)	Gxxx (4 characters)
*cc	Checksum	*00-*FF

Example

\$PASHQ,RID*28

\$PASHR,RID,GNSS,G100*59

RIO: Receiver Options

Function

This command returns the receiver identification and options on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,RIO[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format Syntax

\$PASHR,RIO,s1,s2,s3,s4,s5*cc

Parameters

Parameter	Description	Range
s1	Receiver type (i.e. "GNSS")	GNSS
s2	GNSS board firmware version: Gxxx	4 characters
s3	Reserved field	Empty
s4	Options list (see table below)	13 characters
s5	Receiver serial number (see table below)	16 characters
*cc	Optional checksum	*00-*FF

Firmware Options List (always listed in the order given below):

Option	Description	Impacted Commands If Not Installed
		\$PASHS,POP
		\$PASHS,ATM
Ш	Position/raw data update rate:	\$PASHS,RAW
[W]	[T]: 10 Hz	\$PASHS,RT2
[**]	[W]: 20 Hz	\$PASHS,RT3
		\$PASHS,CMR
		\$PASHS,CMP
		All CPD commands
IJ	RTK rover	\$PASHQ,ATT
[0]	KTKTOVEI	\$PASHQ,HDT
		\$PASHQ,VEC
	RTK base	\$PASHS,RT2
[K]		\$PASHS,RT3
[IV]		\$PASHS,CMR
		\$PASHS,CMP
		\$PASHS,PPS
[L]	Timing Pulse Output (PPS)	\$PASHQ,PPS
[L]		\$PASHQ,PTT
		\$PASHS,NME,PTT
		\$PASHS,PHE
[E]	Photogrammetry event marker	\$PASHQ,PHE
		\$PASHS,NME,TTT
		\$PASHS,SBA
[Y]	SBAS tracking	\$PASHS,RAW (SNW, SAW,
		SBD)

Option	Description	Impacted Commands If Not Installed
[G]	GLONASS tracking	\$PASHS,GLO \$PASHS,RAW (SNG, SAG) \$PASHS,RT3 (1009-1012) \$PASHS,CMR (3) \$PASHS,CMP (3) \$PASHS,GNS,CFG (1, 4, 5)
[S]	GPS L2CS tracking. Requires the [P] option to be installed as well.	\$PASHS,GNS,CFG
[V]	RTK with moving base. Requires the [J] option to be installed as well.	\$PASHS,CPD,BAS
[H]	Heading function. Requires the [J] and [V] options to be installed as well.	All \$PASHS,CPD,ARR com- mands, \$PASHQ,HDT \$PASHQ,ATT
[C]	Advanced multipath mitigation	\$PASHS,CRR
[P]	GPS/GLONASS L2 frequency tracking	\$PASHS,GNS,CFG
[1]	RAIM	\$PASHS,NME,GBS \$PASHQ,GBS
*cc	Optional checksum	

Serial Number format: PNPNPN V YYYY WW ZZZ

Field	Definition	Range
PNPNPN	Part number (702100)	6 digits
V	Hardware version index (e.g. B for version B)	1 character
YYYY	Year of manufacturing (e.g. 2008)	4 characters
WW	Week of manufacturing	01-52 (two digits)
ZZZ	Defines the board as the ZZZth board manufactured in the week.	(1-999)

Example

\$PASHQ,RIO

\$PASHR,RIO,GNSS,G100,,WJKLEYG-VH-PI,702100B200820004*4F

Comments

- Each option is represented by a letter. The presence of a given option is indicated by the presence of the corresponding letter. A dash ("-") indicates that the option is not installed.
- Options are always listed in the same order (see table above).

RMC: Recommended Minimum Specific GNSS Data

Function

This command is used to output an RMC message containing the last computed position as well as navigation-related data. The message is output on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,RMC[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$GPRMC,m1,c2,m3,c4,m5,c6,f7,f8,d9,f10,c11,c12*cc

Parameters

Parameter	Description	Range
m1	Current UTC time of position (hhmmss.ss)	000000.00- 235959.99
c2	Status A: Data valid V: Data not valid	A, V
m3	Latitude of position (ddmm.mmmmmm)	0-90 0-59.999999
c4	Direction of latitude	N, S
m5	Longitude of position (dddmm.mmmmmm)	0-180 0-59.999999
c6	Direction of longitude	E,W
f7	Speed Over Ground, in knots	000.0-999.9
f8	Course Over Ground, in degrees (true)	000.0-359.9
d9	Date (ddmmyy)	010100-311299
f10	Magnetic variation, in degrees	0.00-99.9
c11	Direction of variation	E, W
c12	Mode indicator: • A: Autonomous mode • D: Differential mode • N: Data not valid	A, D, N
*cc	Checksum	*00-*FF

Example \$PASHQ,RMC

\$GPRMC,160324.50,A,4717.959275,N,00130.500805,W,0.0,0.0,250208,1.9, W.A*3D

Automatic Output of RMC Messages

This is a reminder on how to output RMC messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,RMC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output RMC messages on port A at a rate of 0.5 second:

\$PASHS.NME.RMC.A.ON.0.5

SAT: Satellites Status

Function

This command allows you to read the status of the different satellite constellations used. The message is output through the specified port, or through the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,SAT[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,SAT,d1,n(d2,d3,d4,f5,c6)*cc

Parameters

Parameter	Description	Range
d1	Number of satellites locked	0-26
d2	SV PRN number	1-32: GPS 33-51: SBAS 65-88: GLONASS
d3	SV azimuth, in degrees	0-359
d4	SV elevation angle, in degrees	0-90
f5	SV signal-noise ratio, in dB.Hz	30.0-60.0

Parameter	Description	Range
	SV used in computation or not	
c6	U: SV used	U, other character
	Any other character: SV not used	
*cc	Checksum	*00-*FF

Example

\$PASHQ.SAT

\$PASHR,SAT,13,20,092,32,44.0,U,13,206,78,50.0,U,23,056,55,48.0,U,33,19 8,34,44.0,-,17,218,13,42.0,U,25,152,34,38.0,U,04,276,65,50.0,U,02,308,31, 48.0,U,77,052,37,48.0,U,84,294,33,48.0,U,83,234,23,48.0,U,78,124,42,46.0, U,68,034,65,48.0,U*35

Automatic Output of SAT Messages

This is a reminder on how to output SAT messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,SAT,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SAT messages on port A at a rate of 60 seconds:

\$PASHS.NME.SAT.A.ON.60

TTT: Event Marker

Function

This message provides the GPS time of the external event. The time is provided with an accuracy of \pm 50 nanoseconds.

Response Format

Syntax

\$PASHR,TTT,d1,m2*cc

Parameters

Parameter	Description	Range
	Day of week:	
d1	1: Sunday	1-7
	• 7: Saturday	
m2	GPS time tag in hours, minutes, seconds	0-23:59:59.9999999
*cc	Optional checksum	*00-*FF

Example

\$PASHR.TTT.3.18:01:33.1200417*AC

Comments

- Issuing this output message is tied to the prior execution
 of the appropriate \$PASHS,NME,TTT command (see
 NME: Enabling/Disabling NMEA Messages on page 79),
 the detection of a signal at the board's external event
 input and the activation of the [E] event marker firmware
 option. There is no query command associated with the
 output of the TTT message.
- This message is independent of the NMEA period. It can be output faster or slower than the NMEA period, depending on the period of the event.

VEC: Vector & Accuracy Data

Function

This command is used to ask the receiver to return vector and accuracy data on the specified port, or on the port on which the query is made if no port is specified.

Command Format

Syntax

\$PASHQ,VEC[,c1][*cc]

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$PASHR,VEC,m1,d2,d3,d4,d5,d6,d7,d8,f9,d10,f11,d12,f13,f14,f15,f16,f17,f18,f19,f20,f21*cc

Parameters

Parameter	Description	Range
m1	UTC time (hhmmss.ss)	000000.00-235959.99
d2	Source of base coordinates: O: No base 1: Computed base 2: Received base 3: Entered base	0-3
d3	Type of baseline estimate: O: No baseline 1: Time-tagged RTK estimate 2: FAST RTK estimate	0-2

Parameter	Description	Range
d4	Baseline reset flag: O: Updated > 0: Initialized	0, >0
d5	Internal RTK ambiguity flag: O: Float 1: Fixed	0-1

Parameter	Description	Range
d6	Number of SVs ready for use in the RTK processing (L1 portion) on rover	0-26
uo	side.	0-20
d7	Number of SVs received from the base.	0-26
d8	Number of SVs used in the baseline computation (L1 portion).	0-26
f9	Age of last received base data, in seconds.	Real number (no limit)
d10	Overall baseline estimate latency, in milliseconds.	Integer, no limit
f11	Interval of base L1 carrier data interpolation to rover time tag.	Real number (no limit)
d12	Coordinate frame flag defining the meaning of the next six fields: 1: ENU centered on rover.	1
f13	First (East) component of baseline, in meters.	Real number (no limit)
f14	Second (North) component of base- line, in meters.	Real number (no limit)
f15	Third (Up) component of baseline, in m	Real number (no limit)
f16	RMS error for x1 component, in m.	Real number (no limit)
f17	RMS error for x2 component, in m.	Real number (no limit)
f18	RMS error for x3 component, in m.	Real number (no limit)
f19	Scaled norm of L1 carrier residuals, in meters(0 if carriers were not processed).	Real number (no limit)
f20	Scaled norm of L1 code residuals, in meters(0 if codes were not processed).	Real number (no limit)
f21	Internal ambiguity ratio (0 if the ambiguity search is not called).	Real number (no limit)
*cc	Optional checksum	*00-*FF

Example

\$PASHQ,VEC

\$PASHR,VEC,140746.00,2,1,0,1,,.05,,,0,1,-68.467,-26.867,5.428, 0.011,0.010,0.020,0.003,0.390,0.000,*25

Automatic Output of VEC Messages

This is a reminder on how to output VEC messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,VEC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output VEC messages on port A at a rate of 0.2 second:

\$PASHS,NME,VEC,A,ON,0.2

VTG: Course Over Ground and Ground Speed

Function

This command is used to output a VTG message. The message is output through the specified port, or through the port on which the query is made if no port is specified. The message is output with blank fields until a valid position is computed.

Command Format

Syntax

\$PASHQ,VTG[,c1][*cc]

Parameters

٠	Parameter	Description	Range
	c1	Port ID	A, B, C
	*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$GPVTG,f1,T,f2,M,f3,N,f4,K,c5*cc

Parameters

Parameter	Description	Range
f1,T	COG (with respect to True North) T for "True" North: COG orientation	000.00-359.99
f2,M	COG (with respect to Magnetic North) M for "Magnetic" North: COG orientation	000.00-359.99
f3,N	SOG (Speed Over Ground) N for "knots": SOG unit	000.00-999.99
f4,K	SOG (Speed Over Ground) K for "km/hr": SOG unit	000.00-999-99
c5	Mode indicator: A: Autonomous mode D: Differential mode N: Data not valid	A, D, N
*cc	Checksum	*00-*FF

Comments

The magnetic table used is the WMM-2005 (published Dec 2004), which is the standard model of the US Department of Defense (WMM for "World Magnetic Model").

Example

\$PASHQ,VTG

\$GPVTG,128.00,T,129.92,M,0.17,N,0.31,K,A*2D

Automatic Output of VTG Messages

This is a reminder on how to output VTG messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,VTG,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output VTG messages on port A at a rate of 0.5 second:

\$PASHS,NME,VTG,A,ON,0.5

ZDA: Time & Date

Function

This command returns the receiver date & time. The message is output through the specified port, or through the port on which the query is made if no port is specified.

Command Format

\$PASHQ,ZDA[,c1][*cc]

Syntax

Parameters

Parameter	Description	Range
c1	Port ID	A, B, C
*cc	Optional checksum	*00-*FF

Response Format

Syntax

\$GPZDA,ZDA,m1,d2,d3,d4,d5,d6*cc

Parameters

Parameter	Description	Range
m1	UTC time (hhmmss.ss)	000000.00- 235959.99
d2	Current day	01-31
d3	Current month	01-12
d4	Current year	0000-9999
d5	Local zone offset from UTC time (hour)	-13 to +13
d6	Local zone offset from UTC time (minutes)	00-59
*cc	Checksum	*00-*FF

Example

\$PASHQ,ZDA

\$GPZDA,162256.27,25,02,2008,+00,00*43

NOTE: The time offset is always reported as null (d5=d6=0).

Automatic Output of ZDA Messages

This is a reminder on how to output ZDA messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,ZDA,<port ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output ZDA messages on port A at a rate of 60 seconds:

\$PASHS,NME,ZDA,A,ON,60

Chapter 6. Raw Data Messages in Ashtech Proprietary Format

Output Order

In most cases, the order in which messages are output by the receiver is the same as that in which they are listed in the response to \$PASHQ,PAR,OUT, i.e. from left to right and top to bottom.

For example, LTN comes first in the NME group while RNX, in the ATM group, comes earlier than MCA (in the RAW group). Still in the tabular response to the \$PASHQ, PAR,OUT command, the output rate for each enabled message is provided. When this parameter is set to OFF, this means the message is disabled.

Within each group, the receiver relies on the following concept to organize the data output:

- Position first.
- Then observables,
- And finally attributes.

There are however exceptions:

- Messages generated according to the "on change" or "on event" principle (such as SNV and TTT respectively) cannot be tagged exactly to an epoch. That is why in somes cases they will appear at different locations in the output stream.
- LTN and ZDA come earlier than GLL and GGA in the NME group. This is because of the highest importance of latency and time-tagging information in some applications.
- PBN is not of prime importance in the RAW group. It is there for legacy reasons.
- TT1 or TT2 comes after RNX or MES. This is because TT1 and TT2 messages contain time-tagged RTK results that are not synchronized with the current receiver time tag. Also, when the receiver is configured in time-tagged RTK

mode, the output of some messages may present unusual behavior, due to local delays in the data link used.

Coordinate Transformations: The receiver is not designed to perform internally coordinate transformations. So all the positions the receiver delivers refer to a "default" datum. This requires some clarifications.

The cartesian coordinates the receiver delivers (for example through the PBN message) are expressed on the following datum:

- Current ITRF realization used in broadcast ephemeris data (to date IGS05)
- Datum of reference position (applicable only for DGNSS and RTK modes)

A priori and generally speaking, the receiver does not know anything about the datum used by the local corrections provider to express the reference position it receives from that provider. As a result, the standalone position the receiver determines is tagged to the IGSO5 and the differential position is the sum of the reference position (on whichever datum it is expressed) and the baseline estimate (on the IGSO5 datum).

For internal transformations from cartesian (e.g. PBN) to geographical (e.g. POS) coordinates, the receiver uses the IGS05 (WGS-84 ellipsoid model).

The board firmware uses the geoid model referred to as the "NATO STANAG 4294 Navstar Global Positioning System (GPS) System Characteristics-ED 2". This model is used to determine the height above the geoid in GGA messages (or similar).

The board firmware applies the Magnetic table corresponding to model WMM-2005 (published 12/2004). This model is used in position/velocity transformations required by some NMEA messages.

