# **ashtech**



**Reference Manual** 

### Ashtech Optimized Messaging

GNSS Receiver Communication Protocol, Vers 1.12

#### Copyright Notice

© Ashtech 2010. All rights reserved.

May 2010 issue.

Ashtech reserves the right to make changes to the specifications of the AshTech Optimized Messaging protocol without notice.

#### Trademarks

The Ashtech logo, ProMark, ProFlex, MobileMapper and BLADE are trademarks of Ashtech L.L.C. All other product and brand names mentioned in this publication are trademarks or registered trademarks of their respective holders.

#### May 2010 Release Note

Compared to the February 2010 Release, the following changes have been made to this manual:

- Pages 17 and 56: In the Time Tag Presentation table, the time tag presentation type has been corrected: Full time tag is "0" and fine time tag is "1". It was inverted in the February 2010 Release.
- Page 59: There are two additional notes at the bottom of the page for RNX signal data.
- Page 63: In the Extended Signal Data table (Table 16), more comments are now available for the "Smoothing Residual".

## **Table of Contents**

| Chapter 1. What Is ATOM and What Can It Do?                   | 1      |
|---------------------------------------------------------------|--------|
| Chapter 2 ATOM Organization Overview                          | 3      |
|                                                               | ຸ<br>ວ |
| Basic ATUM Transport                                          |        |
| Short ATOM Quantiau                                           |        |
| Short ATOM Overview                                           |        |
| An Example of ATOM Observation Massages (MES, DNV and DAS)    |        |
| All Overview of ATOM Observation messages (MES, RIVA and DAS) |        |
| Chapter 3. ATOM Messages Description                          | 11     |
| Preamble                                                      | 11     |
| Messages Generation Mechanism                                 | 12     |
| Data Field Conventions                                        | 13     |
| ATOM MES Message                                              | 15     |
| ATOM PVT Message                                              | 16     |
| Position                                                      | 19     |
| Accuracy                                                      |        |
| Velocity                                                      | 22     |
| Clock                                                         | 23     |
| Latency                                                       | 23     |
| Attitude                                                      | 25     |
| Baseline                                                      |        |
| Miscellaneous                                                 | 27     |
| Pseudo-Range Residuals                                        | 28     |
| Satellite Information                                         | 28     |
| ATOM ATR Messages                                             | 30     |
| Antenna attributes                                            | 32     |
| Receiver attributes                                           | 33     |
| User Message                                                  | 34     |
| Antenna Offset Parameters                                     | 35     |
| Site Occupation Information                                   | 36     |
| External Sensors Data                                         | 36     |
| ATOM NAV Messages                                             | 37     |
| GPS Ephemeris                                                 | 38     |
| GLONASS Ephemeris                                             | 39     |
| SBAS Ephemeris                                                | 42     |
| GPS Almanac                                                   | 43     |
| GLONASS Almanac                                               | 44     |
| SBAS Almanac                                                  | 45     |
| GPS Ionosphere and Time Shift Parameters                      | 46     |
| GPS Full Time Parameters                                      | 47     |
| ATOM DAT Messages                                             | 48     |
| GPS Raw Subframe                                              | 49     |
| GLONASS Raw String                                            | 50     |
| SBAS Subframe                                                 | 51     |
| EXTernal Port Data                                            | 52     |
| ATOM RNX Message                                              | 54     |
| Message Structure and Header                                  | 55     |

| Appendix C. Decomposition for ATOM RNX and BAS Observables   Appendix D. Decimation for ATOM RNX and BAS Observables   Appendix E. Data Identifiers for ATOM RNX and BAS Observables   Satellite Mask   Signal Mask   Capability Mask   Cell Mask   Example of Building Satellite, Signal and Cell Masks   Example of Interpreting Satellite, Signal and Cell Masks   Appendix F. Throughput Figures for ATOM RNX and BAS Observables | 93<br>97<br>99<br>99<br>99<br>99<br>99<br> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Appendix C. Decomposition for ATOM RNX and BAS Observables                                                                                                                                                                                                                                                                                                                                                                            | 93<br>97<br>99<br>99<br>99<br>99<br>       |
| Appendix C. Decomposition for ATOM RNX and BAS Observables                                                                                                                                                                                                                                                                                                                                                                            | 93<br>97<br>99<br>99<br>99<br>99<br>       |
| Appendix C. Decomposition for ATOM RNX and BAS Observables                                                                                                                                                                                                                                                                                                                                                                            | 93<br>97<br>97<br>99<br>99<br>99<br>99     |
| Appendix C. Decomposition for ATOM RNX and BAS Observables<br>Appendix D. Decimation for ATOM RNX and BAS Observables<br>Appendix E. Data Identifiers for ATOM RNX and BAS Observables<br>Satellite Mask                                                                                                                                                                                                                              | 93<br>97<br>97<br>99<br>99                 |
| Appendix C. Decomposition for ATOM RNX and BAS Observables                                                                                                                                                                                                                                                                                                                                                                            | 93<br>97<br>99                             |
| Appendix C. Decomposition for ATOM RNX and BAS Observables                                                                                                                                                                                                                                                                                                                                                                            | 93<br>97<br>۵۵                             |
| Appendix C. Decomposition for ATOM RNX and BAS Observables                                                                                                                                                                                                                                                                                                                                                                            | 93<br>97                                   |
| Appendix C. Decomposition for ATOM RNX and BAS Observables                                                                                                                                                                                                                                                                                                                                                                            | 93                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |
| Appendix B. ATOM Message Decoding Sample                                                                                                                                                                                                                                                                                                                                                                                              | 91                                         |
| Appendix A. \$PASHR Transport Decoding Sample                                                                                                                                                                                                                                                                                                                                                                                         | 89                                         |
| Chapter 6. ATOM Utilities                                                                                                                                                                                                                                                                                                                                                                                                             | 87                                         |
| Supported Scenarios                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
| Reference Position Table                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| Receiver Observables Table                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |
| Chapter 5 Compression Options for ATOM DNV and DAS Observables                                                                                                                                                                                                                                                                                                                                                                        |                                            |
| Encapsulation                                                                                                                                                                                                                                                                                                                                                                                                                         | 75<br>75                                   |
| Using the Extended Serial Interface For Observables Scenario Cutomization                                                                                                                                                                                                                                                                                                                                                             | 74                                         |
| Getting Started                                                                                                                                                                                                                                                                                                                                                                                                                       | 71<br>72                                   |
| Chapter 4. ATOM Serial Interface                                                                                                                                                                                                                                                                                                                                                                                                      | 71                                         |
| ATOM STA Messages                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| External Event Time Tag<br>PPS Time Tag                                                                                                                                                                                                                                                                                                                                                                                               | 68<br>69                                   |
| ATOM EVT Messages                                                                                                                                                                                                                                                                                                                                                                                                                     | 67                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66                                         |
| Extended ATOM RNX Data                                                                                                                                                                                                                                                                                                                                                                                                                | 63                                         |
| Reference Position                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                         |
| Satellite Data<br>Signal Data<br>Reference Position<br>Extended ATOM RNX Data                                                                                                                                                                                                                                                                                                                                                         | 58<br>58<br>60                             |

#### Chapter 1. What Is ATOM and What Can It Do?

Ashtech has developed its own proprietary binary data format, named "**A**sh**T**ech **O**ptimized **M**essaging" ("ATOM" acronym for short), to adapt to the new GNSS reality and meet all user requirements. The name emphasizes the main distinguishing ATOM feature, which is its ability to present data in compact form.

ATOM is open to further extensions with new messages or updates for already existing messages (the ATOM version number is provided for each message). Not all the ATOM fields need to be aligned by integer bytes boundaries. However, for extra convenience, some fields have been grouped together to fit the integer number of bytes.

The key features of ATOM include:

- Delivering the widest variety of GNSS data at any update rate
- Supporting different customization options, from maximally compact to maximally full
- Being in line with existing RTCM-3 and NMEA-3 messages as well as RINEX-3 format
- Backward compatibility with legacy Ashtech proprietary messages
- Easily upgradable to include new versions and/or new messages
- Universal presentation form for different GNSS data
- Capability to use ATOM for raw data recording and as a differential correction protocol.

ATOM can be used as the only GNSS data source for different applications. It can also be used in conjunction with existing (including legacy) Ashtech proprietary and standardized data protocols.

The use of a standardized RTCM-3 transport layer allows third-party software to detect/ synchronize ATOM messages easily.

Depending on their applications, users can take advantage of some particular ATOM messages (e.g. receiver positioning results only), or use the full ATOM function, including generating raw data, providing reference data (base mode) and many others.

GNSS has grown rapidly in recent times. More and more GNSS-related applications have appeared, and new requirements for GNSS data have been formulated. Particularly:

- Ease of use and universal support of different GNSS and their signals
- Generating data with high update rate
- Allowing compact data presentation to save room on the storage device and/or data link bandwidth.

ATOM meets all these new requirements.

## Chapter 2. ATOM Organization Overview

Although a proprietary message, ATOM uses the standardized RTCM-3 transport layer. This decision was made to allow any third-party vendor to decode ATOM, using standardized RTCM-3 decoders.

#### **Basic ATOM Transport**

RTCM-3 message numbers range from 1001 to 4095. Numbers 4001 through 4095 are reserved for proprietary usage. Each vendor can ask RTCM to assign a unique number from this range to be used exclusively for its own data. The number 4095 is reserved for Ashtech and is used by ATOM. As a result, the transport layer used by ATOM is the same as the one of any standardized RTCM-3 message:

| Preamble | Reserved                   | Message Length          | Variable Length Data Message                                       | CRC                            |
|----------|----------------------------|-------------------------|--------------------------------------------------------------------|--------------------------------|
| 8 bits   | 6 bits                     | 10 bits                 | Variable length, integer number of bytes.<br>Message 4095 is here. | 24 bits                        |
| 11010011 | Not defined, set to 000000 | Message length in bytes | 0-1023 bytes                                                       | QualComm Definition<br>CRC-24Q |

If the original 4095 message does not contain an integer number of bytes, then the needed number of zero bits is added at the end of the message to make the whole number of bytes an integer.

The high-level presentation form of message 4095 is the following:

| Data Item                     | Number of bits             | Units/Scale | Range     | Comments                                                 |
|-------------------------------|----------------------------|-------------|-----------|----------------------------------------------------------|
| Message number                | 12                         |             | 1001-4095 | 111111111111=4095 reserved for Ashtech                   |
| Message group sub-num-<br>ber | 4                          |             | 0-15      | Message group clarifier (e.g. 0011 = 3 reserved for PVT) |
| Message version number        | 3                          |             | 0-7       | ATOM message version. Set to 1 for this release.         |
| Message body                  | Less than or equal to 8165 |             |           |                                                          |

#### Wrapping Basic ATOM

Optionally, each basic ATOM message can be wrapped into legacy Ashtech transport as follows:

#### \$PASHR,<group\_type>,<atom\_length>,<atom\_data><cc><CR><LF>

Where:

- <group\_type> stands for either MES, PVT, ATR, NAV, DAT, RNX, BAS, STA or EVT, which is a human-readable message group (see below) for quick reference.
- <atom\_length> is a 16-bit integer value (2-byte BIG ENDIAN format) indicating the length, in bytes, of the ATOM data that follow.

- <atom\_data> is a single ATOM message in basic ATOM transport including preamble and CRC.
- <cc> is a binary checksum calculated as the sum of 2-byte integers (BIG ENDIAN), starting after "\$PASHR,<group\_type>,". The final checksum is two least-significant bits (BIG ENDIAN). This is the checksum used in most of legacy Ashtech binary messages. If the length of <atom\_data> is not even, a zero byte should be added at the end of the buffer when computing the checksum. See example in *Appendix A. on page 89*.
- <CR><LF> are respectively the carriage return and line feed.

#### **Short ATOM Overview**

| Group Type                     | Group ID            | Message<br>Clarifier | Standardized Counterparts     | Group Configuration                                                      |
|--------------------------------|---------------------|----------------------|-------------------------------|--------------------------------------------------------------------------|
| GNSS measurements              | 4095,2 or ATOM,MES  | 0010                 | RTCM-3 1001-1006, 1009-1012   | Not a configurable message                                               |
| Positioning results            | 4095,3 or ATOM,PVT  | 0011                 | NMEA-3 GGA, GST,GSV, etc.     | Group of independent messages or single, composite, configurable message |
| Receiver attributes            | 4095,4 or ATOM,ATR  | 0100                 | RTCM-3, 1007-1008, 1029, 1033 | Group of independent messages                                            |
| Navigation information         | 4095,5 or ATOM,NAV  | 0101                 | RTCM-3 1019, 1020             | Group of independent messages                                            |
| Data frames                    | 4095,6 or ATOM,DAT  | 0110                 | N/A                           | Group of independent messages                                            |
| GNSS RINEX observ-<br>ables    | 4095,7 or ATOM,RNX  | 0111                 | RINEX-3.0                     | Group of independent messages or single, composite, configurable message |
| GNSS RTK base cor-<br>rections | 4095,8 or ATOM,BAS  | 1000                 | RTCM-2 20, 21, 24             | Group of independent messages or single, composite, configurable message |
| Receiver status                | 4095,13 or ATOM,STA | 1101                 | N/A                           | Group of independent messages                                            |
| Receiver events                | 4095,14 or ATOM,EVT | 1110                 | N/A                           | Group of independent messages                                            |

To date, ATOM vers.1 supports the following primary groups of GNSS data:

Groups MES, RNX and BAS refer to ATOM observables. In most cases, they output the same data but presented in slightly different forms. Depending on the desired application and personal preferences, any of these groups may be used. A short overview of these groups is given below.

Group PVT delivers positioning results such as position, velocity, clock offset, satellite tracking/usage status. Additionally it contains the information about position latency and accuracy. These data can be converted to, or generated from standardized NMEA-3 messages. A more detailed view on the ATOM PVT architecture is described on *page 16*.

Group ATR generates receiver/antenna attributes, for example receiver name/serial number/firmware version and/or antenna name/serial number. It is also used to specify the antenna reference point with respect to the survey point as well as any user-defined message generation.

Group NAV generates navigation data extracted from GNSS data streams. NAV supports the generation of GPS, GLONASS, SBAS ephemeris and almanac data as well as some other valuable information, like broadcast GPS ionosphere parameters.

Group DAT generates a raw navigation data stream (frames) decoded from any signal a GNSS receiver tracks. Also, this group includes messages containing the binary streams entering the receiver through its physical ports (e.g. external differential data stream).

Group STA provides status information from some receiver firmware modules. Particularly it can output the current receiver configuration parameters, the differential data link status, etc. Group EVT generates some information about events inside a receiver. It can be the precise time-tagging of the external event marker, PPS time-tagging or some internal receiver alarms, such as receiver reset.

In future, ATOM is open to adding more groups to the currently supported list.

Each group contains a number of particular sub-messages/sub-blocks, which can optionally be enabled or disabled. Each group has its own default configuration, which can be receiver-type and firmware-version dependent.

Some ATOM messages have fixed length, some others have variable length. Variable length can be caused by the fact that this message contains multiple satellite information (i.e. Nsat dependent). On the other hand, variable length can be caused by some internal switches in the message header defining different presentation forms for the data that follow.

Most of the data ATOM generates are extracted from GNSS signal(s) directly using internal receiver algorithms. These are GNSS observables and navigation data as well as internal receiver positioning results. On the other hand, some ATOM fields refer to receiver hardware configuration or user-entered parameters. For example, a lot of generated attributive information refers to either receiver configuration (e.g. receiver name, serial number, firmware version, etc.) or to some user-entered settings (e.g. antenna name, antenna offset against ground mark, ASCII message, fixed reference position, etc.).

While the general organization of all the ATOM groups is similar, there are however some differences. Messages or groups ATR, NAV, DAT, STA and EVT are always generated independently of each other. At the same time, messages of groups MES, RNX, BAS and PVT can be output differently. Each of these groups contains a unique header defining which data blocks follow this header. If for example a receiver is configured to generate more than one block of data for a given group, these data blocks can be grouped within a single message (under the same header and inside the same transport frame) or can be split into sequential and independent transmissions. In the latter case, each independent message provides a so-called multiple-message bit allowing the decoding equipment to compile complete data epochs from sequential transmissions. The next two sections give examples of different transmission strategies for these groups of messages.

#### An Example of ATOM PVT Architecture

| Field                | Comment                                                                       |
|----------------------|-------------------------------------------------------------------------------|
| Message number       | 11111111111=4095, reserved for Ashtech                                        |
| Message sub-number   | 0011=3, reserved for PVT                                                      |
| Message version      | 001=1, refers to the first version of the ATOM PVT message                    |
| Multiple mossage bit | 1 indicates that more 4095,3 message(s) will follow for the same time tag     |
| Multiple message bit | 0 indicates that this is the last ATOM PVT message tagged to a given time tag |
| Number of satellites | Number of GNSS satellites (visible, tracked, used in position)                |
| Primary GNSS system  | Defines the meaning of time tag and position datum                            |
| Time tag             | Presentation depends on primary GNSS system                                   |
| Reserved bits        | For future use                                                                |

A closer look at the organization of the ATOM PVT message for example shows that it starts with a 10-byte header containing the following data (for exact presentation, please refer to *ATOM PVT Message on page 16*):

Note that multiple-GNSS receivers make an assumption about the primary GNSS system used (default is usually GPS). When a primary GNSS system is specified, then the ATOM message time tag and position datum refer to that primary system.

| Block type                  | Block ID | Size, in bytes             |
|-----------------------------|----------|----------------------------|
| Position                    | C00      | 26                         |
| Accuracy                    | ERR      | 10                         |
| Velocity                    | VEL      | 12                         |
| Clock                       | CLC      | 10                         |
| Latency                     | LCY      | 3                          |
| Attitude                    | HPR      | 11                         |
| Baseline                    | BLN      | 16                         |
| Miscellaneous               | MIS      | 23                         |
| Pseudo Range Residuals (L1) | PRR      | 3+5*Nsat_used              |
| Satellites status           | SVS      | Depends on tracking status |

Currently the following PVT data sub-blocks are supported.

ATOM,PVT is open to adding more sub-blocks in future. It should also be noted that currently, all Ashtech PVT data are output under the same header (possibly with a unique update rate for each block), i.e. inside a single ATOM,PVT transmission. On the other hand, each particular sub-block (e.g. COO or SVS) can potentially be output under its own header, i.e. using a separate ATOM,PVT transmission. In the latter case, the multiple-message bit in the ATOM,PVT header is set accordingly to allow the receiving entity to compile complete position epoch data from different transmissions.

The two diagrams below show different transmission strategies applicable to ATOM PVT messages (3 sub-blocks are given as examples).



A quick look at these messages show they are similar. Each contains blocks of GPS, GLONASS, etc. observables as well as optional reference position. Presentation of observables in each message is exactly the same for each GNSS. This allows the same source code to be used to construct and parse each GNSS observation block in a given message. Each of these blocks can be transmitted inside a single message, or can be spread among several transmissions as shown below.



One Transport Frame - Several Information Blocks Inside



Although the MES, RNX and BAS messages are generally the same, they are not equally effective, depending on which application is using them. The table below tentatively presents their differences.

| Feature                                   | MES             | RNX | BAS                                  |
|-------------------------------------------|-----------------|-----|--------------------------------------|
| Raw data generation                       | Y               | Y   | Needs special conversion             |
| Differential data generation              | Not effective   | Y   | Y                                    |
| Compatibility with RTCM-3                 | Y               | Y   | Probably with future RTCM-3 messages |
| Compatibility with RINEX-3                | Ν               | Y   | Needs special conversion             |
| Customization possibility                 | Ν               | Y   | Y                                    |
| Throughput optimization                   | Ν               | Y   | Y                                    |
| Open for future multiple signals and GNSS | Relatively weak | Y   | Y                                    |

Group MES refers to GNSS raw measurements. The presentation is very similar to existing RTCM-3 messages (MT 1001-1004, 1009-1012), but allows all the data (GPS, GLONASS, SBAS, reference position) to be sent inside a single message thereby making easy the restoring of a complete raw data epoch. This group is recommended for use in raw data recording only. No special customization of this message is possible. It is

intended to output all the raw data and supplementary information a receiver can provide.

Group RNX is similar to MES, but allows more flexibility to present receiver data directly in RINEX-3.0 like manner. The variety of GNSS and their signals is almost unlimited in RNX messages, because it uses universal and flexible data identification. Group RNX can support a number of compact data presentation options making it usable both for raw data recording (like MES) and as an effective differential protocol (like BAS).

Group BAS refers to GNSS differential corrections (computed range – measured range). This group is recommended for use in RTK base mode only to generate GNSS reference data to RTK rover(s). This group includes a number of different options that can noticeably save the data link throughput.

RNX and BAS use the same data presentation allowing almost the same source code to be used for constructing and parsing these messages.

It must be noted that RNX can be used as a differential protocol with the same throughput efficiency as BAS. The possibility to use RNX or BAS as differential protocol is similar to the possibility to use either RTCM-2 MT 18, 19 (raw observables) or RTCM-2 MT 20, 21 (differential corrections). Each of these approaches has its own advantages and disadvantages. Choosing one rather than the other is left to the user's choice. Formally speaking, corrections can easily be computed from observations provided reference position and ephemeris data are available. Reciprocally, corrections can be converted into observations, but this requires a little more complicated computations.

One of the advantages of corrections over observations as differential protocol is fewer computations required on rover side. This can be very important for cheap rovers with limited computation capability. Another example is high-rate corrections (e.g. 10 Hz) processing on rover side when extra float point operations (such as converting base observations into base corrections) cost much.

Since ATOM RNX and BAS messages allow different customization and optimization scenarios to be implemented, a number of additional explanations/clarifications are provided in *Appendices C, D and E* from *page 93*. These Appendices allow users to understand in more details what algorithmic background is behind these observation messages.

ATOM observation messages can generate the following primary observables for each tracked signal:

- Pseudo-range (C)
- Carrier phase (L)
- Doppler (D)
- Signal strength (S)

Since there is still some ambiguity in interpretation, the statements below clarify the definition of the observables packed into ATOM:

- Time tags, pseudo-ranges and carrier phase for each GNSS correspond to RTCM-3 and RINEX conventions.
- All pseudo-ranges and carrier phases (at least for a given GNSS) are supposed to be controlled by the same receiver clock.
- All carrier phases are matched to their respective pseudo-ranges.

- Any C-L, C–C or L-L combination is flat provided continuous carrier tracking is achieved. Only ionosphere and some other effects can cause slow divergence of one observable against another.
- Doppler is interpreted as the true carrier phase derivative, i.e. the Doppler sign is equal to the delta-carrier sign.
- Signal strength corresponds to the RTCM-3 definition (Carrier-to-Noise Ratio) and is expressed in dBHz.

All the generated observables are raw, i.e. not corrected for any specific (e.g. atmospheric) effects. In addition, the statements below enumerate what corrections are applied, or can possibly be applied to original ATOM observations:

- All the GNSS observables are steered for the same receiver clock value. The clock error in all observables does not exceed about 300 meters. Some observation messages (e.g. RNX) can provide the value of original clock, which can be used to restore original (not steered) observables.
- All carrier phases corresponding to the same GNSS and band are aligned with each other, i.e. the possible <sup>1</sup>/<sub>4</sub> cycle bias is properly compensated for.
- The initial integer count in all carrier phases is set to match the carrier phase and respective pseudo-range at carrier initialization epoch.
- Pseudo-ranges can be smoothed by carrier phases to reduce the noise/multipath error. Some ATOM observations messages can provide the so-called smoothing residual allowing the unsmoothed pseudo-range value to be restored.
- All ATOM observables are never compensated for receiver and antenna specific biases. On the other hand, original receiver observations can be matched to the desired virtual antenna name. The corresponding (physical and virtual) antenna names can be provided by ATR messages, thus making it possible if needed to restore the observations corresponding to the physical antenna.

#### **Chapter 3. ATOM Messages Description**

#### Preamble

This chapter contains the detailed (bit-to-bit) description of messages supported by ATOM format version 1. The following groups are described:

- GNSS measurements: ATOM MES
- Positioning results: ATOM PVT
- Attributes data: ATOM ATR
- Navigation data: ATOM NAV
- Raw binary data: ATOM DAT
- GNSS RINEX observations: ATOM RNX
- GNSS RTK base corrections: ATOM BAS
- Status information: ATOM STA
- Events information: ATOM EVT

It should be noted that ATOM messages described here are not all necessarily supported by all Ashtech receivers and in all firmware versions. Some of the messages can be supported outside a GNSS receiver in different service procedures and/or PC tools. Also the reader should be aware that some indicators inside some ATOM messages can be set as follows:

- Adaptively, depending on the current receiver status, or
- To a fixed value depending on user settings, or
- To some hard-coded value, depending on particular hardware/firmware combinations.

The messages are described independently of each other to allow the reader to concentrate efficiently only on a group of interest. That is why redundant information is introduced in each description, some general comments being repeated for a number of particular messages/fields. Before starting with a particular message, the reader should first be introduced to the generalized organization of the ATOM group that the given message belongs to.

When describing a message, some short information is provided on how it can be requested, what the basic principles are to output this message and what additional cross-information can be interesting regarding the message content and request. The mechanism used to generate ATOM messages is not part of the ATOM standard, but is usually independent of the receiver and firmware version. That is why the reader should not only understand the content of an ATOM message, but also learn how it can be requested and output from a receiver

For a complete description of the ATOM serial interface, please refer to ATOM Serial Interface on page 71.

Any ATOM message can usually be generated onto any available receiver port independently of each other. When describing the serial interface, we mention <Port Name> as a substitute for the actual receiver port (A, B, etc.). The same ATOM message can be requested through more than one port and possibly with different intervals and parameters.

The time priority of one ATOM message over another ATOM message within the same epoch can be receiver/firmware dependent. The time priority of ATOM messages against non-ATOM data within complete epoch data is also receiver/firmware dependent.

When requested, each of the ATOM messages is generated using a specific combination of the following principles:

- On new
- On change
- On time
- On event

*On new* means that the corresponding message is output immediately after being requested. *On change* means that the corresponding message is output only after its content has changed. *On time* means that the corresponding message is output on a regular basis, according to the requested time interval x. *On even*t means that a message can be generated, with its content tagged to some event in the receiver.

In some cases however, there is no obvious interpretation as to what is behind such or such output principle. For example *on event* can be interpreted as *on change* if the event refers to a change in some receiver state. Nevertheless, in most cases, the meaning is quite clear.

For example, the ATOM PVT message is primarily output using the *on time* principle. If for example it is requested at an interval of x=0.5 seconds, then it will be output at receiver time tags corresponding to each integer and half-an-integer second.

In some specific cases, the ATOM PVT message is output using the *on event* principle. If for example the receiver is configured to output the so-called Time Tagged (or synchronous) RTK position, then ATOM PVT will be tagged to events when new RTK base data arrive at the rover, are decoded and processed by the RTK engine. But since in most cases, RTK base data arrive at the rover with equal intervals and stable latency, the *on event* principle is here somehow equivalent to the *on time* principle.

All ATOM DAT messages are output using the *on change* principle, i.e. there is no need to specify an interval for outputting them. Each message is generated once the content of the receiver data buffer containing the decoded navigation frame has been updated (i.e. changed).

Most of the ATOM NAV messages are output by combining the *on new, on change* and *on time* principles. For example, if the ATOM NAV / EPH message is requested at an interval of x=600 seconds, then ephemeris data for a given satellite will be output immediately after request (*on new*), and then in 600 seconds (*on time*), etc. If new ephemeris data (new IODE) for this satellite are decoded, these will be output immediately (*on change*) and the counting of the interval of x=600 seconds (*on time*) will start from this moment.

About NAV messages, which serve all tracked satellites, it should be understood that such a rule is applied to each satellite independently. In order to save the overall peak throughput, no more than one NAV message is output over a single 1-second epoch. In other words, the minimal interval between any NAV messages is one second, while the nominal interval between NAV messages with fixed content is x seconds (e.g. 600). If the specified interval x is too short to allow all requested NAV messages to be output (one message per second) within this interval, then x will be set internally as low as necessary to satisfy the output strategy.

The x interval between messages cannot be chosen arbitrarily. For "fast" messages, only the following intervals are valid: 0.05, 0.1, 0.2 and 0.5 sec. If a receiver supports higher update rates, then intervals of 0.02 sec (50 Hz), 0.01 sec (100 Hz) and 0.005 sec (200 Hz) are also admissible.

The phase of "fast" messages is chosen in order to "acquire" integer seconds of primary GNSS time. For "slow" messages, any integer second interval is admissible (provided it is less than 999 seconds). However, for the MES, RNX and BAS groups, only the following intervals are supported: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc. and each integer minute of primary GNSS time (provided it is less than 15 minutes). The "phase" of these messages is chosen in order to "acquire" integer minutes of primary GNSS time. These intervals and shifts are recommended in the RTCM-2 standard and "are kept in mind" for all the other standards.

Messages of the PVT group support the same intervals as the MES, RNX and BAS groups. But in case of integer second intervals, the "phase" of PVT messages is chosen in such a way to acquire integer minutes of UTC (and not primary GNSS) time. Assuming a 2-sec interval is selected for the MES and PVT groups, GPS is the primary GNSS used and the GPS-UTC time shift is 15 sec (as from January 1, 2009), then MES and PVT will always be output for different time tags:

- Each even second of GPS time tag will contain MES data
- Each odd second of GPS time tag (or each even second of UTC time tag) will contain PVT data.

Each of the binary Data Fields (DF) described below fits one of the types presented in

| Data Type | Description                                                       | Range                              | Example/Notes                                           |
|-----------|-------------------------------------------------------------------|------------------------------------|---------------------------------------------------------|
| bitX      | Bit field, each bit is 0 or 1<br>X is the length of the bit field | 0, 1                               | bit2: 2-bit field<br>bit11: 11-bit field                |
| uintX     | X bit unsigned integer                                            | 0 to (2 <sup>x</sup> - 1)          | uint8: 8-bit unsigned integer                           |
| intX      | X bit 2's complement integer                                      | ±(2 <sup>x-1</sup> - 1)            | int8: 8-bit 2's complement integer                      |
| intSX     | X bit sign-magnitude integer                                      | ±(2 <sup>x-1</sup> - 1)            | intS14: 14-bit sign-magnitude integer (see notes below) |
| Char(X)   | 8-bit character set with total length in X chars                  | Character set with variable length |                                                         |
| utf8(X)   | Unicode UTF-8 Code Unit                                           | Unicode set with variable length   |                                                         |

#### **Data Field Conventions**

NOTE:

the following table.

• The **intS** data type refers to a sign-magnitude value. The sign-magnitude representation records the number's sign and magnitude. MSB is 0 for positive numbers and 1 for negative numbers. The rest of the bits are the number's magnitude. For example, for 8-bit words, the representations of numbers "-7" and

"+7" in a binary form are 10000111 and 00000111, respectively. Negative zero is not used.