When no other models (e.g. SBAS) are available, the board firmware uses the default ionosphere model, as extracted from the GPS navigation stream (Klobuchar model).

The board firmware uses proprietary troposphere models. User positions reported in all messages are tagged to the antenna L1 phase center. There may be an exception however for reference positions generated inside correcting data streams: These can be tagged to either the L1 phase center or the ARP, according to the standard they have to comply with.

The receiver can internally compute different positions at the same time. The reported user positions are always the "best" positions, depending on the currently available corrections data. The only exception is for PBN messages, in which only a standalone, SBAS or DGNSS position can be reported. In no case can PBN messages deliver RTK positions.

Being all centimeter-level accurate, RTK positions are very sensitive to the slightest change in the parameters used. They can for example skip by a few centimeters if you change the antenna names. Changing the local and reference antenna names will indeed result in the use of new PCO parameters (antenna offset values).

If the receiver clock steering procedure is applied (UTS set to ON), this affects not only the appearance of some receiver raw data (RAW group) but also the reported position in the case of high receiver dynamics, when this position is extrapolated forward or backward for periods of time of up to 1 ms.

DPC: Compact GPS Measurements

This message contains the L1/L2 measurements from all tracked GPS satellites for one epoch.

The message is as follows:

\$PASHR,DPC,<structure>

The message's binary structure is described in the table below.

Type*	Size in bits	Resolution	Contents				
Unsigned short	16		Message length. Number of bytes in the <packed data=""> section.</packed>				
PACKED DATA	PACKED DATA						
Double	32	1 msec	Receiver time in GPS milliseconds of week				
Char[4]	32		Receiver's four-character ID				
Unsigned long	32		Mask representing satellites that are contributors to the message content. This is a bitwise indication: Starting from the least significant bit, bit1 corresponds to SV PRN#1, bit2 corresponds to SV PRN#2, and so on. Bit value "1" for a given SV PRN means the corresponding satellite is a data contributor to this message, "0" otherwise.				
The data that fol	low are r	epeated for each	ch satellite presented in the satellite mask				
Unsigned char	1		Satellite health ("0" means Sat is unhealthy)				
Unsigned char	7	1 degree	Satellite elevation				
Unsigned char	1		RAIM status (always zero)				
Unsigned char	7	1 dBHz	SNR of L1CA observation				
#L1 Data Block	L1CA in	all cases)					
Double	31	0.1 nsec	Raw range in 0.1 nsec (range is smoothed by carrier). "0" means bad raw range data.				
Unsigned char	1		Warning flag ("1" means bad carrier phase with possible cycle slips)				
Unsigned char	1		Sign of total carrier phase ("1": negative; "0":positive)				
Double	28	1 cycle	Integer part of total carrier phase in cycles				
Double	11	0.0005 cycles	Fractional part of phase in 0.0005 cycles				
Double	24	0.002 Hz	Doppler in units of 0.002 Hz				
#L2 Data Block (L2P for CFG,2&4 and L2C for CFG,3&5)							
Content and data packing scheme is the same as for L1 Data							
CHECKSUM	CHECKSUM						
Unsigned short	16		Cumulative unsigned short sum of the <packed data="">, after <message length=""> and before <checksum></checksum></message></packed>				

The data in this message are packed in bits rather than bytes. So the presented types of fields are just for the sake of giving a meaningful description of the original data packing. NOTES:

 Most of the fields found in the DPC and DBEN data outputs are similar.

- DPC data are affected by the last \$PASHS,UTS command run. By default, this command is set to "ON".
- DPC data are affected by the last \$PASHS,ANP,OUT command run.
- DPC data can be made available on several ports simultaneously.
- DPC data can be output at a rate of up to 20 Hz, but the throughput compared to RTCM-3, CMR and ATOM may be quite higher.
- DPC data are not considered to be used as a differential protocol, i.e. they are simply generated, and so not processed to become corrections.

Reminder on How to Output DPC Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,DPC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output DPC messages on port A at a rate of 1 second:

\$PASHS,RAW,DPC,A,ON,1

ION: Ionosphere Parameters

This message contains the ionosphere and GPS-to-UTC data conversion parameters.

The message is as follows:

\$PASHR,ION,<structure>

The message's binary structure is described in the table below.

Type	Name	Size	Contents	
Float	a0	4	Ionospheric parameter (seconds)	
Float	a1	4	Ionospheric parameter (seconds/semi-circle)	
Float	a2	4	Ionospheric parameter (seconds/semi-circle)	
Float	a3	4	lonospheric parameter (seconds/semi-circle)	
Float	b0	4	Ionospheric parameter (seconds)	
Float	b1	4	lonospheric parameter (seconds/semi-circle)	
Float	b2	4	lonospheric parameter (seconds/semi-circle)	
Float	b3	4	lonospheric parameter (seconds/semi-circle)	
Double	A1	8	First order terms of polynomial	
Double	A0	8	Constant terms of polynomial	
Unsigned long	Tot	4	Reference time for UTC data	
Short	Wnt	4	UTC reference week number	
Short	DtLS	2	GPS-UTC differences at reference time	
Short	WnLSF	2	Week number when leap second became effective	
Short	DN	2	Day number when leap second became effective	
Short	DtLSF	2	Delta time between GPS and UTC after correction	
Short	Wn	2	GPS week number	
Unsigned	Tow	4	Time of the week (in seconds)	
long			Time of the wook (iii seconds)	
Short	bulwn	2	GPS week number when message was read	
Unsigned long	bultow	4	Time of the week when message was read	
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 37 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.	
Total		76		

The GPS broadcast ionosphere model (Klobuchar) is used.

Reminder on How to Output ION Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,ION,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output ION messages on port A at a rate of 5 seconds:

\$PASHS,RAW,ION,A,ON,5

MCA: C/A Code Measurements

This message contains the GPS/GLONASS/SBAS L1 C/A data of one satellite for one epoch.

The message is as follows:

\$PASHR,MCA,<structure>

The message's binary structure is described in the table below.

Туре	Size	Contents	
Unsigned short	2	Sequence tag (unit: 50 ms) modulo 30 minutes	
Unsigned char 1		Number of remaining MCA messages to be sent for current epoch	
Unsigned char	1	Satellite index number GPS: 1-32 SBAS: 33-51 GLONASS: 65-88	
Unsigned char	1	Satellite elevation angle (degree)	
Unsigned char	1	Satellite azimuth angle (2-degree increments)	
Unsigned char	1	Channel ID not duplicated for the current epoch	
	29	C/A code data block (29 bytes)	
Unsigned char	1	Warning flag Bit1, Bit2: 0,0: Code and/or carrier phase measured, but measurement was not used to compute position. 1,0: Code and/or carrier phase measured, navigation message was obtained and measurement was used to compute position, but position wasn't finally computed. 0,1: Code and/or carrier phase measured, navigation message was obtained, measurement was used to compute position and position was computed successfully. Bit3: Carrier phase questionable Bit4: Code phase (range) questionable Bit5: Range not precise (code phase loop not settled) Bit6: Z tracking mode Bit7: Possible cycle slip Bit8: Loss of lock since last epoch	

Type	Size	Contents	
Unsigned char	1	Indicates quality of the position measurement (good/bad) 0: Measurement not available and no additional data will be sent 23: Code and/or carrier phase measured, navigation message was obtained and measurement was used to compute position but position wasn't finally computed. 24: Code and/or carrier phase measured, navigation message was obtained, measurement was used to compute position and position was computed successfully. Other state: measurement was not used to compute position.	
Unsigned char	1	Polarity of the phase tracking 0: Polarity unknown 5: Polarity known	
Unsigned char	1	Signal-to-noise ratio for satellite observation (db.Hz)	
Unsigned char	1	Always 0. Not used.	
Double	8	Full carrier phase measurements in cycles	
Double	8	Raw range to SV (in seconds), i.e. receive time - raw range = transit time	
Long	4	Doppler (10 ⁻⁴ Hz)	
Long	4	Smoothing Bits 0-22: magnitude of smooth correction in centimeters Bit 23: sign of smooth correction Bits 24-31: smooth count, unsigned, as follows: 0=unsmoothed 1=least smoothed 255=most smoothed	
Unsigned char	1	Checksum, a bytewise exclusive OR (XOR)	
Total of bytes	37		

Reminder on How to Output MCA Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,MCA,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output MCA messages on port A at a rate of 1 second:

\$PASHS,RAW,MCA,A,ON,1

MPC: GNSS Measurements

This message contains the measurement of one satellite for one epoch.

The message is as follows:

\$PASHR,MPC,<structure>

The message's binary structure is described in the table below.

Туре	Size	Contents	
Unsigned short	2	Sequence tag (unit: 50 ms) modulo 30 minutes	
Unsigned char 1		Number of remaining structure to be sent for current epoch	
Unsigned char	1	Satellite index number GPS: 1-32 SBAS: 33-51 GLONASS: 65-88	
Unsigned char	1	Satellite elevation angle (degree)	
Unsigned char	1	Satellite azimuth angle (2-degree increments)	
Unsigned char	1	Channel ID not duplicated for the current epoch	
	29	C/A code data block (29 bytes)	
Unsigned char	1	Warning flag Bit1, Bit2: 0,0: Code and/or carrier phase measured but measurement was not used to compute position. 1,0: Code and/or carrier phase measured, navigation message was obtained and measurement was used to compute position but position wasn't finally computed. 0,1: Code and/or carrier phase measured, navigation message was obtained, measurement was used to compute position and position was computed successfully. Bit3: Carrier phase questionable Bit4: Code phase (range) questionable Bit5: Range not precise (code phase loop not settled) Bit6: Z tracking mode Bit7: Possible cycle slip Bit8: Loss of lock since last epoch	

Туре	Size	Contents		
Unsigned char	1	Indicates quality of the position measurement (good/bad) 0: Measurement not available and no additional data will be sent. 23: Code and/or carrier phase measured, navigation message was obtained and measurement was used to compute position but position wasn't finally computed. 24: Code and/or carrier phase measured, navigation message was obtained, measurement was used to compute position and position was computed successfully. Other state: measurement was not used to compute position.		
Unsigned char	1	Polarity of the phase tracking 0: Polarity unknown 5: Polarity known		
Unsigned char	1	Signal-to-noise ratio for satellite observation (db.Hz)		
Unsigned char	1	Always 0. Not used.		
Double	8	Full carrier phase measurements in cycles		
Double	8	Raw range to SV (in seconds), i.e. receive time - raw range = transit time		
Long	4	Doppler (10 ⁻⁴ Hz)		
Long 4 Bits Bits 0=u 1=le		Smoothing Bits 0-22: magnitude of smooth correction in centimeters Bit 23: sign of smooth correction Bits 24-31: smooth count, unsigned, as follows: 0=unsmoothed 1=least smoothed 255=most smoothed		
	29	L1 block, same format as C/A code data block (see note below)		
	29	L2 block, same format as C/A code data block (see note below)		
Unsigned char	1	Checksum, a bytewise exclusive OR (XOR)		
Total of bytes	95			

NOTES:

- The sequence tag for GLONASS satellites is x seconds less than the sequence tag for GPS satellites, due to the difference between the UTC (used for GLONASS) and GPS system time scales.
- The raw range for GLONASS satellites contains a time shift of x seconds, i.e. x seconds more than for GPS satellites in the same conditions. "x" is as defined in the previous note.

- In case of GPS L1/L2P tracking mode, the L1 block contains L1P data. In case of GPS L2CS tracking mode, the L1 block contains zero data. In case of GLONASS-M satellites, the L1 block contains zero data.
- In case of GPS L1/L2P, the L2 block contains L2P data.
 In case of GPS L2CS tracking mode, the L2 block contains L2CS data. In case of GLONASS-M satellites, the L2 block contains C/A data on the L2 frequency

Reminder on How to Output MPC Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,MPC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output MPC messages on port A at a rate of 1 second:

\$PASHS,RAW,MPC,A,ON,1

PBN: Position Information

This message contains position information in binary format. The message is as follows:

\$PASHR,PBN,<structure>

The message's binary structure is described in the table below.

Type	Name	Size	Contents
Long	pbentime	4	GPS time when data was received (ms of week)
Char	sitename	4	Site name
Double	navx	8	Station position: ECEF-X (m)
Double	navy	8	Station position: ECEF-Y (m)
Double	navz	8	Station position: ECEF-Z (m)
Float	navt	4	Clock offset (m)
Float	navxdot	4	Velocity in ECEF-X (m/s)
Float	navydot	4	Velocity in ECEF-Y (m/s)
Float	navzdot	4	Velocity in ECEF-Z (m/s)
Float	navtdot	4	Clock drift (m/s)
Unsigned short	pdop	2	PDOP multiplied by 100
Unsigned short	checksum	2	The checksum is computed by breaking the structure into 27 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total of bytes		56	

When for example after a cold start, the receiver has no correct time tag, the PBN message is output with a fixed "zero" time tag.

Unlike all the other position messages, the position provided in a PBN message *cannot* be an RTK position. It can only be a standalone, SBAS or DGNSS position.

Reminder on How to Output PBN Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,PBN,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output PBN messages on port A at a rate of 1 second:

\$PASHS.RAW.PBN.A.ON.1

RPC: DBEN Messages

This message contains the L1/L2 measurements from all tracked GPS satellites for one epoch. The data are tagged to the location of the antenna L1 phase center, as reported by \$PASHQ,BPS.

The message is as follows:

\$PASHR,RPC,<structure>

The binary structure consists of the following:

<structure> = <message length><packed data><checksum>

The message's binary structure is described in the table below.

Type*	Size in bits	Resolution	Contents			
Unsigned short	16		Message length. Number of bytes in the <packed data=""> section.</packed>			
PACKED DATA						
Double	30	1 msec	Receiver time in GPS milliseconds of week			
Char[4]	32		Receiver's four-character ID (as entered using \$PASHS,SIT)			
Unsigned long	32		Satellite Mask. Mask representing satellites that are contributors to the message content. This is a bitwise indication: Starting from the least significant bit, bit1 corresponds to SV PRN#1, bit2 corresponds to SV PRN#2, and so on. Bit value "1" for a given SV PRN means the corresponding satellite is a data contributor to this message, "0" otherwise.			
The data that follows	low are r	epeated for eac	ch satellite presented in the satellite mask			
#L1 Data Block (L1CA in	all cases)				
Double	31	0.1 nsec	Raw range in 0.1 nsec (range is smoothed by carrier). "0" means bad raw range data.			
Unsigned char	1		Warning flag ("1" means bad carrier phase with possible cycle slips)			
Unsigned char	1		Sign of total carrier phase ("1": negative; "0":positive)			
Double	28	1 cycle	Integer part of total carrier phase, in cycles			
Double	11	0.0005 cycles	Fractional part of phase, in 0.0005 cycles			
#L2 Data Block (L2P for CFG,2&4 and L2C for CFG,3&5)						
Content and data packing scheme is the same as for L1 Data						
CHECKSUM	CHECKSUM					
Unsigned short	16		Cumulative unsigned short sum of the <packed data="">, after <message length=""> and before <checksum></checksum></message></packed>			

The data in this message are packed in bits rather than bytes. So the presented types of fields are just for the sake of giving a meaningful description of the original data packing. NOTES:

- RPC data are affected by the last \$PASHS,UTS command run. By default, this command is set to "ON".
- RPC data are affected by the last \$PASHS,ANP,OUT command run.
- RPC data can be made available on several ports simultaneously.
- Regardless of the entered station ID on base side (using \$PASHS,SIT), the base ID in messages generated by a rover (e.g. GGA - DDM - CPD,REF) is always reported to be "1010".