The convention used for the Most Significant and Least Significant Bits (MSB and LSB) is presented in the diagram below.



**Bit Location in N-bit Integer** 

To insure quick reference to all ATOM DF, numerical equivalents to some of them are provided. Some ATOM DF are the exact copy of the corresponding standardized RTCM-3 DF, some are unique to the ATOM format. That is why ATOM DF having exact RTCM-3 counterparts are marked as DFxxx. For example, data field "Message Number" (uint12, 4095 reserved for Ashtech) is referenced as DF002. Some other ATOM DF, which are intended for proprietary use only, are referenced as AFxxx, where xxx is a unique number assigned to a given field. All the other fields are not marked.

The description below refers to ATOM ver. 1. Further ATOM versions will be marked with higher version numbers. The version number is provided inside each ATOM message (header). The third-party decoding equipment should check the version number before parsing the message and make no attempt to interpret it if the detected version number is higher than the currently supported one. Generally, a higher ATOM version number does not guarantee backward compatibility with the previous versions, unless the decoder is updated for the new ATOM version.

Some ATOM messages contain reserved fields. Third-party users should ignore all these fields. With ATOM development, some initially reserved fields (usually defined as zero) can become meaningful. Since third-party users ignore them, these changes should not hurt anyone. However, in some cases, newly introduced fields can play a vital role in the interpretation of other ATOM fields. In this case, the version number of the corresponding ATOM message will be increased and the corresponding Manual update (or Amendment) will be issued.

Some ATOM fields contain reserved states (e.g. 'supplementary follow' field in ATOM RNX, which contains one reserved state). ATOM ver. 1 does not generate these states, but new ATOM versions could. If a newly introduced state can play a vital role in parsing ATOM data, then the version number of the corresponding ATOM message will be increased and the corresponding Manual update (or Amendment) will be issued.

Some ATOM fields reserve one state to indicate an invalid value (e.g. invalid carrier phase). At the same time, some supplementary fields (e.g. corresponding SNR) can be still valid. Also, on rare occasions, some supplementary fields can take arbitrary values if the "primary" field is indicated as invalid. In all these cases, the decoding equipment should process correctly (i.e. ignore) invalid fields and be careful with the interpretation of the corresponding supplementary fields.

In almost all the messages, ATOM generates field DF003 (reference station ID). This is the correct name if a receiver is used as reference station. However, if a receiver is not

used as a reference station, DF003 field is still used as generalized indicator for a receiver.

#### **ATOM MES Message**

This message is generated by some Ashtech GNSS receivers when logging raw data.

Processing raw data files from these receivers can be done by first converting them into RINEX data, using for example the bin2std utility (see *Chapter 6. on page 87*).

However, if some users would like to design their own decoders, please contact Ashtech to get more information about the ATOM MES message.

ATOM PVT (Position, Velocity, Time) outputs receiver positioning results. It can generate all valuable data contained in the existing standardized NMEA (e.g. GGA, GSV, GST) and proprietary Ashtech (e.g. PBN, POS, SAT) messages. The PVT message is not a group of separated messages but a solid message containing a number of sub-block data. Some sub-blocks have fixed length, some others have variable length. Besides, there can be more than one PVT message corresponding to the same epoch time.

The ATOM PVT message with its default set of sub-blocks and intervals can be enabled/ disabled using the following command:

#### \$PASHS,ATM,PVT,<Port Name>,ON/OFF

The general organization of the PVT message is presented on the diagram below.



The table below sketches the ATOM PVT message and presents the organization of its header.

| Data item                 | Bits | Data type | Offset | Scale | Range      | Comments                                                                                                                                                                                                   | DF Number |
|---------------------------|------|-----------|--------|-------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                           |      |           |        | 5     | START TRAN | ISPORT                                                                                                                                                                                                     | •         |
| Transport Preamble        | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)                                                                                                                                                                                     |           |
| Reserved                  | 6    | bit6      | 8      |       |            | Set to 000000                                                                                                                                                                                              |           |
| Message Length            | 10   | unt10     | 14     |       |            | Message length in bytes                                                                                                                                                                                    |           |
|                           |      |           |        |       | MESSAGE H  | IEADER                                                                                                                                                                                                     |           |
| Message number            | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                                                                                                                                                               | DF002     |
| Message sub-number        | 4    | uint4     | 36     |       | 0-15       | 3 is reserved for ATOM PVT message                                                                                                                                                                         |           |
| Version                   | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                                                                                                                                                              |           |
| Multiple message bit      | 1    | bit1      | 43     |       | 0-1        | 1: other PVT message(s) corresponding to given<br>PVT solution ID will be output for given time tag<br>0: no other PVT message corresponding to given<br>PVT solution ID will be output for given time tag |           |
| Reserved                  | 4    | uint4     | 44     |       | 0-15       | See Appendix G                                                                                                                                                                                             | AF001     |
| PVT engine ID             | 6    | bit6      | 48     |       | 0-63       | See Appendix G                                                                                                                                                                                             | AF002     |
| PVT solution ID           | 2    | bit2      | 54     |       | 0-3        | See Appendix G                                                                                                                                                                                             | AF009     |
| Reserved                  | 7    | bit7      | 56     |       | 0-127      | Set to 00                                                                                                                                                                                                  |           |
| Nsats used                | 6    | uint6     | 63     |       | 0-63       | Number of satellites used in position                                                                                                                                                                      |           |
| Nsats seen                | 6    | uint6     | 69     |       | 0-63       | Number of visible satellites                                                                                                                                                                               |           |
| Nsats tracked             | 6    | uint6     | 75     |       | 0-63       | Number of tracked satellites                                                                                                                                                                               |           |
| Primary GNSS system       | 2    | bit2      | 81     |       | 0-3        | 0: GPS is primary<br>1: GLONASS is primary<br>2-3: reserved                                                                                                                                                |           |
| Time Tag                  | 21   | Bit21     | 83     |       |            | Refers to the primary GNSS system time scale (see the next three tables below)                                                                                                                             |           |
|                           |      |           |        |       | MESSAGE    | DATA                                                                                                                                                                                                       |           |
| Sub-blocks of PVT message |      |           |        |       |            | See sub-sections below                                                                                                                                                                                     |           |
|                           |      |           |        |       | END TRANS  | SPORT                                                                                                                                                                                                      |           |
| CRC                       | 24   | uint24    |        |       |            | 24-bit Cyclic Redundancy Check (CRC)                                                                                                                                                                       |           |
| Total                     |      |           |        |       |            |                                                                                                                                                                                                            |           |

NOTES:

- Unlike with other ATOM groups, the station ID is not provided in the ATM, PVT header. But it can be available in extended form in the ATM, PVT MIS block.
- Generally, the receiver can compute more than one position at the same time (e.g. more than one PVT engine runs in parallel). In general, the identifier of the position engine can change on-line, depending on environmental conditions and/or the differential data link status.



Depends on extension type

Time Tag Presentation:

| Data item                  | Bits | Data type | Offset | Scale    | Range  | Comments                                                                 | DF Number |
|----------------------------|------|-----------|--------|----------|--------|--------------------------------------------------------------------------|-----------|
| Primary time tag           | 12   | uint12    | 0      | 1 second | 0-3599 | GNSS time modulo 1 hour, 4095 means invalid time                         |           |
| Time tag extension<br>type | 1    | bit1      | 12     |          | 0-1    | 0: full time tag extension follows<br>1: fine time tag extension follows |           |
| Time tag extension         | 8    |           | 13     |          |        | Primary time tag extension (see table below)                             |           |
| Total                      | 21   |           |        |          |        |                                                                          |           |

Full Time Tag Presentation:

| Data item | Bits | Data type | Offset | Scale  | Range | Comments                                                                                      | DF Number |
|-----------|------|-----------|--------|--------|-------|-----------------------------------------------------------------------------------------------|-----------|
| Hour      | 5    | uint5     | 0      | 1 hour | 0-23  | GNSS hour within GNSS day                                                                     |           |
| Day       | 3    | uint3     | 5      | 1 day  | 0-7   | Set to GPS day (06) within GPS week, 0 is Sunday, 1 is Monday<br>etc.<br>Set to 0 for GLONASS |           |
| Total     | 8    |           |        |        |       |                                                                                               |           |

Fine Time tag Presentation

| Data item         | Bits | Data type | Offset | Scale | Range | Comments               | DF Number |
|-------------------|------|-----------|--------|-------|-------|------------------------|-----------|
| Fractional second | 8    | uint8     | 0      | 5 ms  | 0-995 | GNSS time modulo 1 sec |           |
| Total             | 8    |           |        |       |       |                        |           |

- The time tag always refers to the time scale of the primary GNSS system used, i.e. UTC + NIs (where NIs is the number of leap seconds, i.e. 15 as from Jan 1 2009) for GPS, and UTC-3 hours for GLONASS.
- The size of the time tag is always fixed.
- Using the switchable time tag presentation, users can cover a full range of GNSS time tags with fine resolution. If the time tag is an integer second, the ATOM generator will

insert full extension information to reduce the whole time tag ambiguity down to the GPS week number or GLONASS day number. If the time tag is a fractional second, then the ATOM generator will insert a fine time tag extension thus allowing data to be generated at up to 200 Hz.

• If a leap second occurs, the primary time tag is set to 3600.

| PVT sub<br>block type | ASCII<br>identifier | Sub-block<br>name                 | Block size,<br>bytes               | Data<br>block ID | Comments                                             | Counterpart                   |
|-----------------------|---------------------|-----------------------------------|------------------------------------|------------------|------------------------------------------------------|-------------------------------|
| 0                     |                     | Reserved                          |                                    | 0000             |                                                      |                               |
| 1                     | CO0                 | Position                          | 26                                 | 0001             | Position, flags, differential age, base ID etc       | \$PASHR,POS<br>\$GPGGA        |
| 2                     | ERR                 | Accuracy                          | 10                                 | 0010             | Accuracy (lat/lon/alt errors covariance)             | \$GPGST                       |
| 3                     | VEL                 | Velocity                          | 12                                 | 0011             | Velocity estimates and its attributes                | \$PASHR,POS<br>\$GPVTG        |
| 4                     | CLK                 | Clock                             | 10                                 | 0100             | Receiver clock estimates and its attributes          | \$PASHR,PBN                   |
| 5                     | LCY                 | Latency                           | 3                                  | 0101             | Position latency                                     | \$PASHR,LTN                   |
| 6                     | HPR                 | Attitude                          | 11                                 | 0110             | Heading, pitch and roll estimates and its attributes | \$PASHR,ATT<br>\$GPHDT        |
| 7                     | BLN                 | Baseline                          | 16                                 | 0111             | 3D baseline components and its attributes            | \$PASHR,VEC                   |
| 8                     | MIS                 | Miscella-<br>neous                | 23                                 | 1000             | Position supplementary data                          | \$GPRMC<br>\$GPGGA<br>\$GPZDA |
| 9                     |                     | Reserved                          |                                    | 1001             |                                                      |                               |
| 10                    |                     | Reserved                          |                                    | 1010             |                                                      |                               |
| 11                    |                     | Reserved                          |                                    | 1011             |                                                      |                               |
| 12                    |                     | Reserved                          |                                    | 1100             |                                                      |                               |
| 13                    | PRR                 | Pseudo-range<br>Residuals<br>(L1) | 3+5*Nsat_us<br>ed                  | 1101             | Pseudo-range Residuals                               | \$GPRRE                       |
| 14                    | SVS                 | Sat status                        | Depends on<br>tracking sta-<br>tus | 1110             | Satellite tracking/usage information                 | \$PASHR,SAT<br>\$GPGSV        |
| 15                    |                     | Special mes-<br>sages             |                                    | 1111             |                                                      |                               |

The supported PVT sub-blocks are presented in the table below.

All supported PVT blocks (except 15) output general-purpose position information, which is usually available for each GNSS receiver/firmware. In future, reserved blocks can contain some extra general-purpose position data. In contrast, block 15 (Special messages) can contain some information (including debug) specific to particular GNSS receiver/firmware. The organization of general-purpose and special blocks is presented in the tables below.

General-Purpose PVT Sub-Blocks:

| Data item                      | Bits | Data type | Offset | Scale | Range | Comments                                              | DF Number |  |
|--------------------------------|------|-----------|--------|-------|-------|-------------------------------------------------------|-----------|--|
| GENERAL PURPOSE SUB-BLOCK DATA |      |           |        |       |       |                                                       |           |  |
| Block size, X                  | 8    | uint8     | 0      |       | 0-255 | The size of given block in bytes including this field |           |  |
| Block ID                       | 4    | uint4     | 8      |       | 0-14  | Reserved for general purpose data                     |           |  |
| Sub block data                 |      |           | 12     |       |       | Each of blocks 0-14                                   |           |  |
| Total                          | 8*X  |           |        |       |       |                                                       |           |  |

Special PVT Sub-Blocks:

| Data item              | Bits | Data type | Offset | Scale | Range | Comments                                              | DF Number |  |  |
|------------------------|------|-----------|--------|-------|-------|-------------------------------------------------------|-----------|--|--|
| SPECIAL SUB-BLOCK DATA |      |           |        |       |       |                                                       |           |  |  |
| Block size, X          | 8    | uint8     | 0      |       | 0-255 | The size of given block in bytes including this field |           |  |  |
| Block ID               | 4    | uint4     | 8      |       | 15    | Reserved for a variety of special data                |           |  |  |
| Special block sub-ID   | 8    | uint8     | 12     |       | 0-255 | Special data block ID                                 |           |  |  |
| Special sub block data |      |           | 20     |       |       | Each of blocks 15,0-255                               |           |  |  |
| Total                  | 8*X  |           |        |       |       |                                                       |           |  |  |

The next sections present the structure of each of the currently supported sub-blocks in the ATOM PVT message. Each PVT sub-block is described independently of each other. It is supposed that generally more than one sub-block can follow the ATOM PVT header.