Reminder on How to Output RPC Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,RPC,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output RPC messages on port A at a rate of 1 second:

\$PASHS,RAW,RPC,A,ON,1

SAG: GLONASS Almanac Data

This message contains almanac data for one GLONASS satellite.

The message is as follows:

\$PASHR,SAG,<structure>

The message's binary structure is described in the table below.

Type	Name	Size	Contents
Short	prn	2	Satellite number 1-24
Short	frq	2	Satellite GLONASS frequency number [-7,,6]
Short	health	2	Satellite health 0=bad, 1=good
Float	е	4	Eccentricity
Long		4	Reference day number (days in range 1 to 1461)
Float		4	Correction to inclination (semicircles)
Float	w0	4	Longitude of first ascending node (semicircles)
Float		4	Reference time of longitude of first node (seconds)
W	Float	4	Argument of perigee (semicircles)
Float	Af0	4	Correction to mean value (43200 s) of Draconic period
Float	Af1	4	Af1=d(Af0)/dt(sec/sec)
Float		4	Satellite clock offset (seconds)
Unsigned short	Checksum	2	The checksum is computed by breaking the structure into 21 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		44	

Reminder on How to Output SAG Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SAG,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SAG messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SAG,A,ON,15

SAL: GPS Almanac Data

This message contains almanac data for one GPS satellite. The message is as follows:

\$PASHR,SAL,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
Short	prn	2	Satellite PRN number minus 1 (0-31)
Short	health	2	Satellite health
Float	е	4	Eccentricity
Long	toe	4	Reference time for orbit (sec)
Float	i0	4	Inclination angle at reference time (semi-circles)
Float	w dot	4	Rate of right ascension (semi-circles/sec)
Double	A1/2	8	Square root of semi-major axis (meters1/2)
Double	w0	8	Longitude of ascending node (semicircles)
Double	W	8	Argument of perigee (semicircles)
Double	M0	8	Mean anomaly at reference time (semi-circle)
Float	Af0	4	Clock correction (sec)
Float	Af1	4	Clock correction (sec/sec)
Short	wna	2	Almanac week number
Short	wn	2	GPS week number
Long		4	Seconds of GPS week
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 34 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		70	

Reminder on How to Output SAL Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SAL,<port_ID>,ON,<Pate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SAL messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SAL,A,ON,15

SAW: SBAS Almanac Data

This message contains almanac data for one SBAS satellite. The message is as follows:

\$PASHR,SAW,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
char	ld	1	Data ID
char	Health	1	Satellite Health&Status bitwise meaning is: Bit0 – Ranging On(0), Off(1) Bit1 – Corrections On(0), Off(1) Bit2 – Broadcast Integrity On(0), Off(1) Bit3 – Reserved Bit4-7 – SBAS provider ID (0-15): 0 – WAAS, 1 – EGNOS, 2 – MSAS, 3-13 – Not assigned yet, 14-15 – Reserved
long	T0	4	Almanac data reference time within the day expressed in the SBAS time scale (seconds)
float		3*4	Satellite ECEF X,Y,Z coordinates (meters)
float		3*4	Satellite ECEF velocity X', Y', Z' coordinates (m/s)
long	Tow	4	Time within week in GPS time scale when SBAS almanac was received
char	Wn	1	Week number in GPS time scale modulo 256 when SBAS almanac was received
char	Prn	1	Satellite number (33 to 51)
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 18 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		38	

Reminder on How to Output SAW Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SAW,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SAW messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SAW,A,ON,15

SBA, DAT: SBAS Data Message

Provided the command below has been run beforehand, \$PASHS,RAW,SBD,<port_ID>,ON

... the SBA,DAT message is output in response to: \$PASHQ,SBD, <port_ID>

...and is in the form:

\$PASHR,SBA,DAT,d1,m2,d3,d4,s5*cc

Where:

Parameter	Description	Range
d1	SBAS SV ID number	33-51
m2	Time tag: hhmmss.hh The SBA,DAT message contains the time tag of the beginning of WAAS message transmission (WAAS message transmission time is 1 second)	000000.00- 235959.99
d3	RTCA message ID	0-63
d4	Error flags (in HEX): bit0-preamble error, bit1-parity error	0-2
s5	RTCA message: 250 bit in 63 HEX numbers. The data lie from left to right and from high-order to low-order bits. The two low-order bits in the 63rd number are not used.	
cc	Checksum, computed by "exclusive-ORing" all of the bytes in the message between, but not includ- ing, the "\$" and the "". The result is "*cc" where c is a hexadecimal character.	*00-*FF

SNG: GLONASS Ephemeris Data

This message contains the GLONASS ephemeris data for one satellite.

The message is as follows:

\$PASHR,SNG,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
			Start time of 30-second frame in satellite time
Long		4	scale tk from which the ephemeris data is
			derived; time modulo one day (seconds)
			Day number of 30-second frame; modulo
			four-year period counting from beginning of
			last leap year, which corresponds to parame-
Short		2	ter tb (tb is set within this day number). This
			parameter varies within the range 1 to 1461. If
			day number=0, the day number is unknown
			(absent in navigation frame)
			Ephemeris data reference time within the day
Long		4	expressed in GLONASS system time scale =
			UTC + 3 hours (seconds)
Float		4	Frequency offset gh of the on-board fre-
		·	quency standard at tb (dimensionless)
Float		4	Bias tn between satellite time scale and
		·	GLONASS system time scale at tb (seconds)
Double		3*8	Satellite ECEF (PZ-90) X, Y, Z coordinates
			(km)
Float		3*4	Satellite ECEF (PZ-90) velocity X', Y', Z' (km/
		•	sec)
Float		3*4	Satellite perturbation acceleration X", Y", Z"
		•	due to moon and sun (km/sec/sec).
Double		8	Bias between GLONASS system time scale
2000.0			and UTC + 3 hours time scale tc (seconds)
			Age of ephemeris parameter En (interval from
Char		1	moment when ephemeris data was last
			uploaded to tb)
Char		1	Combined 3-bit flag (contains I1, I 2, I 3)
Char		1	Satellite health status flag (0=good, 1=bad)
Char		1	Satellite frequency channel number
ond:		Ľ	[-7,,6]
Short		2	Satellite system number (satellite number
501			[1,,24])

Туре	Name	Size	Contents
Unsigned short	Check- sum	2	The checksum is computed by breaking the structure into 40 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		82	

Reminder on How to Output SNG Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SNG,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SNG messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SNG,A,ON,15

SNV: GPS Ephemeris Data

This message contains the GPS ephemeris data for one satellite.

The message is as follows:

\$PASHR,SNV,<structure>

The message's binary structure is described in the table below.

Туре	Name	Size	Contents
Short	Wn	2	GPS week number
Long	Two	4	Seconds in GPS week
Float	Tgd	4	Group delay (sec)
Long	Aodc	4	Clock data issue
Long	Toc	4	Clock data reference time (sec)
Float	af2	4	Clock correction (sec/sec ²)
Float	af1	4	Clock correction (sec/sec)
Float	af0	4	Clock correction (sec)
Long	Aode	4	Orbit data issue
Float	Dn	4	Mean anomaly correction (semicircles/sec)
Double	M0	8	Mean anomaly at reference time (semicircles)
Double	е	8	Eccentricity
Double	A ^{1/2}	8	Square root of semi-major axis (meters 1/2)
Long	toe	4	Reference time for orbit (sec)
Float	cic	4	Harmonic correction term (radians)
Float	crc	4	Harmonic correction term (meters)
Float	cis	4	Harmonic correction term (radians)
Float	crs	4	Harmonic correction term (meters)
Float	cuc	4	Harmonic correction term (radians)
Float	cus	4	Harmonic correction term (meters)
Double	omega0	8	Longitude of ascending node (semicircles)
Double	omega	8	Argument of perigee (semicircles)
Double	i0	8	Inclination angle (semicircles)
Float	omega dot	4	Rate of right ascension (semicircles/sec)
Float	I dot	4	Rate of inclination (semicircles/sec)
Short	Accuracy	2	User range accuracy
Short	Health	2	Satellite health
Short	fit	2	Curve fit interval
Char	prn	1	Satellite PRN number minus 1 (0-31)
Char		1	Reserved byte
Unsigned short	Checksum	2	The checksum is computed by breaking the structure into 37 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		76	

Reminder on How to Output SNV Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SNV,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SNV messages on port A at a rate of 15 seconds:

\$PASHS,RAW,SNV,A,ON,15

SNW: SBAS Ephemeris Data

This message contains the SBAS ephemeris data for one satellite.

The message is as follows:

\$PASHR,SNW,<structure>

The message's binary structure is described in the table below.

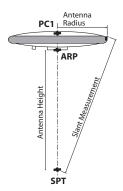
Туре	Name	Size	Contents
char	-	1	Spare field
char	accuracy	1	Accuracy
long	ТО	4	Ephemeris data reference time within the day expressed in the SBAS time scale (seconds)
double		3*8	Satellite ECEF X,Y,Z coordinates (meters)
float		3*4	Satellite ECEF velocity X', Y', Z' coordinates (m/s)
float		3*4	Satellite ECEF acceleration X",Y",Z" (m/s2)
float	aGf0	4	Time offset between satellite time scale and SBAS system time scale (seconds)
float	aGf1	4	Time drift between satellite time scale and SBAS system time scale (seconds)
long	tow	4	Time within week in GPS time scale when SBAS ephemeris was received
char	wn	1	Week number in GPS time scale when SBAS ephemeris was received
char	prn	1	Satellite number (33 to 51)
Unsigned short	Checksum	2	The checksum is computed by breaking the structure into 34 unsigned shorts, adding them together, and taking the least significant 16 bits of the result.
Total		70	

Reminder on How to Output SNW Messages

Use the \$PASHS,RAW command with the syntax below: \$PASHS,RAW,SNW,<port_ID>,ON,<Rate>

For more details on the \$PASHS,RAW command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SNW messages on port A at a rate of 15 seconds:


\$PASHS,RAW,SNW,A,ON,15

Chapter 7. Appendices

Base Antenna Issues

The firmware has to deal internally with positions tagged to different points on the antenna:

- The L1 Phase Center (PC1)
- The Antenna Reference Point (ARP)
- The ground mark, or Survey PoinT (SPT)

By default, the software assumes that PC1, ARP and SPT are the same point.

Through the \$PASHS,POS command, you can enter the exact position of the base and tell the firmware if it is tagged to PC1, ARP or SPT. The position you enter through this command is the one that will be transmitted to rovers, along with RTK differential messages.

To allow the firmware to determine the position of the other two points, starting from the one you enter, antenna phase offset parameters are required. These parameters include antenna height, slant measurement and radius for SPT.

ARP and SPT are related to each other through commands \$PASHS,ANH and \$PASHS,ANP.

PC1 and ARP are related to each other via the Phase Center Offset table (PC0 table), referring to the specified antenna name.

Whenever a position is entered using \$PASHS,POS, the firmware re-calculates the positions of the other two points, using the current antenna name, as entered using the \$PASHS,ANP,OWN command. If the antenna name is unknown (the antenna name field has been left blank), then the firmware assumes that the three points (PC1, ARP, SPT) are physically the same point in space.

Whenever you change the antenna name, using \$PASHS,ANP,OWN, or antenna parameters, using \$PASHS,ANP,<name>,<parameters>, the firmware recalculates the other two points, keeping the user-entered position unchanged. For example, if the position entered

through \$PASHS,POS is that of PC1, then ARP will be recalculated. Conversely, PC1 will be re-calculated if the entered position is that of the ARP.

Depending on the protocol and message set used, the transmitted reference position will be tagged to a specific point. See table below.

Message Type	PC1	ARP	SPT
RTCM2.3 messages 3+22	•		
RTCM2.3 message 24		•	
RTCM3.1 messages 1005 or 1006		•	
CMR	•		
ATOM,RNX		•	
DBEN			•
TOPAZE	•		

All the raw and differential data the firmware generates are always fully consistent with the reference position, the antenna name and, for DBEN, with the antenna offset parameters.

Rover Antenna Issues

Antenna information is vital for RTK operation, because not only does it contain the information for PC1-ARP transformation, but also the PC2 offset (PC2= L2 Phase Center) and the PCV (Elevation Dependent Phase Center Variations). Not making this information available to the rover may lead to a noticeable degradation of the position determination or the inability to reliably fix the ambiguities.

Since both rover and base data are involved in RTK operation, in which single-differencing is performed (i.e. subtracting base correction from rover data), it is essential that the parameters of both the reference antenna (REF) used at the base and the rover antenna (OWN) be known to the rover.

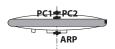
As the BLADETM internal RTK engine always works on the PC1 position, any position received by the differential processor will be transformed to PC1, using base antenna parameters. Base antenna parameters are retrieved from hard-coded or user-defined antenna lists, using the antenna name decoded from the differential stream.

Unfortunately, only a few protocols provide the antenna name. These are listed below:

- RTCM2.3 message type 23
- RTCM3.1 message types 1007, 1008 and 1033
- Set of ATOM ATR messages

If the name of the antenna used at the base (reference antenna) is not available in the differential stream, you should use the \$PASHS,ANP,REF command in the rover to specify that name. Since this command does not carry a default reference antenna name (by default, the corresponding field is empty), the rover will assume that PC1, PC2 and ARP at the base are all the same point in space, and the elevation-dependent biases are all zero. Besides, the rover will use either the entered or received reference antenna name, whichever is available last.

Even if the differential stream conveys a PC1-tagged position, which is needed for RTK, the antenna name remains a fundamental parameter, especially if the reference antenna has a noticeable L1-L2 phase center offset and/or a noticeable PCV.


"Virtual Antenna" Concept

Experience has shown that a lot of rovers from other manufacturers do not know the PCO parameters of the antennas used by Ashtech base receivers (PCO= Phase Center Offset). As a result, these rovers cannot fully benefit from the streams of reference data delivered by Ashtech bases.

However, as there are a few antennas the names of which are well known to most vendors (e.g. ADVNULLANTENNA), Ashtech has implemented a special feature in its firmware allowing the owner of an Ashtech base to modify the complete flow of raw and differential data, as if they had been collected by a well known antenna, rather than the one actually used. This summarizes the concept of "virtual antenna".

To enable this feature in a base, you should specify an antenna name for the truly used reference antenna (OWN), as well as a virtual antenna name (OUT) using the \$PASHS, ANP,OUT command. Looking up the antenna name in the hard-coded or user-defined list of antennas, the base will then be able to make the following corrections:

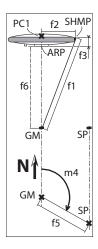
- Virtual ARP coordinates= True ARP coordinates.
- Virtual PC1 coordinates: Deduced from the true ARP coordinates and the antenna parameters retrieved from the virtual (OUT) antenna name.
- Raw data: Adjusted to match the virtual antenna, i.e. L1 data will be centered on virtual PC1 and L2 data on virtual PC2. The adjusted raw data include both code and carrier L1 and L2, GPS and GLONASS.