- **Position** This sub-block contains the most valuable information about computed position. Usually, the position refers to the default datum of the primary GNSS system specified in the ATOM PVT header. ATOM is open to outputting position on a custom datum (see clarifying bit in the MIS block). Some additional (not operative yet) position information can be sent through the Miscellaneous (MIS) sub-block, but at a lower rate.
  - Output logic: on time
  - Sub-block binary size: 26 bytes (208 bits)
  - How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&COO
  - **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
  - See also: \$PASHR,POS; \$GPGGA

#### Structure & Content:

| Data item                        | Bits           | Data type | Offset | Scale  | Range          | Comments                                                                                                                                                                                                                                 | DF Number |  |  |  |  |
|----------------------------------|----------------|-----------|--------|--------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
|                                  | SUB-BLOCK DATA |           |        |        |                |                                                                                                                                                                                                                                          |           |  |  |  |  |
| Block size                       | 8              | uint8     | 0      |        | 0-255          | Set to 26                                                                                                                                                                                                                                |           |  |  |  |  |
| Block ID                         | 4              | uint4     | 8      |        | 0-15           | Set to 1                                                                                                                                                                                                                                 |           |  |  |  |  |
| Position type (GGA presentation) | 4              | uint4     | 12     |        | 0-15           | 0: invalid fix<br>1: standalone<br>2: diff corrected (including SBAS corrected)<br>3: GPS PPS mode<br>4: RTK fixed<br>5: RTK float<br>6: dead reckoning<br>7: entered position<br>8: simulator mode<br>9-14: reserved<br>15: not defined |           |  |  |  |  |
| GPS used                         | 1              | bit1      | 16     |        | 0-1            | 1: GPS is used in position                                                                                                                                                                                                               |           |  |  |  |  |
| GLO used                         | 1              | bit1      | 17     |        | 0-1            | 1: GLO is used in position                                                                                                                                                                                                               |           |  |  |  |  |
| Reserved                         | 2              | bit2      | 18     |        | 0-3            | Set to 00                                                                                                                                                                                                                                |           |  |  |  |  |
| Reserved                         | 4              | bit4      | 20     |        | 0-15           | See Appendix G                                                                                                                                                                                                                           | AF004     |  |  |  |  |
| Position mode                    | 3              | uint3     | 24     |        | 0-7            | 0: 3D GNSS position<br>1: 2D position with entered altitude<br>2: 2D position with 'frozen' altitude<br>3-6: reserved<br>7: not defined                                                                                                  |           |  |  |  |  |
| Position smoothing               | 3              | uint3     | 27     |        | 0-7            | 0: not smoothed<br>1: averaged static position<br>2: smoothed kinematic position<br>3-6: reserved<br>7: not defined                                                                                                                      |           |  |  |  |  |
| Reserved                         | 4              | bit4      | 30     |        | 0-15           | Set to 00                                                                                                                                                                                                                                |           |  |  |  |  |
| PDOP                             | 10             | uint10    | 34     | 0.1    | 0-100          | Corresponds to satellites used (102.3 if not defined or invalid)                                                                                                                                                                         |           |  |  |  |  |
| HDOP                             | 10             | uint10    | 44     | 0.1    | 0-100          | Corresponds to satellites used (102.3 if not defined or invalid)                                                                                                                                                                         |           |  |  |  |  |
| X coordinate                     | 38             | int38     | 54     | 0.1 mm | ±13743.9<br>km |                                                                                                                                                                                                                                          | DF025     |  |  |  |  |
| Y coordinate                     | 38             | int38     | 92     | 0.1 mm | ±13743.9<br>km |                                                                                                                                                                                                                                          | DF026     |  |  |  |  |
| Z coordinate                     | 38             | int38     | 130    | 0.1 mm | ±13743.9<br>km |                                                                                                                                                                                                                                          | DF027     |  |  |  |  |
| Differential age                 | 10             | uint10    | 168    | 1 sec  | 0-1023         | Age of differential corrections (1023 if not defined or invalid, 1022 if valid but >1022)                                                                                                                                                |           |  |  |  |  |
| Base ID                          | 12             | uint12    | 178    |        | 0-4095         | Base station ID                                                                                                                                                                                                                          | DF003     |  |  |  |  |
| Position type clarifier          | 4              | bit4      | 190    |        | 0-15           | See Appendix G                                                                                                                                                                                                                           | AF003     |  |  |  |  |
| Reserved                         | 14             | bit18     | 194    |        |                | Set to 00                                                                                                                                                                                                                                |           |  |  |  |  |
| Total                            | 208            |           |        |        |                |                                                                                                                                                                                                                                          |           |  |  |  |  |

- With at least one GPS or GLONASS satellite used in the position computation, the corresponding bit is set accordingly.
- In differential SBAS, the base station ID is the PRN of the master (or primary) SBAS (120-138)
- Some fields have a reserved state meaning "not defined". This is because not all PVT engines can provide information for these fields.
- The position type clarifier is provided to specify in more details what is behind the standardized GGA-type position flag.

**Accuracy** This sub-block always refers to the data presented in the position (COO) sub-block described above. It contains parameters allowing the complete position covariance matrix (symmetric, positive definite) to be restored.

$$S = \begin{bmatrix} s11 \ s12 \ s13 \\ s22 \ s23 \\ s33 \end{bmatrix}$$

Where s11, s22 and s33 are always positive. All other terms can be negative. Here, indexes 1, 2, and 3 refer to the latitude, longitude, and altitude components respectively.

- Output logic: on time
- Sub-block binary size: 10 bytes (80 bits)
- How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&ERR
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$GPGST

Structure & Content:

| Data item      | Bits | Data type | Offset | Scale   | Range    | Comments                              | DF Number |  |  |  |
|----------------|------|-----------|--------|---------|----------|---------------------------------------|-----------|--|--|--|
| SUB-BLOCK DATA |      |           |        |         |          |                                       |           |  |  |  |
| Block size     | 8    | uint8     | 0      |         | 0-255    | Set to 10                             |           |  |  |  |
| Block ID       | 4    | uint4     | 8      |         | 0-15     | Set to 2                              |           |  |  |  |
| Sigma          | 20   | int20     | 12     | 0.001 m | 0-1000 m | 1048.575 if not defined or invalid.   |           |  |  |  |
| k1             | 7    | uint7     | 32     | 1/128   | 01       |                                       |           |  |  |  |
| k2             | 7    | uint7     | 39     | 1/128   | 01       |                                       |           |  |  |  |
| k3             | 7    | uint7     | 46     | 1/128   | 01       |                                       |           |  |  |  |
| r12            | 8    | int8      | 53     | 1/128   | -11      |                                       |           |  |  |  |
| r13            | 8    | int8      | 61     | 1/128   | -11      |                                       |           |  |  |  |
| r23            | 8    | int8      | 69     | 1/128   | -11      |                                       |           |  |  |  |
| Reserved       | 3    | bit3      | 77     |         | 0-7      | Set to 000                            |           |  |  |  |
| Total          | 80   |           | •      |         | •        | · · · · · · · · · · · · · · · · · · · |           |  |  |  |

NOTES:

- If Sigma is set to an invalid value, then all other fields in this sub-block are also invalid and can take arbitrary values.
- Sigma (in meters):

 $Sigma = \sqrt{s11 + s22 + s33}$ 

• k1, k2, k3 (all unitless):

$$k1 = \frac{\sqrt{s11}}{sigma}$$
  $k2 = \frac{\sqrt{s22}}{sigma}$   $k3 = \frac{\sqrt{s33}}{sigma}$ 

• r12, r13, r23 (all "square" unitless)

$$r12 = \frac{s12}{\sqrt{s11 \times s22}}$$
  $r13 = \frac{s13}{\sqrt{s11 \times s33}}$   $r23 = \frac{s23}{\sqrt{s22 \times s33}}$ 

Velocity This sub-block contains receiver velocity components.

- Output logic: on time
- Sub-block binary size: 12 bytes (96 bits)
- How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&VEL
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$PASHR,POS; \$GPVTG

Structure & Content:

| Data item                              | Bits | Data type | Offset | Scale      | Range      | Comments                                    | DF Number |  |  |  |
|----------------------------------------|------|-----------|--------|------------|------------|---------------------------------------------|-----------|--|--|--|
| SUB-BLOCK DATA                         |      |           |        |            |            |                                             |           |  |  |  |
| Block size                             | 8    | uint8     | 0      |            | 0-255      | Set to 12                                   |           |  |  |  |
| Block ID                               | 4    | uint4     | 8      |            | 0-15       | Set to 3                                    |           |  |  |  |
| X velocity                             | 25   | int25     | 12     | 0.0001 m/s | ± 1677 m/s | - 1677.7216 if not defined or invalid       |           |  |  |  |
| Y velocity                             | 25   | int25     | 37     | 0.0001 m/s | ± 1677 m/s | - 1677.7216 if not defined or invalid       |           |  |  |  |
| Z velocity                             | 25   | int25     | 62     | 0.0001 m/s | ± 1677 m/s | - 1677.7216 if not defined or invalid       |           |  |  |  |
| Velocity type                          | 1    | bit1      | 87     |            | 0-1        | 0: 'instant' velocity<br>1: 'mean' velocity |           |  |  |  |
| Doppler/velocity<br>smoothing interval | 4    | uint4     | 88     |            | 0-15       | See table below.                            |           |  |  |  |
| Reserved                               | 4    | bit4      | 92     |            | 0-15       | Set to 0000                                 |           |  |  |  |
| Total                                  | 96   |           | •      |            | •          |                                             | •         |  |  |  |

Mapping Table for Velocity Smoothing Interval:

| Smoothing interval identifier | Effective interval, sec | Comment                                                |
|-------------------------------|-------------------------|--------------------------------------------------------|
| 0                             | 0                       | Refers to instant velocity computed with rough Doppler |
| 1                             | 0-0.005                 |                                                        |
| 2                             | 0.005-0.01              |                                                        |
| 3                             | 0.01-0.02               |                                                        |
| 4                             | 0.02-0.05               |                                                        |
| 5                             | 0.05-0.1                |                                                        |
| 6                             | 0.1-0.2                 |                                                        |
| 7                             | 0.2-0.5                 |                                                        |
| 8                             | 0.5-1                   |                                                        |
| 9                             | 1-2                     |                                                        |
| 10                            | 2-3                     |                                                        |
| 11                            | 3-4                     |                                                        |
| 12                            | 4-5                     |                                                        |
| 13                            | Reserved                |                                                        |
| 14                            | Reserved                |                                                        |
| 15                            | No interval defined     |                                                        |

NOTES:

• "Instant" velocity refers to the true estimate of the position derivative for a given time tag, as opposed to "mean" velocity, which refers to the estimate of the position

increment on some interval divided by this interval. In this case, the true position derivative is tagged to the center of this interval.

• In case of "instant" velocity, the smoothing interval is that of the corresponding Doppler/velocity filter. In case of "mean" velocity, the smoothing interval is the exact interval of integrated Doppler. In this case, the smoothing interval is equal to the upper bound value corresponding to the selected Smoothing interval identifier. For example, with Smoothing interval identifier=10, the smoothing interval is 3 seconds.

**Clock** This sub-block contains receiver clock offset parameters.

- Output logic: on time
- Sub-block binary size: 10 bytes (80 bits)
- **How to request?** \$PASHS,ATM,PVT,<Port Name>,ON,x,&CLC
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$PASHR,PBN

#### Structure & Content:

| Data item             | Bits | Data type | Offset | Scale     | Range      | Comments                                                         | DF Number |  |  |  |  |
|-----------------------|------|-----------|--------|-----------|------------|------------------------------------------------------------------|-----------|--|--|--|--|
| SUB-BLOCK DATA        |      |           |        |           |            |                                                                  |           |  |  |  |  |
| Block size            | 8    | uint8     | 0      |           | 0-255      | Set to 10                                                        |           |  |  |  |  |
| Block ID              | 4    | uint4     | 8      |           | 0-15       | Set to 4                                                         |           |  |  |  |  |
| Clock steering        | 1    | bit1      | 12     |           | 0-1        | 1: clock steering is applied<br>0: clock steering is not applied |           |  |  |  |  |
| External clock        | 1    | bit1      | 13     |           | 0-1        | 1: external clock is used<br>0: internal clock is used           |           |  |  |  |  |
| Receiver clock offset | 30   | int30     | 14     | 0.001 m   | ±500000 m  | - 536870.911 if not defined or invalid                           |           |  |  |  |  |
| Receiver clock drift  | 22   | int22     | 44     | 0.001 m/s | ± 2000 m/s | - 2097.151 if not defined or invalid                             |           |  |  |  |  |
| TDOP                  | 10   | uint10    | 66     | 0.1       | 0-100      | 102.3 if not defined or invalid                                  |           |  |  |  |  |
| Reserved              | 4    | bit4      | 76     |           | 0-15       | Set to 0000                                                      |           |  |  |  |  |
| Total                 | 80   |           |        |           |            |                                                                  |           |  |  |  |  |

#### NOTES:

- A receiver can apply or not apply the so-called clock steering procedure. However the receiver clock offset and drift reported in this message always refer to the original receiver clock, which is typically within ±300 km or so.
- A receiver can be clocked from an internal or external (usually very stable) oscillator. The corresponding bit is therefore provided.

Latency This sub-block contains receiver position latency.

- Output logic: on time
- Sub-block binary size: 3 bytes (24 bits)
- How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&LCY
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$PASHR,LTN

#### Structure & Content:

| Data item      | Bits | Data type | Offset | Scale | Range  | Comments                                                  | DF Number |
|----------------|------|-----------|--------|-------|--------|-----------------------------------------------------------|-----------|
| SUB-BLOCK DATA |      |           |        |       |        |                                                           |           |
| Block size     | 8    | uint8     | 0      |       | 0-255  | Set to 3                                                  |           |
| Block ID       | 4    | uint4     | 8      |       | 0-15   | Set to 5                                                  |           |
| Latency        | 12   | uint12    | 12     | 1 ms  | 0-4095 | 4095 if not defined or invalid, see also the table below. |           |
| Total          | 24   |           |        |       | •      |                                                           |           |

Mapping Table for Latency:

| Latency interval identifier | Effective interval, msec | Comment                                |
|-----------------------------|--------------------------|----------------------------------------|
| 0-4087                      | 0-4087                   | Nominal mode                           |
| 4088                        | 4088-5000                | Latency is within 4.088 to 5 seconds   |
| 4089                        | 5001-6000                | Latency is within 5 to 6 seconds       |
| 4090                        | 6001-7000                | Latency is within 6 to 7 seconds       |
| 4091                        | 7001-8000                | Latency is within 7 to 8 seconds       |
| 4092                        | 8001-9000                | Latency is within 8 to 9 seconds       |
| 4093                        | 9001-10000               | Latency is within 9 to 10 seconds      |
| 4094                        | >10000                   | Latency is >10 seconds but still valid |
| 4095                        | Invalid latency          | Latency is not defined or invalid      |

- This latency presentation table is intended to report latency with good resolution for conventional PVT modes when latency is typically below 1 second. On the other hand, in specific positioning modes, such as synchronous (or Time Tagged) RTK, position latency is primarily defined by the data link latency, which can reach 10 seconds in some cases. When latency is too high, then there is no need to report it with ms resolution.
- The reported latency refers to the delay of the ATM,PVT output instance compared to the ATM,PVT time tag. This reported latency is unique for ATM,PVT and may differ from the latency reported in the \$PASHR,LTN message.

Attitude This sub-block contains attitude parameters.

- Output logic: on time
- Sub-block binary size: 11 bytes (88 bits)
- How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&HPR
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$PASHR,ATT; \$GPHDT

Structure & Content:

| Data item        | Bits | Data type | Offset | Scale       | Range   | Comments                                                                                                                        | DF Number |
|------------------|------|-----------|--------|-------------|---------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
|                  |      |           |        |             | SUB-BLO | CK DATA                                                                                                                         |           |
| Block size       | 8    | Uint8     | 0      |             | 0-255   | Set to 11                                                                                                                       |           |
| Block ID         | 4    | Uint4     | 8      |             | 0-15    | Set to 6                                                                                                                        |           |
| Heading          | 16   | uint16    | 12     | 0.01 degree | 0-360   | Value >360 means not defined or invalid                                                                                         |           |
| Pitch            | 16   | int16     | 28     | 0.01 degree | ±90     | Value >90 & Value < -90 means not defined or invalid                                                                            |           |
| Roll             | 16   | int16     | 56     | 0.01 degree | ±90     | Value >90 & Value < -90 means not defined or invalid                                                                            |           |
| Calibration mode | 1    | bit1      | 60     |             | 0-1     | 0: calibration mode<br>1: operation mode                                                                                        |           |
| Ambiguity flag   | 1    | bit1      | 61     |             | 0-1     | 0: fixed ambiguity<br>1: float ambiguity                                                                                        |           |
| Antenna setup    | 2    | bit2      | 62     |             | 0-3     | 0: 2 arbitrary moving antennae<br>1: 2 tightly moving antennae<br>2: 3 tightly moving antennae<br>3: 4+ tightly moving antennae |           |
| MRMS             | 10   | uint10    | 64     | 0.001 m     | 0-1 m   | 1.023 means not defined or invalid                                                                                              |           |
| BRMS             | 10   | uint10    | 74     | 0.001 m     | 0-1 m   | 1.023 means not defined or invalid                                                                                              |           |
| Reserved         | 4    | bit4      | 84     |             | 0-15    | Set to 0000                                                                                                                     |           |
| Total            | 88   |           | •      | •           |         | •                                                                                                                               |           |

- For the description of fields MRMS and BRMS, see ATT message definition in the documentation of the receiver used.
- The BRMS field is reported invalid if the lengths of baselines are not known a priori.

**Baseline** This sub-block contains baseline estimates. These estimates are applicable only to differential operation.

- Output logic: on time
- Sub-block binary size: 16 bytes (128 bits)
- How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&BLN
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$PASHR,VEC

Structure & Content:

| Data item                 | Bits | Data type | Offset | Scale    | Range            | Comments                                                                                               | DF Number |
|---------------------------|------|-----------|--------|----------|------------------|--------------------------------------------------------------------------------------------------------|-----------|
|                           |      |           |        | SUB-     | BLOCK DATA       | •                                                                                                      |           |
| Block size                | 8    | uint8     | 0      |          | 0-255            | Set to 16                                                                                              |           |
| Block ID                  | 4    | uint4     | 8      |          | 0-15             | Set to 7                                                                                               |           |
| Baseline coordinate frame | 3    | bit3      | 12     |          | 0-7              | 0: XYZ<br>1: rectilinear ENU centered on rover<br>2: rectilinear ENU centered on base<br>3-7: reserved |           |
| Base motion               | 2    | bit2      | 15     |          | 0-3              | 0: static base<br>1: moving base<br>2: reserved<br>3: unknown                                          |           |
| Base accuracy             | 2    | bit2      | 17     |          | 0-3              | 0: exact base coordinate<br>1: approximate base coordinates<br>2: reserved<br>3: unknown               |           |
| Baseline flag             | 2    | bit2      | 19     |          | 0-3              | 0: invalid baseline<br>1: code differential<br>2: RTK float<br>3: RTK fixed                            |           |
| Reserved                  | 1    | bit1      | 21     |          | 0-1              | Set to 0                                                                                               |           |
| Baseline 1st component    | 35   | int35     | 22     | 0.0001 m | ± 1717986.9183 m | Edge states mean that actual value is outside specified range                                          |           |
| Baseline 2nd component    | 35   | int35     | 57     | 0.0001 m | ± 1717986.9183 m | Ditto                                                                                                  |           |
| Baseline 3rd component    | 35   | int35     | 92     | 0.0001 m | ± 1717986.9183 m | Ditto                                                                                                  |           |
| Reserved                  | 1    | bit1      | 127    |          | 0-1              | Set to 0                                                                                               |           |
| Total                     | 128  |           |        |          |                  |                                                                                                        |           |

- Baseline components are expressed according to the value of "Baseline coordinate frame".
- Baseline refers to the distance between L1 antenna phase centers.
- If the baseline flag is set to invalid, then the complete block must be considered as invalid and all the fields can take arbitrary values.
- An invalid baseline estimate does not imply an invalid position in sub-block COO.

# **Miscellaneous** This sub-block contains various supplementary parameters. These are the data that usually change slowly and accompany position sub-block (COO) information. To save throughput, this sub-block can be requested at a lower rate than the position sub-block.

- Output logic: on time
- Sub-block binary size: 23 bytes (184 bits)
- How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&MIS
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$GPGGA; \$GPRMC; \$GPZDA

#### Structure & Content:

| Data item                   | Bits | Data type | Offset | Scale       | Range    | Comments                                                                                          | DF Number |
|-----------------------------|------|-----------|--------|-------------|----------|---------------------------------------------------------------------------------------------------|-----------|
|                             |      |           |        | SUB-BLOCH   | K DATA   |                                                                                                   |           |
| Block size                  | 8    | uint8     | 0      |             | 0-255    | Set to 23                                                                                         |           |
| Block ID                    | 4    | uint4     | 8      |             | 0-15     | Set to 8                                                                                          |           |
| Site ID                     | 32   | Char(4)   | 12     |             |          | The same as in \$PASHR,PBN message                                                                |           |
| Position point              | 3    | bit3      | 44     |             | 0-7      | 0: Antenna reference point<br>1: L1 phase center<br>2-5: Reserved<br>6: Ground mark<br>7: unknown |           |
| Reserved                    | 2    | bit2      | 47     |             | 0-3      | See Appendix G                                                                                    | AF006     |
| Antenna height              | 16   | uint16    | 49     | 0.0001 m    | 0-6.5535 | 6.5535 if not defined or invalid                                                                  | DF028     |
| Datum                       | 1    | bit1      | 65     |             | 0-1      | 0: default<br>1: custom                                                                           |           |
| Default datum clarification | 6    | uint6     | 66     |             | 0-63     | 63 if not defined or invalid                                                                      | DF021     |
| Geoid height                | 16   | int16     | 72     | 0.01m       | ± 300    | -327.67 if not defined or invalid                                                                 |           |
| Time tag ambiguity          | 12   | uint12    | 88     |             | 0-4095   | 4095 if not defined or invalid                                                                    | D076      |
| GPS-UTC time shift          | 6    | uint6     | 100    | 1s          | 0-63     | 63 if not defined or invalid                                                                      |           |
| Magnetic variation          | 16   | int16     | 106    | 0.01 degree | ±180     | -327.68 if not defined or invalid                                                                 |           |
| Local zone time offset      | 11   | uint11    | 122    | 1 min       | 0-1439   | 2047 if not defined or invalid                                                                    |           |
| Type of used ephemeris      | 3    | bit3      | 133    |             | 0-15     | 0: almanac used<br>1: broadcast L1(CA) ephemeris used<br>2-6: reserved<br>7: unknown              |           |
| Firmware version            | 32   | Char(4)   | 136    |             |          | Same as in \$PASHR,POS message                                                                    |           |
| Reserved                    | 16   | bit16     | 168    |             | 0-       | Set to 00                                                                                         |           |
| Total                       | 184  |           |        |             |          |                                                                                                   |           |

- Normally the position reported by the receiver refers to the so-called default datum, which is generally different depending on the primary GNSS used. The default datum can additionally be clarified, e.g. by specifying the ITRF epoch year when GPS is primary (Default datum clarification field). The receiver can also potentially report position tagged to some local datum. ATOM allows this possibility by setting the datum field to "custom". If the datum is custom, then an extra ATOM message (block) can be generated to specify this datum. Such functionality is not supported yet in ATOM v.1.
- For Geoid height, local zone time offset, magnetic variation, please refer to *NMEA*-*3.0 definitions*.
- Time tag ambiguity is GPS week number if GPS is primary, or GLONASS day number if GLONASS is primary.

Pseudo-Range This section is intentionally left blank. Residuals

SatelliteThis sub-block contains the status of each visible (by almanac, above 0 degrees)Informationsatellite. No SNR, elevation and other masks are applied to output satellites status. One<br/>SVS sub-block describes the status of a single GNSS. If a receiver tracks GPS,<br/>GLONASS and SBAS, then 3 SVS sub-blocks will be generated sequentially under the<br/>same ATOM PVT header. The organization of SVS data is very similar to data<br/>organization in the ATOM RNX message (see page 54 and Appendix E on page 99).

- **Output logic**: on time
- Sub-block binary size: Depends on the number of signals.
- How to request? \$PASHS,ATM,PVT,<Port Name>,ON,x,&SVS
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min
- See also: \$PASHR,SAT; \$GPGSV

The complete SVS sub-block for each GNSS includes three groups of data that are generated one after the other:

- SVS header
- Satellite data
- Signal data

SVS Header:

| Data item      | Bits | Data type | Offset | Scale | Range | Comments                                         | DF Number |  |
|----------------|------|-----------|--------|-------|-------|--------------------------------------------------|-----------|--|
| SVS HEADER     |      |           |        |       |       |                                                  |           |  |
| Block size     | 8    | uint8     | 0      |       | 0-255 | Set to 19 + 3*Nsat + 2*Ncell                     |           |  |
| Block ID       | 4    | uint4     | 8      |       | 0-15  | Set to 14                                        |           |  |
| GNSS ID        | 3    | uint3     | 12     |       | 0-7   | 0: GPS<br>1: SBAS<br>2: GLONASS<br>3-7: reserved |           |  |
| Satellite mask | 40   | bit40     | 15     |       |       | See Appendix E                                   |           |  |
| Signal mask    | 24   | bit24     | 55     |       |       | See Appendix E                                   |           |  |
| Cell mask      | 64   | bit64     | 79     |       |       | See Appendix E                                   |           |  |
| Reserved       | 9    | bit9      | 143    |       | 0-511 | Set to 00000000                                  |           |  |
| Total          | 152  |           |        |       |       |                                                  |           |  |

- Unlike the ATOM RNX message, the size of the Cell mask is always fixed and equal to 64 bits. This is to simplify the parsing of the SVS sub-block. Actually only the first Nsat\*Nsig most significant bits in the Cell mask have sense. All the remaining bits are set to zero.
- If a satellite is seen by almanac but not tracked, it is marked as having virtually only the 1C signal.

#### Satellite Data:

| Data item             | Bits            | Data type    | Offset | Scale    | Range | Comments                                                                                                                                                                                                         | DF Number |  |
|-----------------------|-----------------|--------------|--------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| SATELLITE DATA        |                 |              |        |          |       |                                                                                                                                                                                                                  |           |  |
| Elevation             | 7<br>Nsat times | uint7 (Nsat) |        | 1 degree |       | 0-90 means true positive elevation<br>91 means true elevation -1 degree<br>92 means true elevation -2 degrees<br>etc.<br>126 means true elevation less or equal<br>to -36 degrees<br>127 means invalid elevation |           |  |
| Azimuth               | 8<br>Nsat times | uint8 (Nsat) |        | 2 degree | 0-358 | >358 means invalid azimuth                                                                                                                                                                                       |           |  |
| Sat correcting status | 4<br>Nsat times | uint4 (Nsat) |        |          | 0-15  | 0: Sat is not tracked<br>1: no corrections applied<br>2-15: corrections applied<br>See Appendix G                                                                                                                | AF007     |  |
| Sat usage status      | 5<br>Nsat times | uint5 (Nsat) |        |          | 0-31  | 0: Sat is not tracked<br>1-3: Sat is used in position<br>4-15: Reserved<br>16-31: Sat is not used in position<br>See Appendix G                                                                                  | AF008     |  |
| Total                 | 24*Nsat         |              |        |          |       |                                                                                                                                                                                                                  |           |  |

#### NOTES:

- Nsat is the number of visible satellites for a given GNSS. It is equal to the number of 1's in the Satellite mask field.
- Each particular field uses internal looping, e.g. the Elevation field includes sequentially following elevations for all visible satellites.
- The Sat correcting status field informs users if differential corrections are applied to a given satellite (e.g. RTK, DGPS, SBAS etc.).
- If at least one observable from a given satellite is used in position, then this satellite is considered as used. Otherwise, it is considered as not used.
- The Sat correcting status and Sat usage status fields are quite independent of each other. A satellite can be corrected but not used in position, or vice versa.

Signal Data:

| Data item      | Bits             | Data type    | Offset | Scale | Range     | Comments                                                                                     | DF Number |  |
|----------------|------------------|--------------|--------|-------|-----------|----------------------------------------------------------------------------------------------|-----------|--|
|                | SIGNAL DATA      |              |        |       |           |                                                                                              |           |  |
| SNR            | 6<br>Ncell times | uint6(Ncell) |        | 1dBHz | 0-63 dBHz | Set to 0 if signal is not tracked                                                            |           |  |
| Smooth count   | 8<br>Ncell times | uint8(Ncell) |        | 1sec  | 0-255 sec | Set to 0 if signal is not tracked<br>255 means 255+                                          |           |  |
| Quality status | 2<br>Ncell times | bit2(Ncell)  |        |       | 0-3       | 0: quality is not defined<br>1: good quality<br>2: medium quality<br>3: questionable quality |           |  |
| Total          | 16*Ncell         |              | -      | •     | •         | ·                                                                                            |           |  |

- Ncell is the complete number of available signals. It is equal to the number of 1's in the Cell Mask field.
- Each particular field uses internal looping, e.g. the SNR field includes sequentially following SNR's for all available signals.

- Good quality means that no warning flags are set for a given signal. Medium quality and questionable quality mean that some set of warnings is associated with the signal.
- SNR=0 and/or Smooth count=0 does not mean that the signal is not tracked and/or not used in internal receiver position.
- Medium/questionable quality does not necessarily mean that these data are not used in internal receiver position.

#### **ATOM ATR Messages**

Messages from the ATR (for "ATtRibutes") group contain different additional and service information such as antenna and receiver description, antenna offset parameters with respect to ground mark. Some messages have fixed length, some others have variable length. All these messages can be requested independently of each other. Only one ATR message can be output over any given 1-sec interval.

The set of default ATOM ATR messages, with default intervals, can be enabled/disabled using the following command:

#### \$PASHS,ATM,ATR,<Port Name>,ON/OFF

The general organization of the ATR message is presented in the diagram below.



#### ATR Message Organization:

| Data item            | Bits            | Data type | Offset | Scale | Range     | Comments                             | DF Number |  |  |
|----------------------|-----------------|-----------|--------|-------|-----------|--------------------------------------|-----------|--|--|
|                      | START TRANSPORT |           |        |       |           |                                      |           |  |  |
| Transport Preamble   | 8               | uint8     | 0      |       |           | Set to 0xD3 (HEX Code)               |           |  |  |
| Reserved             | 6               | bit6      | 8      |       |           | Set to 000000                        |           |  |  |
| Message Length       | 10              | unt10     | 14     |       |           | Message length in bytes              |           |  |  |
|                      | MESSAGE HEADER  |           |        |       |           |                                      |           |  |  |
| Message number       | 12              | uint12    | 24     |       | 1001-4095 | 4095 is reserved for Ashtech         | DF002     |  |  |
| Message sub-number   | 4               | uint4     | 36     |       | 0-15      | 4 is reserved for ATOM ATR message   |           |  |  |
| Version              | 3               | uint3     | 40     |       | 0-7       | ATOM version number, set to 1        |           |  |  |
| Reference station ID | 12              | uint12    | 43     |       | 0-4095    | Reference station ID                 | DF003     |  |  |
| ATR message type     | 9               | uint9     | 55     |       | 0-511     | Specifies which ATR message follows  |           |  |  |
|                      | MESSAGE DATA    |           |        |       |           |                                      |           |  |  |
| Attribute content    |                 |           |        |       |           | See sub-sections below               |           |  |  |
| END TRANSPORT        |                 |           |        |       |           |                                      |           |  |  |
| CRC                  | 24              | uint24    |        |       |           | 24-bit Cyclic Redundancy Check (CRC) |           |  |  |
| Total                |                 |           |        |       |           |                                      |           |  |  |

|--|

| ATR message<br>type | ASCII<br>identifier | Attribute description       | Comments                                                                        | Counterpart                       |
|---------------------|---------------------|-----------------------------|---------------------------------------------------------------------------------|-----------------------------------|
| 1                   | ANM                 | Antenna name                | Name, setup ID and serial number                                                | RTCM-3 MT 1008                    |
| 2                   | RNM                 | Receiver name               | Name, firmware version and serial number                                        | RTCM-3 MT 1033 (receiver's part)  |
| 3                   | ANM                 | Physical antenna name       | Name, setup ID and serial number                                                | RTCM-3 MT 1008                    |
| 5                   | UEM                 | User entered message        |                                                                                 | RTCM-3 MT 1029                    |
| 21                  | AOP                 | Antenna offset parameters   | Slant, radius, vertical offset, horizontal off-<br>set, horizontal offset angle | \$PASHR,ANT/ANH<br>RTCM-3 MT 1006 |
| 23                  | 000                 | Site occupation information | Dynamic index, site name, start/stop etc                                        | N/A                               |
| 24                  | SNS                 | Non-GNSS sensor data        | Weather and other parameters                                                    | \$GPXDR                           |

#### NOTES:

• The observables generated in the ATOM MES, RNX and BAS messages always correspond to the antenna name specified in ATR message type 1. At the same time, this name can correspond to either a physical antenna (e.g. MAG990596) or a virtual antenna (e.g. ADVNULLANTENNA) for which raw receiver data can be optionally adjusted before being output.