Every time you modify any vital parameter through \$PASHS,POS or \$PASHS,ANP, the firmware will do the following automatically:

- Re-calculating the true ARP and/or the true PC1, using the data from the POS and OWN antenna names
- Calculating virtual PC1, using the true ARP and the data from the antenna name
- Adjusting raw data using data from the OWN and OUT antenna names

This mechanism guarantees the consistency of the position, observables/corrections and antenna name transmitted, regardless of the differential protocol and message set used.

This leads to a rover being able to calculate a correct RTK position, provided it has been able to decode the antenna name provided in the differential stream (or use the antenna name entered through the \$PASHS,ANP,REF command) and retrieve the parameters of this antenna from its list of antenna names.


Antenna Height Transformations

The entered reference position may be defined as:

- The position of the surveyed point (SP),
- The position of the Antenna Reference Point (ARP).
- The position of the antenna L1 Phase Center (PC1).

The ground mark is defined as the vertical projection of the ARP to the ground.

The board firmware must be able to convert the originally entered position, first into ARP position, and then into L1 phase center position. To determine the ARP position, the firmware uses the data entered through either the ANT or ANH command, whichever was run last, to perform the required conversions.

 If the ANH command was the last run, the firmware will deduce that SP and GM are the same point. Then the firmware will use the entered antenna height (f6) to determine the ARP position, expressed in local ENU coordinates:

$$ARP(North) = GM(North) = SP(North)$$

 $ARP(East) = GM(East) = SP(East)$
 $ARP(Up) = GM(Up) = f6$

 If the ANT command was the last run, the firmware will use the entered parameters (f1, f2, f3, m4 and f5) to determine the ARP position, expressed in local ENU coordinates:

$$GM(North) = SP(North) - f5 \times cos(m4)$$

 $GM(East) = SP(East) - f5 \times sin(m4)$
 $GM(Up) = SP(Up)$

$$ARP(North) = GM(North)$$

 $ARP(East) = GM(East)$
 $ARP(Up) = GM(Up) + [\sqrt{fI^2 - f2^2}] + f3$

Remember the vertical offset (**f3**) is entered as a negative value if the SHMP is above the ARP. It is otherwise positive. With a known antenna name, the APC (Antenna Phase Center) positions for both L1 and L2 may be deduced from the ARP, using L1 and L2 3D offsets available from the hard-coded IGS antenna table:

$$APC(North)_{L1} = ARP(North) + L1Offset(North)$$

 $APC(East)_{L1} = ARP(East) + L1Offset(East)$
 $APC(Up)_{L1} = ARP(Up) + L1Offset(Up)$
 $APC(North)_{L2} = ARP(North) + L2Offset(North)$
 $APC(East)_{L2} = ARP(East) + L2Offset(East)$
 $APC(Up)_{L2} = ARP(Up) + L2Offset(Up)$

How a Rover Reacts Dynamically to a Change of Base ID or Antenna Name

- Whenever the rover decodes a new base ID in the differential stream, all base-dependent parameters are reset to their default state in the rover. Through this reset, the default antenna name is made unknown (the corresponding field is made empty). This way, no previously received antenna name or reference position can be used.
- While the base ID is kept unchanged, a change of protocol will not cause any reset. The new position received through the new protocol will be processed normally, just as a new message including the reference position.
- Whenever a rover decodes a new antenna name, or a new antenna name is entered through the appropriate \$PASH command, PC1 is re-calculated (if position received is tagged to ARP). The antenna parameters are also retrieved from the list of antennas for use in the processing run by the RTK engine.
- With a base declared as "static", any change in the coordinates of the reference position provided by the differential stream will be interpreted by the rover as a true change in the base installation, or a change in the base setup.
 - If however the difference between the new and old coordinates are greater than 10 km, the RTK engine is reset (similar to a base ID change). If the difference is between 1 km and 10 km, only the baseline estimate is reset. The baseline is otherwise simply adjusted, without any RTK reset.
- With the RTCM2.3 protocol, the reference position can be provided either in message type 3+22 or message type 24?. This means the reference position received is either tagged to PC1 or ARP. Usually the positions provided by message types 3+22 and 24 refer to the same antenna and their relationship is as described in the antenna PC0 table.

If both messages are received, message type 3+22 (PC1-tagged position) has the priority. If message type 24 is received after message type 3+22, it will therefore be rejected, unless the difference between the two positions is greater than 25 meters, in which case???.

Asynchronous Serial Communication

RS 232 ports and LV-UARTs are asynchronous serial communication interfaces used to transfer data bytes in series.

A start signal is sent prior to transferring each byte and a stop signal is sent after the byte has been transferred.

The start signal is used to prepare the receiving mechanism for byte reception and saving.

The stop signal puts the receiving mechanism back to idle state, making it ready for the reception of a new byte.

The diagram below shows a typical bit sequence used in an asynchronous serial communication to transfer two bytes.

Each byte consists of a start bit (green), followed by eight data bits (0-7, LSB first), and one stop bit (red). (There is no parity bit.). The overall transmission for one byte therefore represents a 10-bit character frame (8N1 configuration).

The stop bit is in fact a "wait" period of time, which cannot be shorter than a specified amount of time, usually the duration of one or two data bits.

The "wait" time for the transmitter may be arbitrarily long. The receiver requires a shorter wait time than the transmitter. After transferring a complete byte, the receiver stops briefly, waiting for the next start bit. It is through the insertion of the stop bit in the sequence that the transmitter and the receiver keep synchronized.

The nominal values of commonly used bit rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800 and 921600 bits per second (bps or baud).

The exact bit rate on each port depends on the internal processor clock and the transmission/reception of the bit sequence. It is recommended not to work with an error greater than 5%.

The table below gives real bit rates and calculated errors for the MB 500.

Port	Real Bit Rate, in bps	Nominal Bit Rate, in bps	Error, in%
В	227272.73	230400	-1.36
В	454545.45	460800	-1.36
Α	232558.14	230400	0.94
Α	454545.45	460800	-1.36
Α	909090.91	921600	-1.36

The diagram below shows the impact of clock frequencies on transmitter side and receiver side that differ from each other by more than 5%.

The Receive clock frequency being 6.5% less than the Transmit clock frequency, the time required for receiving each bit is 6.25% longer than the time used to transmit it. As a result, bit 7 is likely to be corrupted on receiver side.

Preset Antenna List

As listed when running the \$PASHQ,ANP command.

UNKNOWN

```
L1 N: +000.00 E: +000.00 U: +000.00
```

L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0

+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0

L2 N: +000.00 E: +000.00 U: +000.00

L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0

+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0

MAG111406

L1 N: -000.90 E: +001.40 U: +078.30

L1 PAE:+000.0 +000.1 +000.8 +001.9 +003.1 +004.4 +005.6 +006.5 +007.1 +007.2

+006.8 +005.8 +004.3 +002.2 -000.5 -003.7 -007.4 +000.0 +000.0

L2 N: -001.30 E: +001.00 U: +068.50

L2 PAE:+000.0 -000.1 +000.2 +000.8 +001.5 +002.2 +002.8 +003.3 +003.5

+003.3 +002.7 +001.9 +000.9 -000.3 -001.5 -002.7 +000.0 +000.0

MAG111406+CR

L1 N: -000.80 E: +000.00 U: +088.40

```
L1 PAE:+000.0 -000.1 -000.5 -000.5 -000.4 +000.0 +000.1 +000.2 +000.3
+000.4
       +000.3 +000.2 +000.2 +000.0 -000.3 -000.1 +000.1 +000.1 +000.0
L2 N: +002.30 E: +000.10 U: +092.10
L2 PAE:+000.0 -000.4 -000.5 -000.6 -000.6 -000.2 -000.3 -000.2 +000.0
+000.1
       +000.2 +000.5 +000.4 +000.7 +000.4 +000.4 +000.0 -000.1 -000.1
MAG990596
L1 N: -000.80 E: -001.40 U: +101.80
L1 PAE:+000.0 +000.9 +001.9 +002.8 +003.7 +004.7 +005.4 +006.0 +006.4
+006.5
       +006.3 +005.8 +004.8 +003.2 +001.1 -001.6 -005.1 +000.0 +000.0
L2 N: +000.80 E: -001.10 U: +086.20
L2 PAE:+000.0 -000.9 -001.1 -000.6 +000.2 +001.1 +002.0 +002.7 +003.0
+003 0
       +002.6 +001.7 +000.5 -001.1 -003.0 -004.9 -006.8 +000.0 +000.0
ProMark500
L1 N: -000.80 E: -001.40 U: +101.80
L1 PAE:+000.0 +000.9 +001.9 +002.8 +003.7 +004.7 +005.4 +006.0 +006.4
+006.5
       +006.3 +005.8 +004.8 +003.2 +001.1 -001.6 -005.1 +000.0 +000.0
L2 N: +000.80 E: -001.10 U: +086.20
L2 PAE:+000.0 -000.9 -001.1 -000.6 +000.2 +001.1 +002.0 +002.7 +003.0
+003 0
       +002.6 +001.7 +000.5 -001.1 -003.0 -004.9 -006.8 +000.0 +000.0
DORNE MARGOLIN T
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
AOAD/M T
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
AOAD/M TA NGS
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
```

```
+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
DORNE MARGOLIN B
L1 N: +000.00 E: +000.00 U: +078.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +096.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
AOAD/M B
L1 N: +000.00 E: +000.00 U: +078.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000 0 +000 0 +000 0 +000 0 +000 0 +000 0 +000 0 +000 0 +000 0
L2 N: +000.00 E: +000.00 U: +096.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
DORNE MARGOLIN R
L1 N: +000.00 E: +000.00 U: +078.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +096.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+00000
      +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
JPLD/M R
L1 N: +000.00 E: +000.00 U: +078.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
      +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +096.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
      +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
JPLD/M RA SOP
L1 N: +000.00 E: +000.00 U: +078.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
      +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +096.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+00000
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
TRM23903.00
L1 N: +001.20 E: +000.40 U: +077.00
L1 PAE:+000.0 +004.8 +009.3 +013.1 +016.4 +018.8 +020.5 +021.5 +021.7
+021.3
      +020.3 +018.9 +017.2 +015.6 +014.2 +013.4 +013.4 +000.0 +000.0
```

```
L2 N: +000.50 E: +004.00 U: +075.60
L2 PAE:+000.0 +000.1 +000.5 +001.1 +001.7 +002.2 +002.7 +003.0 +003.1
+003 0
       +002.8 +002.4 +001.9 +001.3 +000.8 +000.5 +000.4 +000.0 +000.0
TRM29659.00
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
TRM33429.00+GP
I 1 N· -000 20 F· +001 20 U· +074 00
L1 PAE:+000.0 +003.9 +007.6 +011.1 +014.1 +016.5 +018.3 +019.2 +019.5
+019.1
       +018.1 +016.6 +014.9 +013.0 +011.5 +010.4 +010.2 +000.0 +000.0
L2 N: +000.60 E: +000.90 U: +070.30
L2 PAE:+000.0 +000.6 +001.4 +002.4 +003.4 +004.4 +005.1 +005.6 +005.8
+005.7
       +005.3 +004.7 +003.9 +003.0 +002.1 +001.4 +000.9 +000.0 +000.0
TRM33429.20+GP
L1 N: -000.40 E: -001.00 U: +072.90
L1 PAE:+000.0 +004.8 +009.3 +013.3 +016.6 +019.3 +021.2 +022.3 +022.7
+022.5
       +021.8 +020.6 +019.3 +018.0 +016.9 +016.4 +016.7 +000.0 +000.0
L2 N: -000.40 E: -001.30 U: +075.00
L2 PAE:+000.0 +000.3 +000.9 +001.6 +002.2 +002.9 +003.4 +003.8 +004.0
+004.1
       +003.9 +003.6 +003.2 +002.7 +002.2 +001.8 +001.5 +000.0 +000.0
DORNE MARGOLIN TRIM
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
4000ST L1/L2 GEOD
L1 N: +000.00 E: -003.00 U: +078.00
L1 PAE:+000.0 +001.1 +003.1 +006.3 +010.2 +013.7 +015.7 +016.4 +016.3
+015.8
       +014.6 +013.0 +011.4 +010.2 +008.5 +007.3 +007.0 +000.0 +000.0
L2 N: -003.10 E: -001.30 U: +074.40
L2 PAE:+000.0 +000.1 +000.5 +000.7 +001.2 +002.2 +003.4 +004.2 +004.2
+0039
       +003.6 +003.3 +002.7 +002.0 +001.5 +001.0 +000.2 +000.0 +000.0
TRM14177.00
L1 N: +000.00 E: -003.00 U: +078.00
```

```
L1 PAE:+000.0 +001.1 +003.1 +006.3 +010.2 +013.7 +015.7 +016.4 +016.3
+015.8
      +014.6 +013.0 +011.4 +010.2 +008.5 +007.3 +007.0 +000.0 +000.0
L2 N: -003.10 E: -001.30 U: +074.40
L2 PAE:+000.0 +000.1 +000.5 +000.7 +001.2 +002.2 +003.4 +004.2 +004.2
+0039
      +003.6 +003.3 +002.7 +002.0 +001.5 +001.0 +000.2 +000.0 +000.0
TRM14532.00
L1 N: +000.00 E: -003.00 U: +078.00
L1 PAE:+000.0 +001.1 +003.1 +006.3 +010.2 +013.7 +015.7 +016.4 +016.3
+015.8
       +014.6 +013.0 +011.4 +010.2 +008.5 +007.3 +007.0 +000.0 +000.0
L2 N: -003.10 E: -001.30 U: +074.40
L2 PAE:+000.0 +000.1 +000.5 +000.7 +001.2 +002.2 +003.4 +004.2 +004.2
+0039
       +003.6 +003.3 +002.7 +002.0 +001.5 +001.0 +000.2 +000.0 +000.0
TRM14532.10
L1 N: -001.60 E: +000.90 U: +096.00
L1 PAE:+000.0 +000.0 +000.7 +001.7 +003.0 +004.3 +005.6 +006.6 +007.3
+007.5
       +007.3 +006.6 +005.3 +003.6 +001.3 -001.4 -004.5 +000.0 +000.0
L2 N: +001.60 E: +004.10 U: +094.40
L2 PAE:+000.0 -001.0 -001.3 -001.1 -000.6 +000.2 +000.9 +001.6 +002.1
+0023
       +002.1 +001.6 +000.6 -000.8 -002.6 -004.8 -007.3 +000.0 +000.0
TR GEOD L1/L2 GP
L1 N: +001.50 E: -001.20 U: +075.10
L1 PAE:+000.0 +001.8 +004.6 +008.1 +011.7 +014.5 +016.1 +016.9 +016.9
+016.2
       +014.9 +013.4 +011.9 +010.4 +009.0 +007.9 +008.2 +000.0 +000.0
L2 N: -001.10 E: +001.70 U: +069.20
L2 PAE:+000.0 +000.3 +000.9 +001.8 +003.0 +004.1 +004.9 +005.4 +005.6
+0056
       +005.3 +004.5 +003.6 +002.8 +002.1 +001.2 +000.1 +000.0 +000.0
TRM22020.00+GP
L1 N: +001.50 E: -001.20 U: +075.10
L1 PAE:+000.0 +001.8 +004.6 +008.1 +011.7 +014.5 +016.1 +016.9 +016.9
+016.2
       +014.9 +013.4 +011.9 +010.4 +009.0 +007.9 +008.2 +000.0 +000.0
L2 N: -001.10 E: +001.70 U: +069.20
L2 PAE:+000.0 +000.3 +000.9 +001.8 +003.0 +004.1 +004.9 +005.4 +005.6
+0056
       +005.3 +004.5 +003.6 +002.8 +002.1 +001.2 +000.1 +000.0 +000.0
TR GEOD L1/L2 W/O GP
L1 N: +003.10 E: +000.90 U: +086.60
L1 PAE:+000.0 +000.2 +000.4 +001.2 +002.5 +003.6 +004.5 +005.1 +005.6
+005.8
       +005.5 +005.0 +004.2 +002.7 +000.6 -001.5 -002.6 +000.0 +000.0
L2 N: +001.20 E: -000.10 U: +081.70
L2 PAE:+000.0 +000.0 +000.5 +001.2 +002.0 +002.9 +003.5 +003.9 +004.3
+004.7
```

```
TRM22020.00-GP
L1 N: +003.10 E: +000.90 U: +086.60
L1 PAE:+000.0 +000.2 +000.4 +001.2 +002.5 +003.6 +004.5 +005.1 +005.6
+005.8
       +005.5 +005.0 +004.2 +002.7 +000.6 -001.5 -002.6 +000.0 +000.0
L2 N: +001.20 E: -000.10 U: +081.70
L2 PAE:+000.0 +000.0 +000.5 +001.2 +002.0 +002.9 +003.5 +003.9 +004.3
+004.7
       +004.9 +004.5 +003.5 +002.2 +001.0 -001.1 -004.8 +000.0 +000.0
TRM41249.00
L1 N: +000.30 E: +000.50 U: +071.40
L1 PAE:+000.0 +000.6 +001.4 +002.3 +003.2 +004.1 +004.9 +005.6 +006.1
+006.4
       +006 4 +006 1 +005 5 +004 5 +003 1 +001 3 -000 9 +000 0 +000 0
L2 N: -000.40 E: +000.10 U: +068.20
L2 PAE:+000.0 -000.5 -000.6 -000.5 -000.2 +000.1 +000.5 +000.8 +001.0
+001.1
       +001.0 +000.9 +000.6 +000.2 -000.2 -000.6 -000.8 +000.0 +000.0
TRM55971.00
L1 N: +001.60 E: +000.70 U: +085.00
L1 PAE:+000.0 +000.7 +001.6 +002.8 +003.9 +004.9 +005.9 +006.6 +007.0
+007.2
       +006.8 +006.2 +005.2 +003.7 +001.8 -000.5 -003.2 +000.0 +000.0
L2 N: +000.80 E: +001.20 U: +070.10
L2 PAE:+000.0 -000.1 -000.1 +000.1 +000.4 +000.7 +001.0 +001.2 +001.4
+0015
       +001.4 +001.1 +000.8 +000.2 -000.4 -001.3 -002.2 +000.0 +000.0
TRM55971.00 TZGD
L1 N: +001.10 E: +000.90 U: +085.60
L1 PAE:+000.0 +000.9 +001.9 +003.0 +004.0 +005.0 +005.8 +006.4 +006.8
+006.9
       +006.7 +006.0 +005.0 +003.5 +001.6 -000.9 -003.8 +000.0 +000.0
L2 N: +000.70 E: +000.90 U: +070.00
L2 PAE:+000.0 -000.4 -000.5 -000.3 +000.0 +000.4 +000.7 +001.0 +001.2
+001.3
       +001.2 +000.9 +000.4 -000.2 -001.1 -002.0 -003.1 +000.0 +000.0
END ANTENNA
BEGIN ANTENNA
700228
L1 N: +000.50 E: +000.30 U: +079.90
L1 PAE:+000.0 +000.1 +000.5 +001.2 +001.8 +002.1 +002.1 +002.4 +003.0
+003.3
       +003.0 +002.8 +002.6 +002.3 +001.5 +000.7 +000.9 +000.0 +000.0
L2 N: -001.20 E: +000.80 U: +079.20
L2 PAE:+000.0 +000.4 +001.1 +001.5 +001.6 +001.8 +002.2 +002.3 +002.1
+002.0
       +001.9 +001.7 +001.5 +001.8 +002.4 +001.6 -001.8 +000.0 +000.0
ASH700228A
```