In the latter case, the receiver can additionally generate ATR message type 3, indicating the physical antenna name. If the antenna names specified in ATR message types 1 and 3 are the same, this means that no receiver raw data was adjusted to a virtual antenna. If the antenna names in ATR message types 1 and 3 are different, this means that receiver raw data (corresponding to ATR message type 3) were adjusted to the virtual antenna (specified in ATR message type 1).

- Both ATR messages type 1 and type 3 are requested through the same serial command.
- When processing ATOM MES, RNX and BAS data, these should be corrected using the PCO table, corresponding to the antenna name presented in ATR message type 1. ATR message type 3 is only informative.

Antenna This message contains antenna attributes. The generated ATOM observables (MES, RNX and BAS) correspond to this antenna. The content of this message is a copy of standardized RTCM-3 Message Type 1008.

- Output logic: on time
- Message binary size: depends on message content
- How to request? \$PASHS,ATM,ATR,<Port Name>,ON,x,&ANM
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHS,ANP,OWN; \$PASHS,ANP,OUT; RTCM-3 MT 1008

Structure & Content:

| Data item                | Bits | Data type | Offset | Scale | Range      | Comments                                                                                                                     | DF Number |  |
|--------------------------|------|-----------|--------|-------|------------|------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| START TRANSPORT          |      |           |        |       |            |                                                                                                                              |           |  |
| Transport Preamble       | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)                                                                                                       |           |  |
| Reserved                 | 6    | bit6      | 8      |       |            | Set to 000000                                                                                                                | 1         |  |
| Message Length           | 10   | unt10     | 14     |       |            | Message length in bytes.                                                                                                     | 1         |  |
|                          |      |           |        | MESS  | AGE HEADER |                                                                                                                              |           |  |
| Message number           | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                                                                                 | DF002     |  |
| Message sub-number       | 4    | uint4     | 36     |       | 0-15       | 4 is reserved for ATOM ATR message                                                                                           | 1         |  |
| Version                  | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                                                                                | 1         |  |
| Reference station ID     | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                                                                                                         | DF003     |  |
| ATR message type         | 9    | uint9     | 55     |       | 0-511      | Specifies which ATR message follows.<br>1 refers to the antenna raw data corre-<br>sponds to<br>3 refers to physical antenna |           |  |
|                          |      |           |        | MES   | SAGE DATA  |                                                                                                                              |           |  |
| Descriptor counter, N    | 8    | uint8     |        |       | 0-31       | Number of characters in antenna descriptor field                                                                             | DF029     |  |
| Antenna descriptor       | 8*N  | Char(N)   |        |       |            | Alphanumeric characters describe antenna descriptor                                                                          | DF030     |  |
| Antenna setup ID         | 8    | uint8     |        |       | 0-255      | 0 – Use standard IGS Model<br>1-255 – Specific Antenna Setup ID                                                              | DF031     |  |
| Serial number counter, M | 8    | uint8     |        |       | 0-31       | Number of characters in antenna serial number field                                                                          | DF032     |  |
| Antenna serial number    | 8*M  | Char(M)   |        |       |            | Alphanumeric characters describe antenna serial number                                                                       | DF033     |  |
|                          |      |           |        | END   | TRANSPORT  | ·                                                                                                                            |           |  |
| CRC                      | 24   | uint24    |        |       |            | 24-bit Cyclic Redundancy Check (CRC)                                                                                         |           |  |
| Total                    |      |           |        |       |            |                                                                                                                              | -         |  |
**Receiver** This message contains receiver attributes. It is a copy of standardized RTCM-3 Message attributes Type 1033 (receiver part only).

- Output logic: on time
- Message binary size: depends on message content
- **How to request?** \$PASHS,ATM,ATR,<Port Name>,ON,x,&RNM
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHS,RCP,OWN; RTCM-3 MT 1033

| Data item                                | Bits | Data type | Offset | Scale | Range      | Comments                                                        | DF Number |  |  |  |
|------------------------------------------|------|-----------|--------|-------|------------|-----------------------------------------------------------------|-----------|--|--|--|
| -                                        |      |           |        | STAF  | RT TRANSPO | RT                                                              |           |  |  |  |
| Transport Preamble                       | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)                                          |           |  |  |  |
| Reserved                                 | 6    | bit6      | 8      |       |            | Set to 000000                                                   |           |  |  |  |
| Message Length                           | 10   | unt10     | 14     |       |            | Message length in bytes.                                        |           |  |  |  |
| MESSAGE HEADER                           |      |           |        |       |            |                                                                 |           |  |  |  |
| Message number                           | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                    | DF0002    |  |  |  |
| Message sub-number                       | 4    | uint4     | 36     |       | 0-15       | 4 is reserved for ATOM ATR message                              |           |  |  |  |
| Version                                  | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                   |           |  |  |  |
| Reference station ID                     | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                                            | DF0003    |  |  |  |
| ATR message type                         | 9    | uint9     | 55     |       | 0-511      | Specifies which ATR message follows. For this message, set to 2 |           |  |  |  |
| MESSAGE DATA                             |      |           |        |       |            |                                                                 |           |  |  |  |
| Receiver type descrip-<br>tor counter, N | 8    | uint8     |        |       | 0-31       | Number of characters in receiver type field                     | DF227     |  |  |  |
| Receiver type                            | 8*N  | Char(N)   |        |       |            | Standard ASCII characters describe receiver type                | DF228     |  |  |  |
| Firmware version descriptor counter, M   | 8    | uint8     |        |       | 0-31       | Number of characters in firmware version field                  | DF229     |  |  |  |
| Firmware version                         | 8*M  | Char(M)   |        |       |            | Standard ASCII characters describe receiver firmware version    | DF230     |  |  |  |
| Serial number<br>descriptor counter, K   | 8    | uint8     |        |       |            | Number of characters in serial number field                     | DF231     |  |  |  |
| Serial number                            | 8*K  | Char(K)   |        |       |            | Standard ASCII characters describe receiver serial number       | DF232     |  |  |  |
|                                          |      |           |        | EN    | D TRANSPOR | RT                                                              |           |  |  |  |
| CRC                                      | 24   | uint24    |        |       |            | 24-bit Cyclic Redundancy Check (CRC)                            |           |  |  |  |
| Total                                    |      |           |        |       |            |                                                                 |           |  |  |  |

# **User Message** This message contains readable content users can define at their convenience.

- Output logic: on time
- Message binary size: depends on message content
- How to request? \$PASHS,ATM,ATR,<Port Name>,ON,x,&UEM
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second, but less than 999
- See also: \$PASHS,MSG; RTCM-3 MT 1029; RTCM-2 MT 16

| Data item                           | Bits | Data type | Offset | Scale | Range      | Comments                                                                                                                                                                                                                                                                  | DF Number |
|-------------------------------------|------|-----------|--------|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                     |      |           |        | ST/   | ART TRANSP | ÖRT                                                                                                                                                                                                                                                                       |           |
| Transport Preamble                  | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)                                                                                                                                                                                                                                                    |           |
| Reserved                            | 6    | bit6      | 8      |       |            | Set to 000000                                                                                                                                                                                                                                                             |           |
| Message Length                      | 10   | unt10     | 14     |       |            | Message length in bytes.                                                                                                                                                                                                                                                  |           |
|                                     |      |           |        | ME    | SSAGE HEA  | DER                                                                                                                                                                                                                                                                       |           |
| Message number                      | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                                                                                                                                                                                                                              | DF002     |
| Message sub-number                  | 4    | uint4     | 36     |       | 0-15       | 4 is reserved for ATOM ATR message                                                                                                                                                                                                                                        |           |
| Version                             | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                                                                                                                                                                                                                             |           |
| Reference station ID                | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                                                                                                                                                                                                                                                      | DF003     |
| ATR message type                    | 9    | uint9     | 55     |       | 0-511      | Specifies which ATR message follows. For this message, set to 5                                                                                                                                                                                                           |           |
|                                     |      |           |        | N     | IESSAGE DA | TA                                                                                                                                                                                                                                                                        |           |
| Modified Julian Day<br>(MJD) Number | 16   | uint16    |        |       |            | Modified Julian Day number (MJD) is the con-<br>tinuous count of day numbers since November<br>17, 1858 midnight.                                                                                                                                                         | DF051     |
| Seconds of Day (UTC)                | 17   | uint17    |        |       |            | Seconds of Day (UTC) are the seconds of the<br>day counted from midnight Greenwich time.<br>GPS seconds of week have to be adjusted for<br>the appropriate number of leap seconds. The<br>value of 86,400 is reserved for the case when<br>a leap second has been issued. | DF052     |
| Number of characters to follow      | 7    | uint7     |        |       |            | This represents the number of fully formed<br>Unicode characters in the message text. It is<br>not necessarily the number of bytes that are<br>needed to represent the characters as UTF-8.                                                                               | DF138     |
| Number of UTF-8 code<br>units, N    | 8    | uint8     |        |       |            | The length of the message is limited by this field.                                                                                                                                                                                                                       | DF139     |
| UTF-8 characters code<br>units      | 8*N  | utf8(N)   |        |       |            | Code units of a Unicode 8-bit string.                                                                                                                                                                                                                                     | DF140     |
|                                     |      |           |        | El    | ND TRANSPC | RT                                                                                                                                                                                                                                                                        |           |
| CRC                                 | 24   | uint24    |        |       |            | 24-bit Cyclic Redundancy Check (CRC)                                                                                                                                                                                                                                      |           |
| Total                               |      |           |        |       |            |                                                                                                                                                                                                                                                                           |           |

Antenna Offset<br/>ParametersThis message contains some antenna offset parameters expressed with respect to the<br/>survey point.

- Output logic: on time
- Message binary size: 22 bytes (176 bits)
- How to request? \$PASHS,ATM,ATR,<Port Name>,ON,x,&AOP
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHS,ANP;\$PASHS,ANH

| Data item            | Bits | Data type | Offset | Scale  | Range        | Comments                                         | DF Number |
|----------------------|------|-----------|--------|--------|--------------|--------------------------------------------------|-----------|
|                      |      |           |        | ST     | ART TRANSPOR | रा                                               |           |
| Transport Preamble   | 8    | uint8     | 0      |        |              | Set to 0xD3 (HEX Code)                           |           |
| Reserved             | 6    | bit6      | 8      |        |              | Set to 000000                                    |           |
| Message Length       | 10   | unt10     | 14     |        |              | Message length in bytes. Set to 16 for this mes- |           |
|                      |      | untro     |        |        |              | sage.                                            |           |
|                      |      |           |        | ME     | SSAGE HEADE  | R                                                |           |
| Message number       | 12   | uint12    | 24     |        | 1001-4095    | 4095 is reserved for Ashtech                     | DF002     |
| Message sub-number   | 4    | uint4     | 36     |        | 0-15         | 4 is reserved for ATOM ATR message               |           |
| Version              | 3    | uint3     | 40     |        | 0-7          | ATOM version number, set to 1                    |           |
| Reference station ID | 12   | uint12    | 43     |        | 0-4095       | Reference station ID                             | DF003     |
| ATR message type     | a    | uintQ     | 55     |        | 0-511        | Specifies which ATR message follows. For this    |           |
| Arry message type    | 5    | unito     | 55     |        | 0-011        | message, set to 21                               |           |
|                      |      |           |        | Ν      | MESSAGE DATA | ۱.                                               |           |
| Slant                | 16   | uint16    | 64     | 0.0001 | 0-6.5535 [m] | Antenna slant                                    |           |
| Radius               | 16   | uint16    | 80     | 0.0001 | 0-6.5535 [m] | Antenna radius                                   |           |
| Vertical offset      | 16   | uint16    | 96     | 0.0001 | 0-6.5535 [m] | Antenna vertical offset                          |           |
|                      |      |           |        |        |              | Horizontal azimuth measured from the antenna     |           |
| Horizontal azimuth   | 24   | uint24    | 112    | 0.0001 | 0-6.2831 rad | ground mark to the survey point, with respect to |           |
|                      |      |           |        |        |              | the WGS84 north Unit in radians.                 |           |
| Horizontal Offset    | 16   | uint16    | 136    | 0.0001 | 0-6.5535 [m] | Antenna horizontal offset                        |           |
|                      |      |           |        | El     | ND TRANSPOR  | Т                                                |           |
| CRC                  | 24   | uint24    | 152    |        |              | 24-bit Cyclic Redundancy Check (CRC)             |           |
| Total                | 176  |           |        |        |              |                                                  |           |

# **Site Occupation** This message contains information about site occupation.

Information

Output logic: on new/on change

- Message binary size: depends on message content
- How to request? N/A
- Permissible intervals x (sec): N/A
- See also: N/A

## Structure & Content:

| Data item                         | Bits | Data type | Offset | Scale | Range      | Comments                                                        | DF Number |
|-----------------------------------|------|-----------|--------|-------|------------|-----------------------------------------------------------------|-----------|
|                                   |      |           |        | S     | TART TRANS | PORT                                                            |           |
| Transport Preamble                | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)                                          |           |
| Reserved                          | 6    | bit6      | 8      |       |            | Set to 000000                                                   |           |
| Message Length                    | 10   | unt10     | 14     |       |            | Message length in bytes.                                        |           |
|                                   |      |           |        | М     | ESSAGE HE  | ADER                                                            |           |
| Message number                    | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                    | DF002     |
| Message sub-number                | 4    | uint4     | 36     |       | 0-15       | 4 is reserved for ATOM ATR message                              |           |
| Version                           | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                   |           |
| Reference station ID              | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                                            | DF003     |
| ATR message type                  | 9    | uint9     | 55     |       | 0-511      | Specifies which ATR message follows. For this message set to 23 |           |
|                                   |      |           |        |       | MESSAGE D  | ATA                                                             |           |
| Time tag                          | 21   | bit21     |        |       |            | GPS time tag. See Time Tag description for PVT message.         |           |
| Occupation type                   | 3    | bit3      |        |       | 0-3        | 0: static<br>1: quasi-static<br>2: dynamic<br>3: reserved       |           |
| Occupation event                  | 1    | bit1      |        |       | 0-1        | 0: begin<br>1: end                                              |           |
| Reserved                          | 7    | bit7      |        |       | 0          | Set to 0000000                                                  |           |
| Occupation name coun-<br>ter, N   | 8    | uint8     |        |       | 0-255      | Number of characters in occupation name field                   |           |
| Occupation name                   | 8*N  | Char(N)   |        |       |            | Standard ASCII characters describe occupation<br>name           |           |
| Occupation description counter, M | 8    | uint8     |        |       | 0-255      | Number of characters in occupation description<br>field         |           |
| Occupation description            | 8*M  | Char(M)   |        |       |            | Standard ASCII characters describe occupation description       |           |
|                                   |      |           |        | E     | END TRANSP | PORT                                                            |           |
| CRC                               | 24   | uint24    |        |       |            | 24-bit Cyclic Redundancy Check (CRC)                            |           |
| Total                             |      |           |        |       |            | ·                                                               | •         |

**External** This section is intentionally left blank. **Sensors Data** 

Messages of the NAV (NAVigation data) group contain selected information which can be extracted from GPS, GLONASS, SBAS and other navigation signals. All these messages can be requested independently of each other. Messages EPH and ALM are requested by the same command regardless of the GNSS they pertain to. Only one NAV message can be output over any given 1-second interval.