L1 N: +000.50 E: +000.30 U: +079.90

+004.9 +004.5 +003.5 +002.2 +001.0 -001.1 -004.8 +000.0 +000.0

```
L1 PAE:+000.0 +000.1 +000.5 +001.2 +001.8 +002.1 +002.1 +002.4 +003.0
+003.3
       +003.0 +002.8 +002.6 +002.3 +001.5 +000.7 +000.9 +000.0 +000.0
L2 N: -001.20 E: +000.80 U: +079.20
L2 PAE:+000.0 +000.4 +001.1 +001.5 +001.6 +001.8 +002.2 +002.3 +002.1
+002.0
       +001.9 +001.7 +001.5 +001.8 +002.4 +001.6 -001.8 +000.0 +000.0
ASH700228B
L1 N: +000.50 E: +000.30 U: +079.90
L1 PAE:+000.0 +000.1 +000.5 +001.2 +001.8 +002.1 +002.1 +002.4 +003.0
+003.3
       +003.0 +002.8 +002.6 +002.3 +001.5 +000.7 +000.9 +000.0 +000.0
L2 N: -001.20 E: +000.80 U: +079.20
L2 PAE:+000.0 +000.4 +001.1 +001.5 +001.6 +001.8 +002.2 +002.3 +002.1
+0020
       +001.9 +001.7 +001.5 +001.8 +002.4 +001.6 -001.8 +000.0 +000.0
ASH700228C
L1 N: +000.50 E: +000.30 U: +079.90
L1 PAE:+000.0 +000.1 +000.5 +001.2 +001.8 +002.1 +002.1 +002.4 +003.0
+003.3
       +003.0 +002.8 +002.6 +002.3 +001.5 +000.7 +000.9 +000.0 +000.0
L2 N: -001.20 E: +000.80 U: +079.20
L2 PAE:+000.0 +000.4 +001.1 +001.5 +001.6 +001.8 +002.2 +002.3 +002.1
+0020
       +001.9 +001.7 +001.5 +001.8 +002.4 +001.6 -001.8 +000.0 +000.0
ASH700228D
L1 N: +000.50 E: +000.30 U: +079.90
L1 PAE:+000.0 +000.1 +000.5 +001.2 +001.8 +002.1 +002.1 +002.4 +003.0
+003.3
       +003.0 +002.8 +002.6 +002.3 +001.5 +000.7 +000.9 +000.0 +000.0
L2 N: -001.20 E: +000.80 U: +079.20
L2 PAE:+000.0 +000.4 +001.1 +001.5 +001.6 +001.8 +002.2 +002.3 +002.1
+002 0
       +001.9 +001.7 +001.5 +001.8 +002.4 +001.6 -001.8 +000.0 +000.0
700228 NOTCH
L1 N: -000.20 E: -001.00 U: +080.80
L1 PAE:+000.0 +000.7 +001.3 +001.7 +002.1 +002.4 +002.6 +002.9 +003.0
+003.1
       +003.0 +002.8 +002.4 +001.8 +001.0 -000.3 -002.0 +000.0 +000.0
L2 N: -001.90 E: +003.80 U: +077.80
L2 PAE:+000.0 -001.7 -002.5 -002.8 -002.6 -002.3 -002.0 -001.7 -001.5 -001.6
       -001.8 -002.1 -002.5 -002.9 -003.1 -003.0 -002.3 +000.0 +000.0
700228 RINGS
L1 N: -002.20 E: +000.00 U: +086.00
L1 PAE:+000.0 +001.7 +003.0 +004.0 +004.8 +005.3 +005.7 +005.9 +005.9
+005.9
       +005.7 +005.3 +004.8 +004.0 +003.0 +001.7 -000.1 +000.0 +000.0
L2 N: -003.70 E: +003.20 U: +078.20
L2 PAE:+000.0 -001.7 -002.5 -002.7 -002.5 -002.0 -001.6 -001.2 -001.0 -001.0
       -001.2 -001.6 -002.1 -002.7 -003.1 -003.1 -002.6 +000.0 +000.0
700578
```

```
I 1 N: -001 20 F: -001 00 U: +079 50
L1 PAE:+000.0 -000.2 -000.1 +001.1 +002.7 +003.2 +002.7 +002.5 +003.4
+004 2
       +004.0 +003.5 +003.3 +002.7 +001.4 +000.9 +003.0 +000.0 +000.0
L2 N: -004.60 E: +001.60 U: +078.30
L2 PAE:+000.0 +000.5 +001.4 +001.6 +001.4 +001.5 +002.0 +002.1 +001.9
+002.1
       +002.5 +002.2 +001.3 +001.2 +002.3 +002.0 -002.4 +000.0 +000.0
700718
L1 N: +003.40 E: +001.00 U: +087.30
L1 PAE:+000.0 +001.3 +002.9 +004.6 +006.2 +007.7 +008.8 +009.4 +009.6
+009 2
       +008.4 +007.1 +005.4 +003.5 +001.4 -000.6 -002.4 +000.0 +000.0
L2 N: +003.10 E: -001.30 U: +063.40
L2 PAE:+000.0 -002.4 -004.0 -005.2 -005.9 -006.4 -006.8 -007.0 -007.2 -007.3
       -007.4 -007.3 -007.0 -006.3 -005.2 -003.5 -000.8 +000.0 +000.0
ASH700699.L1
L1 N: +000.00 E: +000.00 U: +051.50
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH700718A
L1 N: +003.40 E: +001.00 U: +087.30
L1 PAE:+000.0 +001.3 +002.9 +004.6 +006.2 +007.7 +008.8 +009.4 +009.6
+009.2
       +008.4 +007.1 +005.4 +003.5 +001.4 -000.6 -002.4 +000.0 +000.0
L2 N: +003.10 E: -001.30 U: +063.40
L2 PAE:+000.0 -002.4 -004.0 -005.2 -005.9 -006.4 -006.8 -007.0 -007.2 -007.3
       -007.4 -007.3 -007.0 -006.3 -005.2 -003.5 -000.8 +000.0 +000.0
ASH700718B
L1 N: +003.40 E: +001.00 U: +087.30
L1 PAE:+000.0 +001.3 +002.9 +004.6 +006.2 +007.7 +008.8 +009.4 +009.6
+009.2
       +008.4 +007.1 +005.4 +003.5 +001.4 -000.6 -002.4 +000.0 +000.0
L2 N: +003.10 E: -001.30 U: +063.40
L2 PAE:+000.0 -002.4 -004.0 -005.2 -005.9 -006.4 -006.8 -007.0 -007.2 -007.3
       -007.4 -007.3 -007.0 -006.3 -005.2 -003.5 -000.8 +000.0 +000.0
700829
L1 N: -000.70 E: +000.40 U: +092.00
L1 PAE:+000.0 +001.5 +003.3 +005.3 +007.1 +008.7 +010.0 +010.8 +011.0
+0107
       +009.9 +008.6 +006.8 +004.8 +002.6 +000.5 -001.5 +000.0 +000.0
L2 N: -000.10 E: -000.80 U: +060.10
L2 PAE:+000.0 -002.5 -004.2 -005.4 -006.1 -006.6 -006.9 -007.1 -007.1 -007.1
       -007.0 -006.8 -006.3 -005.5 -004.2 -002.4 +000.3 +000.0 +000.0
DORNE MARGOLIN ASH
L1 N: +000.00 E: +000.00 U: +110.00
```

```
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
      +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701933A M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701933B M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+00000
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701933C M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701941.1
L1 N: -000.20 E: +000.10 U: +108.00
L1 PAE:+000.0 -000.3 -000.5 -000.5 -000.4 -000.3 -000.2 -000.1 +000.0
+000.1
       +000.1 +000.0 +000.0 -000.1 -000.2 -000.2 -000.2 +000.0 +000.0
L2 N: -000.30 E: +000.20 U: +126.70
L2 PAE:+000.0 -002.2 -003.3 -003.5 -003.3 -002.9 -002.5 -002.2 -002.1 -002.2
       -002.5 -002.9 -003.2 -003.2 -002.7 -001.3 +001.3 +000.0 +000.0
ASH701941.2
L1 N: -000.20 E: +000.10 U: +108.00
L1 PAE:+000.0 -000.3 -000.5 -000.5 -000.4 -000.3 -000.2 -000.1 +000.0
+000.1
       +000.1 +000.0 +000.0 -000.1 -000.2 -000.2 -000.2 +000.0 +000.0
L2 N: -000.30 E: +000.20 U: +126.70
L2 PAE:+000.0 -002.2 -003.3 -003.5 -003.3 -002.9 -002.5 -002.2 -002.1 -002.2
       -002.5 -002.9 -003.2 -003.2 -002.7 -001.3 +001.3 +000.0 +000.0
ASH701941.A
```

```
L1 N: -000.20 E: +000.10 U: +108.00
L1 PAE:+000.0 -000.3 -000.5 -000.5 -000.4 -000.3 -000.2 -000.1 +000.0
+000 1
       +000.1 +000.0 +000.0 -000.1 -000.2 -000.2 -000.2 +000.0 +000.0
L2 N: -000.30 E: +000.20 U: +126.70
L2 PAE:+000.0 -002.2 -003.3 -003.5 -003.3 -002.9 -002.5 -002.2 -002.1 -002.2
       -002.5 -002.9 -003.2 -003.2 -002.7 -001.3 +001.3 +000.0 +000.0
ASH701941.B
L1 N: -000.20 E: +000.10 U: +108.00
L1 PAE:+000.0 -000.3 -000.5 -000.5 -000.4 -000.3 -000.2 -000.1 +000.0
+000.1
       +000.1 +000.0 +000.0 -000.1 -000.2 -000.2 -000.2 +000.0 +000.0
L2 N: -000.30 E: +000.20 U: +126.70
L2 PAE:+000.0 -002.2 -003.3 -003.5 -003.3 -002.9 -002.5 -002.2 -002.1 -002.2
       -002.5 -002.9 -003.2 -003.2 -002.7 -001.3 +001.3 +000.0 +000.0
ASH701945B M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
      +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 L2
N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701945.02B
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701945C M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701945E M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
```

```
ASH701945E_M SCIS
L1 N: -000.10 E: +000.50 U: +107.80
L1 PAE:+000.0 -000.2 -000.5 -000.8 -000.9 -001.3 -001.4 -001.6 -001.6 -001.6
       -001.6 -001.4 -001.4 -001.3 -001.1 -001.1 -001.1 +000.0 +000.0
L2 N: -000.50 E: +000.60 U: +126.90
L2 PAE:+000.0 -000.3 -000.5 -000.7 -000.8 -000.8 -000.8 -000.8 -000.9 -001.0
       -001.0 -001.0 -001.1 -001.0 -000.9 -000.7 -000.3 +000.0 +000.0
ASH701945G M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701946.022
L1 N: +000.60 E: +000.80 U: +109.80
L1 PAE:+000.0 -000.1 -000.2 -000.2 -000.1 -000.1 +000.0 +000.1 +000.2
+000.2
       +000.2 +000.2 +000.3 +000.2 +000.2 +000.1 +000.1 +000.0 +000.0
L2 N: +000.70 E: +001.40 U: +128.40
L2 PAE:+000.0 -000.2 -000.3 -000.3 -000.3 -000.3 -000.3 -000.3 -000.2 -000.2
       -000.2 -000.3 -000.3 -000.3 -000.2 -000.2 +000.0 +000.0 +000.0
ASH701946.012
L1 N: +000.60 E: +000.80 U: +109.80
L1 PAE:+000.0 -000.1 -000.2 -000.2 -000.1 -000.1 +000.0 +000.1 +000.2
+000.2
       +000.2 +000.2 +000.3 +000.2 +000.2 +000.1 +000.1 +000.0 +000.0
L2 N: +000.70 E: +001.40 U: +128.40
L2 PAE:+000.0 -000.2 -000.3 -000.3 -000.3 -000.3 -000.3 -000.3 -000.2 -000.2
       -000.2 -000.3 -000.3 -000.3 -000.2 -000.2 +000.0 +000.0 +000.0
ASH701946.2
L1 N: +000.60 E: +000.80 U: +109.80
L1 PAE:+000.0 -000.1 -000.2 -000.2 -000.1 -000.1 +000.0 +000.1 +000.2
+000.2
       +000.2 +000.2 +000.3 +000.2 +000.2 +000.1 +000.1 +000.0 +000.0
L2 N: +000.70 E: +001.40 U: +128.40
L2 PAE:+000.0 -000.2 -000.3 -000.3 -000.3 -000.3 -000.3 -000.3 -000.2 -000.2
       -000.2 -000.3 -000.3 -000.3 -000.2 -000.2 +000.0 +000.0 +000.0
ASH701946.3
L1 N: +000.60 E: +000.80 U: +109.80
L1 PAE:+000.0 -000.1 -000.2 -000.2 -000.1 -000.1 +000.0 +000.1 +000.2
+000.2
       +000.2 +000.2 +000.3 +000.2 +000.2 +000.1 +000.1 +000.0 +000.0
L2 N: +000.70 E: +001.40 U: +128.40
L2 PAE:+000.0 -000.2 -000.3 -000.3 -000.3 -000.3 -000.3 -000.3 -000.2 -000.2
       -000.2 -000.3 -000.3 -000.3 -000.2 -000.2 +000.0 +000.0 +000.0
ASH700936A M
```

L1 N: +000.00 E: +000.00 U: +110.00

198

```
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH700936B M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH700936C M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH700936D M
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH700936E C
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH700936F C
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
```

```
ASH700936E
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
700936 RADOM
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000 0 +000 0 +000 0 +000 0 +000 0 +000 0 +000 0 +000 0 +000 0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701073.1
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+00000
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701073.3
L1 N: +000.00 E: +000.00 U: +110.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +128.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH701975.01A
L1 N: -002.10 E: -004.10 U: +056.40
L1 PAE:+000.0 +001.0 +002.0 +003.1 +004.2 +005.1 +005.9 +006.5 +006.9
+007.1
       +007.0 +006.6 +005.9 +005.0 +003.8 +002.4 +000.7 +000.0 +000.0
L2 N: -001.70 E: -003.20 U: +062.20
L2 PAE:+000.0 -000.3 -000.2 +000.2 +000.8 +001.5 +002.3 +002.9 +003.3
+0036
       +003.7 +003.4 +002.8 +002.0 +000.8 -000.7 -002.5 +000.0 +000.0
ASH701975.01Agp
L1 N: -002.00 E: -003.30 U: +056.00
L1 PAE:+000.0 +003.5 +007.1 +010.5 +013.5 +016.1 +018.1 +019.5 +020.2
+020.3
       +019.7 +018.8 +017.4 +015.9 +014.2 +012.9 +011.9 +000.0 +000.0
```

+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0

```
L2 PAE:+000.0 -001.7 -002.9 -003.8 -004.5 -004.9 -005.4 -005.6 -005.9 -006.0
       -006.1 -006.1 -005.9 -005.5 -004.8 -003.6 -001.8 +000.0 +000.0
JPSREGANT DD E
L1 N: +001.10 E: +000.20 U: +113.10
L1 PAE:+000.0 +000.5 +001.3 +002.1 +003.0 +003.8 +004.6 +005.2 +005.6
+005.8
       +005.8 +005.5 +005.0 +004.3 +003.4 +002.3 +001.1 +000.0 +000.0
L2 N: +001.00 E: +001.30 U: +118.60
L2 PAE:+000.0 -000.2 +000.0 +000.4 +001.0 +001.6 +002.1 +002.5 +002.7
+002.8
       +002.7 +002.3 +001.9 +001.3 +000.7 +000.2 -000.2 +000.0 +000.0
JPSREGANT_SD_E
L1 N: +001.00 E: -001.10 U: +106.00
L1 PAE:+000.0 +000.8 +001.6 +002.3 +003.1 +003.7 +004.3 +004.7 +005.0
+005 2
       +005.3 +005.1 +004.8 +004.4 +003.8 +002.9 +002.0 +000.0 +000.0
L2 N: +001.40 E: +000.50 U: +119.60
L2 PAE:+000.0 -000.3 -000.3 +000.1 +000.6 +001.1 +001.7 +002.1 +002.3
+002.4
       +002.3 +002.1 +001.7 +001.2 +000.7 +000.2 -000.2 +000.0 +000.0
LEIAT504
L1 N: +000.30 E: -000.30 U: +109.30
L1 PAE:+000.0 +000.0 -000.1 -000.1 +000.0 +000.0 +000.0 +000.1 +000.1
+000.1
       +000.1 +000.2 +000.2 +000.3 +000.4 +000.5 +000.6 +000.0 +000.0
L2 N: +001.10 E: +001.10 U: +128.20
L2 PAE:+000.0 -000.1 -000.1 -000.1 +000.0 +000.0 +000.0 +000.0 -
000.1
       -000.2 -000.2 -000.3 -000.3 -000.2 -000.1 +000.3 +000.0 +000.0
LEIAT504
             LEIS
L1 N: +002.50 E: +001.30 U: +106.50
L1 PAE:+000.0 -000.3 -000.7 -001.0 -001.2 -001.4 -001.6 -001.8 -001.9 -001.9
       -001.9 -001.8 -001.6 -001.4 -001.1 -000.8 -000.3 +000.0 +000.0
L2 N: -000.70 E: +001.30 U: +125.40
L2 PAE:+000.0 +000.1 +000.2 +000.2 +000.2 +000.1 +000.1 +000.0 -000.1 -
000.1
       -000.2 -000.2 -000.1 +000.0 +000.2 +000.5 +000.8 +000.0 +000.0
INTERNAL
L1 N: +003.10 E: -000.20 U: +113.10
L1 PAE:+000.0 +000.5 +001.0 +002.0 +003.3 +004.5 +005.7 +007.1 +008.5
+009 0
       +008.3 +007.0 +005.8 +004.7 +003.4 +001.8 +000.8 +000.0 +000.0
L2 N: +001.30 E: -003.50 U: +117.20
L2 PAE:+000.0 +000.2 +000.4 +000.8 +001.5 +002.6 +003.6 +004.2 +004.5
+005.0
       +005.3 +005.0 +003.8 +002.5 +001.4 -000.8 -005.1 +000.0 +000.0
LEISR299 INT
L1 N: +003.10 E: -000.20 U: +113.10
L1 PAE:+000.0 +000.5 +001.0 +002.0 +003.3 +004.5 +005.7 +007.1 +008.5
+009.0
```

12 N· -002 00 F· -002 70 U· +046 10

```
L2 PAE:+000.0 +000.2 +000.4 +000.8 +001.5 +002.6 +003.6 +004.2 +004.5
+005.0
       +005.3 +005.0 +003.8 +002.5 +001.4 -000.8 -005.1 +000.0 +000.0
LEISR399 INT
L1 N: +003.10 E: -000.20 U: +113.10
L1 PAE:+000.0 +000.5 +001.0 +002.0 +003.3 +004.5 +005.7 +007.1 +008.5
+0090
       +008.3 +007.0 +005.8 +004.7 +003.4 +001.8 +000.8 +000.0 +000.0
L2 N: +001.30 E: -003.50 U: +117.20
L2 PAE:+000.0 +000.2 +000.4 +000.8 +001.5 +002.6 +003.6 +004.2 +004.5
+0050
       +005.3 +005.0 +003.8 +002.5 +001.4 -000.8 -005.1 +000.0 +000.0
EXTERNAL WITHOUT GP
L1 N: +000.50 E: +000.10 U: +068.50
L1 PAE:+000.0 +001.2 +002.6 +004.3 +005.8 +006.5 +007.1 +008.3 +010.3
+011.8
       +011.1 +008.6 +006.2 +005.6 +005.6 +002.9 -003.8 +000.0 +000.0
L2 N: +000.30 E: -001.90 U: +052.10
L2 PAE:+000.0 -000.2 -000.7 -000.9 -000.9 -001.1 -001.4 -001.2 -000.4 +000.6
       +001.0 +000.9 +000.9 +000.6 -001.2 -005.5 -012.0 +000.0 +000.0
LEIAT202-GP
L1 N: +000.50 E: +000.10 U: +068.50
L1 PAE:+000.0 +001.2 +002.6 +004.3 +005.8 +006.5 +007.1 +008.3 +010.3
+011.8
       +011.1 +008.6 +006.2 +005.6 +005.6 +002.9 -003.8 +000.0 +000.0
L2 N: +000.30 E: -001.90 U: +052.10
L2 PAE:+000.0 -000.2 -000.7 -000.9 -000.9 -001.1 -001.4 -001.2 -000.4 +000.6
       +001.0 +000.9 +000.9 +000.6 -001.2 -005.5 -012.0 +000.0 +000.0
LEIAT302-GP
L1 N: +000.50 E: +000.10 U: +068.50
L1 PAE:+000.0 +001.2 +002.6 +004.3 +005.8 +006.5 +007.1 +008.3 +010.3
+011.8
       +011.1 +008.6 +006.2 +005.6 +005.6 +002.9 -003.8 +000.0 +000.0
L2 N: +000.30 E: -001.90 U: +052.10
L2 PAE:+000.0 -000.2 -000.7 -000.9 -000.9 -001.1 -001.4 -001.2 -000.4 +000.6
       +001.0 +000.9 +000.9 +000.6 -001.2 -005.5 -012.0 +000.0 +000.0
LEIAT303
L1 N: +001.00 E: -000.50 U: +078.20
L1 PAE:+000.0 +001.4 +002.4 +003.2 +003.8 +004.2 +004.4 +004.6 +004.7
+0048
       +004.7 +004.5 +004.2 +003.7 +003.0 +002.0 +000.7 +000.0 +000.0
L2 N: +001.80 E: +000.80 U: +093.90
L2 PAE:+000.0 +000.6 +001.1 +001.5 +001.9 +002.3 +002.5 +002.7 +002.8
+002.9
       +002.7 +002.5 +002.2 +001.7 +001.0 +000.1 -000.9 +000.0 +000.0
EXTERNAL WITH GP
L1 N: +004.80 E: +001.90 U: +049.20
L1 PAE:+000.0 +000.0 +000.4 +001.7 +003.4 +004.4 +004.6 +004.9 +005.9
+006.7
```

+008.3 +007.0 +005.8 +004.7 +003.4 +001.8 +000.8 +000.0 +000.0

L2 N: +001.30 E: -003.50 U: +117.20

```
L2 PAE:+000.0 -000.2 -000.6 -000.8 -000.6 -000.2 +000.1 +000.1 +000.0
+000.0
       +000.2 +000.7 +000.9 +000.5 -000.6 -001.8 -002.5 +000.0 +000.0
LEIAT202+GP
L1 N: +004.80 E: +001.90 U: +049.20
L1 PAE:+000.0 +000.0 +000.4 +001.7 +003.4 +004.4 +004.6 +004.9 +005.9
+006 7
       +006.6 +005.6 +004.6 +003.7 +002.6 +001.7 +001.9 +000.0 +000.0
L2 N: +003.40 E: -005.20 U: +041.80
L2 PAE:+000.0 -000.2 -000.6 -000.8 -000.6 -000.2 +000.1 +000.1 +000.0
+000 0
       +000.2 +000.7 +000.9 +000.5 -000.6 -001.8 -002.5 +000.0 +000.0
LEIAT302+GP
L1 N: +004.80 E: +001.90 U: +049.20
L1 PAE:+000.0 +000.0 +000.4 +001.7 +003.4 +004.4 +004.6 +004.9 +005.9
+006.7
       +006.6 +005.6 +004.6 +003.7 +002.6 +001.7 +001.9 +000.0 +000.0
L2 N: +003.40 E: -005.20 U: +041.80
L2 PAE:+000.0 -000.2 -000.6 -000.8 -000.6 -000.2 +000.1 +000.1 +000.0
+000.0
       +000.2 +000.7 +000.9 +000.5 -000.6 -001.8 -002.5 +000.0 +000.0
LEIAX1202
L1 N: +002.80 E: -000.70 U: +083.40
L1 PAE:+000.0 +000.9 +002.0 +003.2 +004.4 +005.6 +006.7 +007.5 +008.1
+0083
       +008.1 +007.4 +006.2 +004.4 +002.1 -000.8 -004.4 +000.0 +000.0
L2 N: -000.90 E: -000.30 U: +076.90
L2 PAE:+000.0 -001.1 -001.3 -001.0 -000.3 +000.6 +001.4 +002.1 +002.6
+002.8
       +002.6 +002.0 +001.1 -000.2 -001.8 -003.5 -005.2 +000.0 +000.0
MACROMETER X-DIPOLE
L1 N: +002.20 E: -008.20 U: +163.10
L1 PAE:+000.0 -003.7 -003.3 -000.3 +003.9 +008.5 +012.3 +015.0 +015.9
+014.8
       +011.6 +006.6 +000.1 -007.4 -015.1 -022.0 -027.0 +000.0 +000.0
L2 N: +004.30 E: +002.00 U: +091.30
L2 PAE:+000.0 -003.0 -002.9 -000.9 +002.1 +005.4 +008.3 +010.6 +011.9
+012.2
       +011.6 +010.3 +008.8 +007.6 +007.6 +009.6 +014.8 +000.0 +000.0
MAC4647942
L1 N: +002.20 E: -008.20 U: +163.10
L1 PAE:+000.0 -003.7 -003.3 -000.3 +003.9 +008.5 +012.3 +015.0 +015.9
+0148
       +011.6 +006.6 +000.1 -007.4 -015.1 -022.0 -027.0 +000.0 +000.0
L2 N: +004.30 E: +002.00 U: +091.30
L2 PAE:+000.0 -003.0 -002.9 -000.9 +002.1 +005.4 +008.3 +010.6 +011.9
+012.2
       +011.6 +010.3 +008.8 +007.6 +007.6 +009.6 +014.8 +000.0 +000.0
TOP700779A
```