The set of default ATOM NAV messages, with default intervals, can be enabled/disabled using the following command:

#### \$PASHS,ATM,NAV,<Port Name>,ON/OFF

The general organization of the NAV message is presented on the diagram below.



NAV Message Organization:

| Data item            | Bits            | Data type | Offset | Scale | Range      | Comments                             | DF Number |  |  |  |  |  |
|----------------------|-----------------|-----------|--------|-------|------------|--------------------------------------|-----------|--|--|--|--|--|
|                      | START TRANSPORT |           |        |       |            |                                      |           |  |  |  |  |  |
| Transport Preamble   | 8               | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)               |           |  |  |  |  |  |
| Reserved             | 6               | bit6      | 8      |       |            | Set to 000000                        |           |  |  |  |  |  |
| Message Length       | 10              | unt10     | 14     |       |            | Message length in bytes              |           |  |  |  |  |  |
| MESSAGE HEADER       |                 |           |        |       |            |                                      |           |  |  |  |  |  |
| Message number       | 12              | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech         | DF002     |  |  |  |  |  |
| Message sub-number   | 4               | uint4     | 36     |       | 0-15       | 5 is reserved for ATOM NAV message   |           |  |  |  |  |  |
| Version              | 3               | uint3     | 40     |       | 0-7        | ATOM version number, set to 1        |           |  |  |  |  |  |
| Reference station ID | 12              | uint12    | 43     |       | 0-4095     | Reference station ID                 | DF003     |  |  |  |  |  |
| NAV message type     | 9               | uint9     | 55     |       | 0-511      | Specifies which NAV message follows  |           |  |  |  |  |  |
|                      |                 | •         |        | М     | ESSAGE DAT | TA                                   |           |  |  |  |  |  |
| Navigation content   |                 |           |        |       |            | See sub-sections below               |           |  |  |  |  |  |
|                      |                 |           |        | EN    | D TRANSPO  | RT                                   |           |  |  |  |  |  |
| CRC                  | 24              | uint24    |        |       |            | 24-bit Cyclic Redundancy Check (CRC) |           |  |  |  |  |  |
| Total                |                 |           |        |       |            |                                      |           |  |  |  |  |  |

The supported NAV messages are presented in the table below.

| NAV message type | ASCII identifier | Attribute description                    | Comments                                         | Counterpart    |
|------------------|------------------|------------------------------------------|--------------------------------------------------|----------------|
| 1                | EPH              | GPS ephemeris                            | Copy of standardized message RTCM-3 type 1019    | RTCM-3 MT 1019 |
| 2                | EPH              | GLO ephemeris                            | Copy of standardized message RTCM-3 type 1020    | RTCM-3 MT 1020 |
| 3                | EPH              | SBAS ephemeris                           | Copy of SNW message, but in compact presentation | \$PASHR,SNW    |
| 11               | ALM              | GPS almanac                              | Copy of SAL, but in compact presentation         | \$PASHR,SAL    |
| 12               | ALM              | GLO almanac                              | Copy of SAG, but in compact presentation         | \$PASHR,SAG    |
| 13               | ALM              | SBAS almanac                             | Copy of SAW, but in compact presentation         | \$PASHR,SAW    |
| 21               | GIT              | GPS ionosphere and time shift parameters | Copy of ION message, but in compact presentation | \$PASHR,ION    |
| 22               | GFT              | GPS full time parameters                 | Seconds of week, week number, GPS-UTC time shift | RTCM-3 MT 1013 |

**GPS Ephemeris** This message contains GPS ephemeris data for a given GPS satellite. For detailed information about GPS ephemeris data, please refer to the *ICD-GPS-200* document.

- Output logic: on time/on change/on new
- Message binary size: 72 bytes (576 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&EPH
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHR,SNV; RTCM-3 Message 1019

| Data item                        | Bits | Data type | Offset | Scale | Range      | Comments                                            | DF Number |
|----------------------------------|------|-----------|--------|-------|------------|-----------------------------------------------------|-----------|
|                                  |      |           |        | 5     | START TRAN | ISPORT                                              |           |
| Transport Preamble               | 8    | uint8     | 0      |       | 1          | Set to 0xD3 (HEX Code)                              |           |
| Reserved                         | 6    | bit6      | 8      |       |            | Set to 000000                                       |           |
| Message Length                   | 10   | unt10     | 14     |       |            | Message length in bytes. Set to 66 for this message |           |
|                                  | 1    |           | I      | I     | MESSAGE H  | EADER                                               |           |
| Message number                   | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                        | DF002     |
| Message sub-number               | 4    | uint4     | 36     |       | 0-15       | 5 is reserved for ATOM NAV message                  |           |
| Version                          | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                       |           |
| Reference station ID             | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                                | DF003     |
| NAV message type                 | ۹    | uint9     | 55     |       | 0-511      | Specifies which NAV message follows. For this mes-  |           |
| NAV message type                 | 5    | unto      | 55     |       | 0-011      | sage set to 1                                       |           |
|                                  |      |           |        |       | MESSAGE    | DATA                                                | I         |
| Standardized mes-<br>sage number | 12   | uint12    | 64     |       |            | Set to 1019                                         |           |
| SVPRN                            | 6    | uint6     | 76     |       | 1-32       | Satellite PRN number                                | DF009     |
| Wn                               | 10   | uint10    | 82     |       | 0-1023     | GPS week number                                     | DF076     |
| Accuracy                         | 4    | uint4     | 92     |       |            | User range accuracy                                 | DF077     |
|                                  |      |           |        |       |            | 00 = reserved;                                      |           |
| Code on L2                       | 2    | bit2      | 96     |       |            | 01 = P code ON;                                     | DF078     |
|                                  | -    | DIG       |        |       |            | 10 = C/A code ON;                                   | 51 010    |
|                                  |      |           |        |       |            | 11 = L2C ON                                         |           |
| Idot                             | 14   | int14     | 98     | 2-43  |            | Rate of inclination (semicircles/sec)               | DF079     |
| lode                             | 8    | uint8     | 112    | 10    |            | Orbit data issue                                    | DF0/1     |
| loc                              | 16   | uint16    | 120    | 16    |            | Clock data reference time (sec)                     | DF081     |
| af2                              | 8    | int8      | 136    | 2-55  |            | Clock correction (sec/sec2)                         | DF082     |
| af1                              | 16   | int16     | 144    | 2-43  |            | Clock correction (sec/sec)                          | DF083     |
| af0                              | 22   | int22     | 160    | 2-31  |            | Clock correction (sec)                              | DF084     |
| lodc                             | 10   | uint10    | 182    |       |            | Clock data issue                                    | DF085     |
| Crs                              | 16   | int16     | 192    | 2-5   |            | Harmonic correction term (meters)                   | DF086     |
| Dn                               | 16   | int16     | 208    | 2-43  |            | Mean anomaly correction (semicircles/sec)           | DF087     |
| m0                               | 32   | int32     | 224    | 2-31  |            | Mean anomaly at reference time (semicircles)        | DF088     |
| Cuc                              | 16   | int16     | 256    | 2-29  |            | Harmonic correction term (radians)                  | DF089     |
| E                                | 32   | uint32    | 272    | 2-33  |            | Eccentricity                                        | DF090     |
| Cus                              | 16   | int16     | 304    | 2-29  |            | Harmonic correction term (radians)                  | DF091     |
| A1/2                             | 32   | uint32    | 320    | 2-19  |            | Square root of semi-major axis (meters1/2)          | DF092     |
| Toe                              | 16   | uint16    | 352    | 16    |            | Reference ephemeris time                            | DF093     |
| Cic                              | 16   | int16     | 368    | 2-29  |            | Harmonic correction term (radians)                  | DF094     |
| w0                               | 32   | int32     | 384    | 2-31  |            | Longitude of ascending node (semicircles)           | DF095     |
| Cis                              | 16   | int16     | 416    | 2-29  |            | Harmonic correction term (radians)                  | DF096     |
| iO                               | 32   | int32     | 432    | 2-31  |            | Inclination angle (semicircles)                     | DF097     |
| Crc                              | 16   | int16     | 464    | 2-5   |            | Harmonic correction term (meters)                   | DF098     |
| w                                | 32   | int32     | 480    | 2-31  |            | Argument of perigee (semicircles)                   | DF099     |
| w dot                            | 24   | int24     | 512    | 2-43  |            | Rate of right ascension (semicircles/sec)           | DF100     |
| Tgd                              | 8    | int8      | 536    | 2-31  | l          | Group delay (sec)                                   | DF101     |
| Health                           | 6    | uint6     | 544    |       | Ì          | Satellite health                                    | DF102     |

| L2 P data flag | 1             | bit1   | 550 |  |  | 0: L2 P-Code NAV data ON<br>1: L2 P-Code NAV data OFF |  | DF103 |  |  |  |
|----------------|---------------|--------|-----|--|--|-------------------------------------------------------|--|-------|--|--|--|
| Fit Interval   | 1             | bit1   | 551 |  |  | Curve fit interval                                    |  | DF137 |  |  |  |
|                | END TRANSPORT |        |     |  |  |                                                       |  |       |  |  |  |
| CRC            | 24            | uint24 | 552 |  |  | 24-bit Cyclic Redundancy Check (CRC)                  |  |       |  |  |  |
| Total          | 576           |        |     |  |  |                                                       |  |       |  |  |  |

**GLONASS** This message contains GLONASS ephemeris data for a given GLONASS satellite. For detailed information about GLONASS ephemeris data, please refer to the *GLONASS ICD vers. 5* document.

- **Output logic**: on time/on change/on new
- Message binary size: 56 bytes (448 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&EPH
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHR,SNG; RTCM-3 Message 1020

| Data item                        | Bits | Data type | Offset | Scale | Range      | Comments                                                                                                                                                                                                                                                 | DF Number |
|----------------------------------|------|-----------|--------|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                  |      |           |        | STA   | RT TRANSPO | DRT                                                                                                                                                                                                                                                      |           |
| Transport Preamble               | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)                                                                                                                                                                                                                                   |           |
| Reserved                         | 6    | bit6      | 8      |       |            | Set to 000000                                                                                                                                                                                                                                            |           |
| Message Length                   | 10   | unt10     | 14     |       |            | Message length in bytes. Set to 50 for this mes-<br>sage                                                                                                                                                                                                 |           |
|                                  |      | •         |        | ME    | SSAGE HEAD | )ER                                                                                                                                                                                                                                                      |           |
| Message number                   | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                                                                                                                                                                                                             | DF002     |
| Message sub-number               | 4    | uint4     | 36     |       | 0-15       | 5 is reserved for ATOM NAV message                                                                                                                                                                                                                       |           |
| Version                          | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                                                                                                                                                                                                            |           |
| Reference station ID             | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                                                                                                                                                                                                                                     | DF003     |
| NAV message type                 | 9    | uint9     | 55     |       | 0-511      | Specifies which NAV message follows. For this message, set to 2                                                                                                                                                                                          |           |
|                                  |      |           |        | N     | ESSAGE DAT | Ā                                                                                                                                                                                                                                                        |           |
| Standardized mes-<br>sage number | 12   | uint12    | 64     |       |            | If 1020, then all the data below exactly corre-<br>spond to standardized RTCM message 1020<br>(see official RTCM 3). If 0, then shaded fields are<br>declared as reserved and can take arbitrary val-<br>ues.                                            |           |
| SatNum                           | 6    | uint6     | 76     |       | 1 - 24     | Satellite number                                                                                                                                                                                                                                         | DF038     |
| Frequency Channel<br>Number      | 5    | uint5     | 82     |       |            | The GLONASS Satellite Frequency Channel<br>Number identifies the frequency of the<br>GLONASS satellite.<br>0 indicates channel number –07<br>1 indicates channel number –06<br><br>13 indicates channel number +6<br>31 indicates invalid channel number | DF040     |
| Health                           | 1    | bit1      | 87     |       |            | GLONASS almanac health                                                                                                                                                                                                                                   | DF104     |
| Almanac health avail-<br>ability | 1    | bit1      | 88     |       |            | 0= GLONASS almanac has not been received:<br>GLONASS almanac health is not available;<br>1= GLONASS almanac has been received:<br>GLONASS almanac health is available;                                                                                   | DF105     |
| P1                               | 2    | bit2      | 89     |       |            | P1 flag (see GLONASS ICD)                                                                                                                                                                                                                                | DF106     |
| Hour                             | 5    | uint5     | 91     |       |            | The integer number of hours elapsed since the beginning of current day                                                                                                                                                                                   | DF107     |
| Minutes                          | 6    | uint6     | 96     |       |            | The integer number of minutes                                                                                                                                                                                                                            | DF107     |
|                                  |      |           |        |       |            |                                                                                                                                                                                                                                                          |           |