+006.6 +005.6 +004.6 +003.7 +002.6 +001.7 +001.9 +000.0 +000.0

L2 N: +003.40 E: -005.20 U: +041.80

```
L1 PAE:+000.0 +001.3 +002.9 +004.6 +006.2 +007.7 +008.8 +009.4 +009.6
+009 2
       +008 4 +007 1 +005 4 +003 5 +001 4 -000 6 -002 4 +000 0 +000 0
L2 N: +003.10 E: -001.30 U: +063.40
L2 PAE:+000.0 -002.4 -004.0 -005.2 -005.9 -006.4 -006.8 -007.0 -007.2 -007.3
       -007.4 -007.3 -007.0 -006.3 -005.2 -003.5 -000.8 +000.0 +000.0
72110
L1 N: -003.90 E: +007.30 U: +147.10
L1 PAE:+000.0 -001.1 -001.1 -000.3 +000.9 +002.3 +003.7 +004.8 +005.3
+005.3
       +004.5 +002.9 +000.3 -003.2 -007.6 -012.9 -019.0 +000.0 +000.0
L2 N: -004.40 E: +006.50 U: +127.80
L2 PAE:+000.0 -000.5 -000.7 -000.8 -000.7 -000.6 -000.5 -000.5 -000.6 -001.0
       -001.6 -002.5 -003.7 -005.3 -007.3 -009.7 -012.5 +000.0 +000.0
TOP72110
L1 N: -003.90 E: +007.30 U: +147.10
L1 PAE:+000.0 -001.1 -001.1 -000.3 +000.9 +002.3 +003.7 +004.8 +005.3
+005.3
       +004.5 +002.9 +000.3 -003.2 -007.6 -012.9 -019.0 +000.0 +000.0
L2 N: -004.40 E: +006.50 U: +127.80
L2 PAE:+000.0 -000.5 -000.7 -000.8 -000.7 -000.6 -000.5 -000.5 -000.6 -001.0
       -001.6 -002.5 -003.7 -005.3 -007.3 -009.7 -012.5 +000.0 +000.0
TOPCR3 GGD
L1 N: +000.10 E: +000.00 U: +080.50
L1 PAE:+000.0 +000.8 +001.3 +001.6 +001.7 +001.8 +001.8 +001.8 +001.8
+0018
       +001.9 +002.0 +002.0 +001.8 +001.5 +000.9 -000.1 +000.0 +000.0
L2 N: +000.70 E: +000.80 U: +103.50
L2 PAE:+000.0 -000.5 -000.5 -000.2 +000.2 +000.7 +001.1 +001.5 +001.8
+001.8
       +001.7 +001.5 +001.1 +000.7 +000.2 -000.1 -000.3 +000.0 +000.0
TPSCR3 GGD
L1 N: +000.10 E: +000.00 U: +080.50
L1 PAE:+000.0 +000.8 +001.3 +001.6 +001.7 +001.8 +001.8 +001.8 +001.8
+001.8
       +001.9 +002.0 +002.0 +001.8 +001.5 +000.9 -000.1 +000.0 +000.0
L2 N: +000.70 E: +000.80 U: +103.50
L2 PAE:+000.0 -000.5 -000.5 -000.2 +000.2 +000.7 +001.1 +001.5 +001.8
+001.8
       +001.7 +001.5 +001.1 +000.7 +000.2 -000.1 -000.3 +000.0 +000.0
TPSCR3 GGD
                 CONE
L1 N: +000.20 E: +000.10 U: +080.30
L1 PAE:+000.0 +001.2 +001.9 +002.4 +002.6 +002.6 +002.6 +002.5 +002.5
+0024
       +002.4 +002.4 +002.4 +002.4 +002.3 +002.1 +001.6 +000.0 +000.0
L2 N: +000.40 E: +000.60 U: +102.70
L2 PAE:+000.0 -000.8 -001.0 -000.7 -000.1 +000.5 +001.1 +001.7 +002.0
+002.1
       +001.9 +001.6 +001.1 +000.5 +000.0 -000.4 -000.5 +000.0 +000.0
M-PULSE L1/L2 SURVEY
```

L1 N: +003.40 E: +001.00 U: +087.30

```
I 1 N· +000 00 F· +000 00 U· +079 60
L1 PAE:+000.0 +000.4 +000.4 +000.9 +002.1 +003.1 +003.5 +003.6 +003.9
+0038
       +003.0 +002.2 +001.8 +001.7 +000.9 +000.9 +002.6 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +093.20
L2 PAE:+000.0 +000.1 +000.1 +000.0 +000.0 +000.6 +001.3 +001.7 +001.5
+001.2
       +000.9 +000.7 +000.6 +000.7 +000.7 -000.6 -004.1 +000.0 +000.0
MPLL1/L2 SURV
L1 N: +000.00 E: +000.00 U: +079.60
L1 PAE:+000.0 +000.4 +000.4 +000.9 +002.1 +003.1 +003.5 +003.6 +003.9
+0038
       +003.0 +002.2 +001.8 +001.7 +000.9 +000.9 +002.6 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +093.20
L2 PAE:+000.0 +000.1 +000.1 +000.0 +000.0 +000.6 +001.3 +001.7 +001.5
+0012
       +000.9 +000.7 +000.6 +000.7 +000.7 -000.6 -004.1 +000.0 +000.0
MPLL1/L2SURV
L1 N: +000.00 E: +000.00 U: +079.60
L1 PAE:+000.0 +000.4 +000.4 +000.9 +002.1 +003.1 +003.5 +003.6 +003.9
+003.8
       +003.0 +002.2 +001.8 +001.7 +000.9 +000.9 +002.6 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +093.20
L2 PAE:+000.0 +000.1 +000.1 +000.0 +000.0 +000.6 +001.3 +001.7 +001.5
+001.2
       +000.9 +000.7 +000.6 +000.7 +000.7 -000.6 -004.1 +000.0 +000.0
2200
L1 N: +000.80 E: -001.70 U: +095.40
L1 PAE:+000.0 +001.3 +002.7 +004.4 +006.0 +007.2 +008.0 +009.1 +010.2
+010.4
       +009.4 +008.3 +007.8 +007.4 +006.3 +004.6 +003.7 +000.0 +000.0
L2 N: +000.40 E: +000.10 U: +073.90
L2 PAE:+000.0 -000.3 -001.7 -003.9 -005.8 -006.3 -006.1 -006.4 -007.3 -007.8
       -007.5 -006.9 -006.0 -004.1 -001.7 -001.7 -006.4 +000.0 +000.0
AERAT2775 43
L1 N: +002.30 E: -000.60 U: +088.30
L1 PAE:+000.0 +000.1 +000.6 +001.3 +002.0 +002.7 +003.4 +003.8 +004.1
+004.2
       +004.0 +003.7 +003.2 +002.6 +002.1 +001.6 +001.3 +000.0 +000.0
L2 N: -000.20 E: +000.20 U: +094.10
L2 PAE:+000.0 -000.7 -001.0 -001.2 -001.3 -001.3 -001.3 -001.4 -001.4 -001.6
       -001.7 -001.7 -001.7 -001.4 -000.8 +000.3 +001.8 +000.0 +000.0
3S-02-TSADM
L1 N: +001.70 E: +003.60 U: +272.50
L1 PAE:+000.0 +000.0 +000.2 +000.5 +001.0 +001.5 +002.0 +002.5 +002.9
+003.3
       +003.6 +003.9 +004.2 +004.5 +004.9 +005.4 +006.0 +000.0 +000.0
L2 N: +000.80 E: +004.20 U: +291.60
L2 PAE:+000.0 +000.1 +000.3 +000.4 +000.6 +000.9 +001.1 +001.5 +001.8
+002.2
       +002.5 +002.9 +003.3 +003.6 +003.9 +004.2 +004.3 +000.0 +000.0
```

```
3S-02-TSATE
L1 N: +000.00 E: +000.00 U: +171.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +171.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
NOV503+CR
L1 N: +002.30 E: -001.40 U: +086.50
L1 PAE:+000.0 +000.3 +000.8 +001.5 +002.3 +003.0 +003.7 +004.2 +004.5
+0046
       +004.6 +004.2 +003.7 +003.0 +002.3 +001.6 +001.0 +000.0 +000.0
12 N: -000 10 F: +000 30 U: +092 30
L2 PAE:+000.0 -001.5 -002.3 -002.5 -002.6 -002.5 -002.3 -002.2 -002.1 -002.2
       -002.3 -002.5 -002.5 -002.4 -001.8 -000.8 +001.0 +000.0 +000.0
NOV503+CR
               SPKE
L1 N: +002.00 E: -002.60 U: +087.10
L1 PAE:+000.0 -000.1 +000.5 +001.4 +002.4 +003.4 +004.4 +005.1 +005.6
+005.6
       +005.5 +005.0 +004.2 +003.3 +002.4 +001.5 +000.9 +000.0 +000.0
L2 N: -000.80 E: -000.20 U: +094.60
L2 PAE:+000.0 -001.1 -001.7 -001.9 -001.8 -001.5 -001.3 -001.0 -000.8 -000.8
       -000.9 -000.9 -001.1 -001.1 -000.9 -000.5 +000.5 +000.0 +000.0
NOV600
L1 N: -001.30 E: +000.30 U: +090.50
L1 PAE:+000.0 +000.7 +001.6 +002.7 +004.0 +005.2 +006.2 +007.1 +007.8
+008.1
       +008.1 +007.6 +006.7 +005.4 +003.6 +001.4 -001.2 +000.0 +000.0
L2 N: +000.20 E: -000.40 U: +091.80
L2 PAE:+000.0 -000.6 -000.6 -000.2 +000.5 +001.4 +002.2 +002.9 +003.3
+0036
       +003.5 +003.1 +002.4 +001.4 +000.2 -001.2 -002.7 +000.0 +000.0
NULLANTENNA
L1 N: +000.00 E: +000.00 U: +000.00
L1 PAE:+000.0 +000.3 +001.2 +002.6 +004.4 +006.4 +008.6 +010.6 +012.4
+013.8
       +014.8 +015.5 +015.6 +015.4 +014.6 +013.0 +010.7 +007.6 +003.9
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.2 +000.6 +001.4 +002.3 +003.4 +004.5 +005.6 +006.7
+007.6
       +008.1 +008.2 +007.9 +007.3 +006.4 +005.3 +003.7 +001.4 -001.7
ADVNULLANTENNA
L1 N: +000.00 E: +000.00 U: +000.00
L1 PAE:+000.0 +000.3 +001.2 +002.6 +004.4 +006.4 +008.6 +010.6 +012.4
+013.8
       +014.8 +015.5 +015.6 +015.4 +014.6 +013.0 +010.7 +007.6 +003.9
L2 N: +000.00 E: +000.00 U: +000.00
```

L2 PAE:+000.0 +000.2 +000.6 +001.4 +002.3 +003.4 +004.5 +005.6 +006.7

+007.6

```
GPP NULLANTENNA
L1 N: +000.00 E: +000.00 U: +000.00
L1 PAE:+000.0 +000.3 +001.2 +002.6 +004.4 +006.4 +008.6 +010.6 +012.4
+013.8
       +014.8 +015.5 +015.6 +015.4 +014.6 +013.0 +010.7 +007.6 +003.9
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.2 +000.6 +001.4 +002.3 +003.4 +004.5 +005.6 +006.7
+007.6
       +008.1 +008.2 +007.9 +007.3 +006.4 +005.3 +003.7 +001.4 -001.7
GPPNULLANTENNA
L1 N: +000.00 E: +000.00 U: +000.00
L1 PAE:+000.0 +000.3 +001.2 +002.6 +004.4 +006.4 +008.6 +010.6 +012.4
+013.8
      +014 8 +015 5 +015 6 +015 4 +014 6 +013 0 +010 7 +007 6 +003 9
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.2 +000.6 +001.4 +002.3 +003.4 +004.5 +005.6 +006.7
+007.6
       +008.1 +008.2 +007.9 +007.3 +006.4 +005.3 +003.7 +001.4 -001.7
THA ZMAX
L1 N: +003.80 E: -002.30 U: +000.00
L1 PAE:+000.0 -001.7 -002.2 -001.7 -000.7 +000.5 +001.6 +002.6 +003.2
+003.4
       +003.0 +002.0 +000.7 -001.1 -003.2 -005.2 -007.1 +000.0 +000.0
L2 N: +003.80 E: -000.80 U: -004.90
L2 PAE:+000.0 +000.6 +000.9 +001.1 +001.3 +001.5 +001.8 +002.1 +002.6
+003 0
       +003.3 +003.3 +003.0 +002.0 +000.2 -002.7 -007.0 +000.0 +000.0
110454
L1 N: +000.00 E: +000.00 U: +069.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
NAP100
L1 N: +000.00 E: +000.00 U: +073.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+00000
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
AT1675-20W
L1 N: +001.50 E: -001.90 U: +098.70
L1 PAE:+000.0 +000.1 +000.7 +001.7 +002.8 +003.9 +004.9 +005.6 +005.9
+005.8
       +005.4 +004.6 +003.4 +001.9 +000.3 -001.3 -002.6 +000.0 +000.0
```

+008.1 +008.2 +007.9 +007.3 +006.4 +005.3 +003.7 +001.4 -001.7

```
+000.2 +000.1 +000.1 +000.1 -000.1 -000.1 -000.2 +000.0 +000.0
AERAT1675 182
L1 N: +000.00 E: -002.40 U: +050.00
L1 PAE:+000.0 +000.7 +001.6 +002.8 +004.0 +005.3 +006.4 +007.4 +008.1
+008.4
       +008.3 +007.5 +006.2 +004.1 +001.1 -002.7 -007.7 +000.0 +000.0
L2 N: -001.90 E: -001.40 U: +033.10
L2 PAE:+000.0 +000.3 +000.9 +001.6 +002.2 +002.9 +003.4 +003.7 +003.9
+003.9
       +003.7 +003.3 +002.8 +002.1 +001.4 +000.8 +000.3 +000.0 +000.0
AERAT1675 32
L1 N: -000.40 E: -002.60 U: +050.40
L1 PAE:+000.0 +000.7 +001.6 +002.7 +003.8 +005.0 +006.1 +007.0 +007.7
+007.9
       +007.8 +007.1 +005.8 +003.7 +000.7 -003.1 -008.0 +000.0 +000.0
L2 N: -001.80 E: -002.50 U: +032.40
L2 PAE:+000.0 +000.9 +001.7 +002.4 +003.1 +003.7 +004.2 +004.5 +004.7
+004.7
       +004.5 +004.2 +003.8 +003.3 +002.6 +001.8 +000.9 +000.0 +000.0
ASH802111
L1 N: +000.00 E: +000.00 U: +000.00
L1 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
     +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000.0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH111660
L1 N: +000.30 E: -000.70 U: +075.40
L1 PAE:+000.0 +000.7 +001.7 +002.8 +004.1 +005.3 +006.3 +007.2 +007.7
+007.8
      +007.6 +006.9 +005.6 +003.7 +001.2 -001.9 -005.7 +000.0 +000.0
L2 N: +000.00 E: +000.00 U: +000.00
L2 PAE:+000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
+000 0
       +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0 +000.0
ASH111661
L1 N: -000.50 E: -001.40 U: +075.40
L1 PAE:+000.0 +000.6 +001.5 +002.6 +003.8 +005.0 +006.0 +006.9 +007.5
+0077
       +007.4 +006.6 +005.3 +003.4 +000.8 -002.5 -006.5 +000.0 +000.0
L2 N: -002.20 E: -001.00 U: +071.90
```

L2 PAE:+000.0 -000.1 -000.1 -000.1 +000.0 +000.0 +000.1 +000.1 +000.2

L2 N: +000.10 E: +000.30 U: +104.30

+000 2

L2 PAE:+000.0 -000.7 -000.8 -000.3 +000.4 +001.2 +002.0 +002.6 +002.9 +003.0

+002.7 +002.1 +001.1 -000.2 -001.8 -003.5 -005.3 +000.0 +000.0

ASH802129

L1 N: -002.00 E: +000.70 U: +103.00

L1 PAE:+000.0 +001.0 +002.1 +003.5 +004.8 +006.0 +006.9 +007.7 +008.0 +008.1

+007.7 +006.9 +005.8 +004.3 +002.5 +000.5 -001.6 +000.0 +000.0

L2 N: -003.40 E: -002.20 U: +100.80

L2 PAE:+000.0 -000.6 -000.6 +000.0 +000.9 +001.8 +002.7 +003.3 +003.8 +004.0

+003.7 +003.0 +002.0 +000.6 -001.1 -003.1 -005.2 +000.0 +000.0

Symbols \$PASHS,ANP,OWN/REF 30 \$PASHS,ANP,PCO.. 30 \$PASHQ, 37, 142 \$PASHS,ANP,PCO/EDx 43 \$PASHQ,ALM 37, 113 \$PASHS,ANP,REF 42 \$PASHQ,ANP 30, 114 \$PASHS,ANT 185 \$PASHQ,ATT 38, 115 \$PASHS,ANT/ANH 30, 45 \$PASHQ,BPS 32, 117 \$PASHS,ATL 47 \$PASHQ,CPD,REF *32*, *118* \$PASHS,ATM 33, 49 \$PASHQ,DDM 121 \$PASHS,ATM,ALL 33, 50 \$PASHQ.GBS *123* \$PASHS,CMP *33*, *52* \$PASHQ.GGA 37, 124 \$PASHS,CMP,ALL 33, 54 \$PASHQ,GLL 37, 126 \$PASHS,CMR 33, 51 \$PASHQ,GRS 37, 127 \$PASHS,CMR,ALL *33*, *52* \$PASHQ,GSA 37, 128 \$PASHS,CP2,AFP 31, 54 \$PASHQ,GST 37, 130 \$PASHS,CP2,ARR,LEN 55 \$PASHQ,GSV 37, 131 \$PASHS,CP2,ARR,MOD 56 \$PASHQ,HDT 37, 132 \$PASHS,CP2,ARR,OFS 57 \$PASHQ,LTN 38, 133 \$PASHS,CP2,ARR,PAR 58 \$PASHQ,PAR 30, 135 \$PASHS,CP2,BAS 31, 59 \$PASHQ,PAR,ATM 137 \$PASHS,CP2,MOD 61 \$PASHQ,PAR,OUT 157 \$PASHS,CP2,RST 31, 64 **\$PASHQ,PIN** 137 \$PASHS,CPD,AFP 31, 54 \$PASHQ,POS 38, 138 \$PASHS,CPD,ARR,LEN 38, 55 \$PASHQ,PRT *31*, *140* \$PASHS,CPD,ARR,MOD 38, 56 \$PASHQ,PTT 38, 141 \$PASHS,CPD,ARR,OFS 38, 57 \$PASHQ,RCP 143 \$PASHS,CPD,ARR,PAR 38, 58 \$PASHQ,RID *30*, *144* \$PASHS,CPD,BAS 31, 59 \$PASHQ,RIO *30*, *145* \$PASHS,CPD,FST *31*, *60* \$PASHQ,RMC 37 \$PASHS,CPD,NET 31, 63 \$PASHQ,SAT 38, 149 \$PASHS,CPD,RST *31*, *63* \$PASHQ,VEC *38*, *151* \$PASHS,CPD,VRS 64 \$PASHQ,VTG 37, 153 \$PASHS,CRR 30, 65 \$PASHQ,ZDA *37*, *154* \$PASHS,DI2,PRT 67 \$PASHR,DPC 160 \$PASHS,DI2,PRT,OFF 68 \$PASHR,ION 162 \$PASHS,DIF,PRT 17, 65 \$PASHR,MCA *163* \$PASHS,DIF,PRT,OFF 67 \$PASHR,MPC 165 \$PASHS,DSY 69 **\$PASHR,PBN** *168* \$PASHS,DYN 31, 70 \$PASHR,RPC *169* \$PASHS,ELM 30, 71 \$PASHR,SAG 171 \$PASHS,ENC 31, 71 \$PASHR,SAL 172 \$PASHS,GLO 30, 72 \$PASHR,SAW *173* \$PASHS,GLO,OFF 30 **\$PASHR,SKP** *108* \$PASHS,GNS,CFG 73 **\$PASHR,SNG** *175* \$PASHS,INI 30, 74 \$PASHR,SNV 177 \$PASHS,KPI 31, 76 \$PASHR,SNW *179* \$PASHS,LCS 77 **\$PASHR,TTT** *150* \$PASHS,MSG 31, 78 \$PASHS,AGB *39* \$PASHS,NME 17, 37, 79 \$PASHS,ANP,DEL *30*, *40* \$PASHS,NME,ALL *37*, *82* \$PASHS,ANP,OUT 40 \$PASHS,NME,MSG 81 \$PASHS,ANP,OW2 41 \$PASHS.PEM 31, 82 \$PASHS,ANP,OWN 41 \$PASHS,PFE 84

\$PASHS,PFL,TST <i>31</i> , <i>83</i>	ARP 45, 76, 88, 184
\$PASHS,PHE <i>31</i>	Arrow mode <i>55</i> , <i>56</i> , <i>57</i> , <i>58</i>
\$PASHS,PIN 85	ASH <i>33</i> , <i>71</i>
\$PASHS,POP <i>30</i> , <i>86</i>	Ashtech (legacy format) 91
\$PASHS,POS 19, 30, 87	Assigning function to programmable pin on
\$PASHS,PPS 31, 90	I/O connector 85
\$PASHS,PWR,OFF 90	ATL command 47
\$PASHS,RAW <i>37</i> , <i>91</i>	ATL messages 47
\$PASHS,RAW,ALL <i>37</i> , <i>92</i>	ATM 49, 71
\$PASHS,RCP,DEL 93	ATM,ALL 50
\$PASHS,RCP,GBx 93	ATOM 6, 32
\$PASHS,RCP,OWN/REF 30, 94	ATOM message generation settings 137
\$PASHS,REF 16, 30, 96	ATOM messages 33, 49
\$PASHS,RST 30, 96	ATT 80, 115
\$PASHS,RT2 <i>33</i> , <i>97</i>	Azimuth offset <i>57</i>
\$PASHS,RT2,ALL <i>33</i> , <i>98</i>	B
\$PASHS,RT3 33, 98	
\$PASHS,RT3,ALL <i>33</i> , <i>100</i>	Backup RTK solution 1
\$PASHS,SBA 30, 100	Backup voltage 10
\$PASHS,SIT 31, 101	Base mode 35
\$PASHS,SMI 30, 102	Base position 117
\$PASHS,SOM,CTT 103	Base position (read from rover) 118
	Baseline elevation limit 58
\$PASHS,SOM,NAV 104	Baseline length 55
\$PASHS,SOM,SNR 105	Baseline length error 58
\$PASHS,SOM,WRN 106	Baud rates 107
\$PASHS,SPD 31, 107	BBU <i>43</i>
\$PASHS,UDP 32, 109	B-files 18
\$PASHS,UTS 109	Biases 93
\$PASHS,ZDA 30, 110	BLADE 1, 5, 6
A	Bottom view 3
ACK 29	BPS 117
Active edge (event marker) 84	C
Adaptive 70	Calibration 55
Adjusting GLONASS biases 39	CAN 10
AGB 39	Channel warnings masks 106
ALM 79, 113	Channels 5
Almanac 113	Clock (external reference) 96
Ambiguity fixing process 54	Clock input 16
ANP 114	CMP 52
ANP, DEL 40	CMP,ALL 54
ANP,OUT 40	CMR 32, 51, 71
ANP,OW2 41	CMR base 20
ANP,OWN 41	CMR messages <i>33</i> , <i>51</i> , <i>52</i>
ANP,PCO/EDx 43	CMR,ALL <i>52</i>
ANP,REF 42	CMR+ 32, 71
ANT/ANH 45	CMR+ base 19, 20
Antenna class 44	,
Antenna database <i>43</i>	CMR+ messages <i>52</i> , <i>54</i> Cold reset <i>43</i>
Antenna input 15	Cold reset 45 Cold start 75
Antenna offset values 43	
Antenna parameters 114	Confidence level 54
,	Confidence level 54

e edge) 84 al 38 il 10 ode 60
al <i>38</i> Il <i>10</i> ode <i>60</i>
al <i>38</i> Il <i>10</i> ode <i>60</i>
al <i>38</i> Il <i>10</i> ode <i>60</i>
nl <i>10</i> ode <i>60</i>
nl <i>10</i> ode <i>60</i>
ode <i>60</i>
2
9
nase biases <i>93</i>
12, 72
12, 72
rning) <i>30</i>
irillig) 50
1.5
15
!6 , 85
table 42
7
52
ential data to primary

Input port for differential data to second	Operating mode (second RTK engine) 61
RTK engine 67	Option <i>63</i>
Input voltage 7	Output order 157
Installation 9	Outputting differential data messages 34
Instant RTK 7	P
ION 37, 91, 142, 162	PAR 135
ITRF 76, 87	PAR,ATM <i>137</i>
J	PBN <i>37</i> , <i>142</i> , <i>168</i>
63	PC1 76, 88
K	PEM 82
Klobuchar 162	PFL,TST 83
KPI 76	PHE <i>84</i>
L	Photogrammetry 12
Latency 133	PIN <i>85</i> , <i>137</i>
LCS 77	Pitch 56, 115
	POP 86
LED indicator 11	POS 80, 87
LNA 15	Power requirements 7
Local antennas (naming) 41	PPS 12, 90
LTN 133	PPS (1 PPS) 7
LV-UART 187	PPS signal 10
M	PPS time tag 141
MAC 6, 63	Primary RTK engine 67
Magnetic table 154	Programmable pin on I/O connector 137
Mask angle 82	PRT 140
Masks 103, 104, 105, 106	Pseudo-range error statistics 130
Max. number of observations used in PVT	PTT 80, 141
108	PWR,OFF 90
MCA 37, 71, 142, 163	Q
Memory 7	Query commands 27
Memory reset codes 75	
MOV 88	R
Moving base 12, 56, 59, 60	RAIM 1, 123
MPC 37, 71, 91, 142, 165	RAW 91
MSG 78	Raw data messages 37, 91
Multipath mitigation <i>5</i> , <i>12</i> , <i>65</i>	RAW,ALL 92
N	RCP 143
NAK 29	RCP,DEL 93
NATO standard mean seal level 125	RCP,GBx 93
Navigation data masks 104	RCP,OWN/REF 94
NME 79	Receiver Autonomous Integrity Monitoring
NME,ALL 82	123
NME,MSG 81	Receiver identification 144
NMEA messages 37	Receiver name 93, 94
NMEA, NMEA-like messages 79, 82	Receiver options 145
NMEA-like messages 37	Receiver parameters 135, 143
NTV 71	REF 96
0	Reference antenna (naming) 42
_	Reference clock signal 10
On change 35 On new 35	Requesting rover to output differential
On time <i>35</i>	message from base 81
OII tillie 33	Reset processor and memory 74

Reset receiver parameters 96 SNV 37, 91, 142, 177 SNW 37, 91, 142, 179 Reset RTK 63 Reset signal 10 SOM,CTT 103 RINEX 18 SOM, NAV 104 RMC 80 **SOM, SNR** 105 Roll 56, 115 SOM, WRN 106 RPC 169 SP 184 RS232 10, 11 Space required 9 RST 96 SPD 107 RT2 71 SPT 76, 88 RT3 33, 71, 98 Static base 59 RT3.ALL 100 Strobe correlator 65 RTCM 32 SVM 108 RTCM 2.3 base 19 Synchronization with GPS time 109 RTCM 2.3 messages 97, 98 Т RTCM 3.0 base 19 Test mode 83 RTCM 3.1 messages 98, 100 TFF 7 RTCM messages 33 Time & date 154 RTK base 12 Top view 2 RTK base characteristics 5 TOPAZE 17 RTK rover 12 Transport mode 71 RTK rover characteristics 6 Transport modes 33 TTT 80 SAG 37, 91, 142, 171 Turning receiver on 90 SAL 37, 91, 142, 172 SAT 80 UDP 109 SAW 37, 91, 142, 173 Update rates 86 SBA 100 USB 10, 11 SBA, DAT message 92 User messages 78 SBAS 5 User-defined antenna (delete) 40 SBAS tracking 12, 100 User-defined antennas 43 SBD 37, 91, 142 User-defined dynamic model 109 SBN 91 UTS 109 Second RTK engine 68 ٧ Second RTK engine (operating mode) 61 VEC 80, 151 Selecting a GNSS mode for the receiver 73 Vector components 151 Semi-major axis 130 Virtual antenna (specify name) 40 Semi-minor axis 130 Serial commands 27 VRS assumption mode 64 Set commands 27 VTG 80, 153 Set date & time 110 W **SHMP** 46 Wake up signal 10 Signal-to-noise ratio masks 105 Warm start 75 SIT 101 Weight 7 Site name 101 WMM-2005 World Magnetic Model 154 Size 7 Skipped messages 108 ZDA 80, 110, 154 SKP 108 SMI 102 Smoothing interval (code) 102

SNG 37, 91, 142, 175

Reference Manual

GNSS Boards Contact Information:

In USA +1 408 572 1103 ■ Fax +1 408 572 1199 In South America +1 305 726 7813

Email gnssboards@ashtech.com

In France +33 2 28 09 38 00 • Fax +33 2 28 09 39 39 In Russia +7 495 980 5400 • Fax +7 495 981 4840

Email gnssboardsemea@ashtech.com

In Singapore +65 9838 4229 • Fax +65 6777 9881 In China +86 10 5802 5174 • Fax +86 10 5802 5135

Email gnssboardsapac@ashtech.com

www.ashtech.com