| MSB of B, word         1         bit1         103         CLONASS MB3 of B, word. Exonating the ophemetic health Ba;         DF108           P2         1         bit1         104         P2 flag (see GLONASS ICD)         DF109           Tb         7         un17         105         900         Time to which GLONASS navgation data are operation of satellite         DF109           Veix         24         intS27         136         2*1*1000         GLONASS ECEF.X component of satellite coor dimases in P2-90 datum         DF111           Posx         27         intS27         158         2*1*1000         GLONASS ECEF.X component of satellite coor dimases in P2-90 datum         DF113           Accx         5         intS2         128         2*1*1000         GLONASS ECEF.X component of satellite coor dimases in P2-90 datum         DF114           Posy         27         intS27         192         2*1*1000         GLONASS ECEF.X component of satellite coor dimases in P2-90 datum         DF116           Veiz         24         intS27         192         2*1*1000         GLONASS ECEF.X component of satellite coor dimases in P2-90 datum         DF117           Veiz         24         intS27         248         2*1*1000         GLONASS ECEF.X component of satellite coor dimases in P2-90 datum         DF110                                                                                                                                                                                                                                                                                                     | Half                                   | 1   | bit1   | 102 |                        |             | The number of thirty-second intervals                                                                                             | DF107 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|--------|-----|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|-------|
| P2         1         bit1         104         P2 fag (see GLONASS ICD)         DF109           Tb         7         uin7         106         900         Time to which GLONASS ICD)         DF110           Velx         24         int524         112         2 <sup>30+</sup> 1000         GLONASS ECEF-X component of satellite coordinates in P2-90 datum         DF111           Posx         27         int52         163         2 <sup>30+</sup> 1000         GLONASS ECEF-X component of satellite coordinates in P2-90 datum         DF113           Accx         5         int52         163         2 <sup>30+</sup> 1000         GLONASS ECEF-Y component of satellite coordinates in P2-90 datum         DF114           Posy         27         int527         192         2 <sup>11+</sup> 1000         GLONASS ECEF-Y component of satellite coordinates in P2-90 datum         DF115           Accy         5         int55         219         2 <sup>30+</sup> 1000         GLONASS ECEF-Y component of satellite coordinates in P2-90 datum         DF116           Velz         24         int52         219         2 <sup>30+</sup> 1000         GLONASS ECEF-Z component of satellite coordinates in P2-90 datum         DF117           Velz         24         int52         75         2 <sup>30+</sup> 1000         GLONASS ECEF-Z component of satellite coordinates in P2-90 datum         DF117           Pos                                                                                                                                                                                                                              | MSB of B <sub>n</sub> word             | 1   | bit1   | 103 |                        |             | GLONASS MSB of B <sub>n</sub> word. It contains the                                                                               | DF108 |
| Tb         7         uin7         105         900         The time inclic CONASS maigation data are referenced         DF110           Velx         24         infS24         112         2 <sup>50+1000</sup> GLONASS ECEF-X component of satellite coor-dinates in P2-90 datum         DF111           Posx         27         infS27         136         2 <sup>11+1000</sup> GLONASS ECF-X component of satellite coor-dinates in P2-90 datum         DF113           Accx         5         infS5         163         2 <sup>30+1000</sup> GLONASS ECF-Y component of satellite coor-dinates in P2-90 datum         DF114           Vely         24         infS27         192         2 <sup>11+1000</sup> GLONASS ECF-Y component of satellite coor-dinates in P2-90 datum         DF116           Accy         5         infS5         219         2 <sup>30+1000</sup> GLONASS ECF-Y component of satellite coor-dinates in P2-90 datum         DF116           Accy         11         infS2         219         2 <sup>30+1000</sup> GLONASS ECF-Z component of satellite coor-dinates in P2-90 datum         DF119           Velz         24         infS27         246         2 <sup>11+1000</sup> GLONASS ECF-Z component of satellite coor-dinates in P2-90 datum         DF119           Accz         15         infS5         275         2 <sup>30+1000</sup> GLONASS ECF-Z component                                                                                                                                                                                                                                                                   | P2                                     | 1   | bit1   | 104 |                        |             | P2 flag (see GLONASS ICD)                                                                                                         | DF109 |
| 10         /         Unit?         100         900         referenced         -         DP 110           Valx         24         intS24         112         2 <sup>10</sup> +1000         GLOMASS ECEF-X component of satellite corrections         DF 111           Posx         27         intS27         136         2 <sup>10+1000</sup> GLOMASS ECEF-X component of satellite corrections         DF 112           Accx         5         intS5         163         2 <sup>30+1000</sup> GLOMASS ECEF-Y component of satellite corrections         DF 113           Vely         24         intS27         192         2 <sup>41+1000</sup> GLOMASS ECEF-Y component of satellite corrections         DF 114           Posy         27         intS27         192         2 <sup>41+1000</sup> GLOMASS ECEF-Y component of satellite corrections         DF 116           Accy         5         intS5         219         2 <sup>41+1000</sup> GLOMASS ECEF-Y component of satellite corrections         DF 117           Velz         24         intS27         248         2 <sup>41+1000</sup> GLOMASS ECEF-Z component of satellite correction in PZ-90 datum         DF 118           Accy         1         bit1         280         P 3 <sup>10+100</sup> GLOMASS SLOP         DF 120           Poscatarestion         DF 128         Cl                                                                                                                                                                                                                                                                                                                      | <b>T</b> 1                             | -   | 1.17   | 405 | 000                    |             | Time to which GLONASS navigation data are                                                                                         | DE440 |
| Veix         24         IntS24         112         2 <sup>30+</sup> 1000         CLONASS ECEF-X component of satellite coor<br>dinates in P2-90 datum         DF111           Posx         27         intS57         136         2 <sup>10+</sup> 1000         GLONASS ECEF-X component of satellite coor<br>dinates in P2-90 datum         DF113           Accx         5         intS5         163         2 <sup>30+</sup> 1000         GLONASS ECEF-X component of satellite coor-<br>dinates in P2-90 datum         DF114           Posy         27         intS2         112         2 <sup>10+</sup> 1000         GLONASS ECEF-Y component of satellite coor-<br>dinates in P2-90 datum         DF116           Accy         5         intS5         219         2 <sup>30+</sup> 1000         GLONASS ECEF-Y component of satellite coor-<br>dinates in P2-90 datum         DF116           Accy         1         intS5         278         2 <sup>30+</sup> 1000         GLONASS ECEF-Z component of satellite coor-<br>dinates in P2-90 datum         DF117           Posz         27         intS5         278         2 <sup>30+</sup> 1000         GLONASS ECEF-Z component of satellite coor-<br>dinates in P2-90 datum         DF119           Accz         5         intS5         278         2 <sup>30+</sup> 1000         GLONASS ECEF-Z component of satellite coor-<br>dinates in P2-90 datum         DF120           Relative deviction of predicted satellite coor-<br>dintastor P2-90 datum         DF121                                                                                                                                         | ID                                     | 1   | uint/  | 105 | 900                    |             | referenced                                                                                                                        | DF110 |
| Posx         27         intS27         136         2*I*1000         GLONASS ECEF-X component of satellite coordinates in P2-90 datum         DF112           Acx         5         intS5         163         2*I*1000         GLONASS ECEF-X component of satellite coordinates in P2-90 datum         DF113           Vely         24         intS27         192         2*I*1000         GLONASS ECEF-Y component of satellite coordinates in P2-90 datum         DF114           Posy         27         intS2         192         2*I*1000         GLONASS ECEF-Y component of satellite coordinates in P2-90 datum         DF116           Accy         5         intS2         219         2*I*1000         GLONASS ECEF-Y component of satellite coordinates in P2-90 datum         DF116           Velz         24         intS27         248         2*I*1000         GLONASS ECEF-Z component of satellite coordinates in P2-90 datum         DF119           Posz         27         intS27         248         2*I*1000         GLONASS ECEF-Z component of satellite coordinates in P2-90 datum         DF119           Accz         5         intS2         257         2*I*1000         GLONASS ECEF-Z component of satellite coordinates in P2-90 datum         DF120           K         11         intS11         281         2*I         GLONASS MECEP-Z component of s                                                                                                                                                                                                                                                                                 | Velx                                   | 24  | intS24 | 112 | 2 <sup>-20</sup> *1000 |             | GLONASS ECEF-X component of satellite<br>velocity vector in PZ-90 datum                                                           | DF111 |
| Accx         5         intS5         163         2- <sup>30+</sup> 1000         GLONASS ECEF-X component of satellite<br>acceleration in P2-90 datum         DF113           Vely         24         intS27         192         2 <sup>11+</sup> 1000         GLONASS ECEF-Y component of satellite<br>velocity vector in P2-90 datum         DF114           Posy         27         intS27         192         2 <sup>11+</sup> 1000         GLONASS ECEF-Y component of satellite<br>velocity vector in P2-90 datum         DF115           Accy         5         intS5         219         2 <sup>30+</sup> 1000         GLONASS ECEF-Y component of satellite<br>acceleration in P2-90 datum         DF116           Velz         24         intS27         248         2 <sup>11+</sup> 1000         GLONASS ECEF-X component of satellite<br>acceleration in P2-90 datum         DF119           Posz         27         intS5         275         2 <sup>30+</sup> 1000         GLONASS ECEF-X component of satellite<br>acceleration in P2-90 datum         DF119           P3         1         bt1         280         P3 fag (see GLONASS ICD)         DF120           Zi         intS5         275         2 <sup>30+</sup> 1000         GLONASS MP word         DF122           GLONASS MP         2         bt12         280         GLONASS MP word         DF122           GLONASS MP         bt11         294         GLONASS MP wo                                                                                                                                                                                                                     | Posx                                   | 27  | intS27 | 136 | 2 <sup>-11</sup> *1000 |             | GLONASS ECEF-X component of satellite coor-<br>dinates in PZ-90 datum                                                             | DF112 |
| Vely         24         intS24         168         2 <sup>30+</sup> 1000         GLONASS ECEF-Y component of satellite<br>velocity vector in PZ-90 datum         DF114           Posy         27         intS2         192         2 <sup>11+</sup> 1000         GLONASS ECEF-Y component of satellite<br>colleration in PZ-90 datum         DF115           Accy         5         intS5         219         2 <sup>30+</sup> 1000         GLONASS ECEF-Y component of satellite<br>colleration in PZ-90 datum         DF116           Velz         24         intS27         248         2 <sup>11+</sup> 1000         GLONASS ECEF-Z component of satellite<br>colleration in PZ-90 datum         DF117           Posz         27         intS5         275         2 <sup>30+</sup> 1000         GLONASS ECEF-Z component of satellite<br>colleration in PZ-90 datum         DF119           Accz         5         intS5         275         2 <sup>30+</sup> 1000         GLONASS ECEF-Z component of satellite<br>corrigitates acceleration in PZ-90 datum         DF119           Accz         5         intS1         281         2 <sup>40</sup> Relative deviation of predicted satellite carrier<br>frequency from nominal value         DF120           GLONASS MP         2         bit2         292         GLONASS M_H word         DF121           GLONASS MI_m         1         bit1         294         GLONASS M_H word         DF122           <                                                                                                                                                                                                     | Ассх                                   | 5   | intS5  | 163 | 2 <sup>-30</sup> *1000 |             | GLONASS ECEF-X component of satellite<br>acceleration in PZ-90 datum                                                              | DF113 |
| Posy         27         intS27         192         2 <sup>-11</sup> 1000         GLONASS ECEF-Y component of satellite coor-<br>dinates in P2-90 datum         DF115           Accy         5         intS5         219         2 <sup>30×1000</sup> BcLONASS ECEF-Y component of satellite<br>acceleration in P2-90 datum         DF116           Velz         24         intS24         224         2 <sup>20×1000</sup> GLONASS ECEF-Z component of satellite<br>velocity vector in P2-90 datum         DF117           Posz         27         intS57         248         2 <sup>-11×1000</sup> GLONASS ECEF-Z component of satellite<br>velocity vector in P2-90 datum         DF118           Accz         5         intS5         275         2 <sup>30×1000</sup> GLONASS ECEF-Z component of satellite corrier<br>dinates in P2-90 datum         DF119           P3         1         bit1         280         P3 flag (see GLONASS ICD)         DF120           7.         11         intS11         281         2 <sup>40</sup> Relative deviation of predicted satellite carrier<br>frequency from nomial value         DF121           GLONASS-M P         2         bit2         292         GLONASS maintain P2         DF122           GLONASS-M P         2         bit2         292         GLONASS modelite anary maintaine         DF122           GLONASS-M P         2         b                                                                                                                                                                                                                                                                     | Vely                                   | 24  | intS24 | 168 | 2 <sup>-20</sup> *1000 |             | GLONASS ECEF-Y component of satellite<br>velocity vector in PZ-90 datum                                                           | DF114 |
| Accy         5         intS5         219         2 <sup>30+1000</sup> GLONASS ECEF-Y component of satellite<br>acceleration in P2-90 datum         DF116           Velz         24         intS24         224         2 <sup>20+1000</sup> GLONASS ECEF-Z component of satellite<br>velcoty vector in P2-90 datum         DF117           Posz         27         intS27         248         2 <sup>11+1000</sup> GLONASS ECEF-Z component of satellite<br>caceleration in P2-90 datum         DF119           Pasz         1         bit1         280         P3 flag (see GLONASS ECEF)         DF119           P3         1         bit1         280         P3 flag (see GLONASS ECEF)         DF120           X         11         intS11         281         2 <sup>40</sup> Relative deviation of predicted satellite carrier<br>frequency from nominal value         DF121           GLONASS-M P         2         bit2         292         GLONASS M, word extracted from third string<br>of the subframe         DF122           GLONASS-M I,<br>string         1         bit1         294         GLONASS M, word extracted from third string<br>OF123         DF124           GLONASS-M F,<br>f,         22         intS5         317         2 <sup>30</sup> Time difference between navigation RF signal<br>transmitted in 1.2 sub-band         DF125           GLONASS-M F,<br>f         unit5                                                                                                                                                                                                                                                              | Posy                                   | 27  | intS27 | 192 | 2 <sup>-11</sup> *1000 |             | GLONASS ECEF-Y component of satellite coor-<br>dinates in PZ-90 datum                                                             | DF115 |
| Velz         24         intS24         224         2 <sup>20</sup> 1000         GLONASS CEF-Z component of satellite coordinates in PZ-90 datum         DF117           Posz         27         intS27         248         2 <sup>-11+1</sup> 000         GLONASS ECF-Z component of satellite coordinates in PZ-90 datum         DF118           Accz         5         intS2         275         2 <sup>30+1</sup> 000         GLONASS ECF-Z component of satellite coordinates in PZ-90 datum         DF119           P3         1         bt1         280         P3 flag (see GLONASS ICD)         DF120           X         11         intS11         281         2 <sup>40</sup> Relative deviation of predicted satellite carrier         DF121           GLONASS-M P         2         bt2         292         GLONASS-M P word         DF122           GLONASS-M Int         1         bt11         294         GLONASS-M P word         DF122           GLONASS-M Atr <sub>n</sub> 5         intS2         17         2 <sup>30</sup> GLONASS correction to the satellite time relative         DF124           GLONASS-M Atr <sub>n</sub> 5         intS         317         2 <sup>30</sup> Time difference between navigation RF signal         DF125           GLONASS-M FT         4         uint1         322         1 day         The age of GLONASS avegati                                                                                                                                                                                                                                                                                            | Ассу                                   | 5   | intS5  | 219 | 2 <sup>-30</sup> *1000 |             | GLONASS ECEF-Y component of satellite<br>acceleration in PZ-90 datum                                                              | DF116 |
| Posz         27         intS27         248         2 <sup>-11+1000</sup> GLONASS ECEF-Z component of satellite corr<br>dinates in PZ-90 datum         DF118           Accz         5         intS5         275         2 <sup>-30+1000</sup> GLONASS ECEF-Z component of satellite<br>acceleration in PZ-90 datum         DF119           P3         1         bit1         280         P3 flag (see GLONASS ICD)         DF120           Z         11         intS1         281         2 <sup>40</sup> Relative deviation of predicted satellite carrier<br>frequency from nominal value         DF121           GLONASS-M P         2         bit2         292         GLONASS-M P word         DF122           GLONASS-M I,<br>(3 string)         1         bit1         294         GLONASS-M word extracted from third string<br>of the subframe         DF123           r,         22         intS5         317         2 <sup>-30</sup> Time difference between navigation RF<br>signal transmitted in L1 sub-band<br>transmitted in L1 sub-band         DF126           GLONASS-M P4         1         bit1         327         GLONASS-M P4 word         DF127           GLONASS-M P4         1         bit1         327         GLONASS-M P4 word         DF128           GLONASS-M FT,         4         uint4         328         GLONASS-M retrits datalilite user range<br>accur                                                                                                                                                                                                                                                                            | Velz                                   | 24  | intS24 | 224 | 2 <sup>-20</sup> *1000 |             | GLONASS ECEF-Z component of satellite<br>velocity vector in PZ-90 datum                                                           | DF117 |
| Accz         5         IntS5         275         2 <sup>30+1000</sup> GLONASS ECEF-Z component of satellite<br>acceleration in PZ-90 datum         DF119           P3         1         bit1         280         P3 flag (see GLONASS ICD)         DF120           X <sub>h</sub> 11         intS11         281         2 <sup>40</sup> Relative deviation of predicted satellite carrier<br>frequency from nominal value         DF121           GLONASS-M P         2         bit1         294         GLONASS-M P word         DF122           GLONASS-M In<br>(3 string)         1         bit1         294         GLONASS-M I, word extracted from third string<br>of the subframe         DF123           qLONASS-M Arn         5         intS5         317         2 <sup>-30</sup> GLONASS-M I, word extracted from third string<br>of the subframe         DF124           GLONASS-M Arn         5         intS5         317         2 <sup>-30</sup> Time difference between navigation RF signal         DF125           GLONASS-M P4         1         bit1         327         GLONASS-M Predicted satellite user range<br>accuracy at time 1,<br>GLONASS-M P4         DF127         GLONASS-M Predicted satellite user range<br>accuracy at time 1,<br>GLONASS-M Predicted satellite in GLONASS M predicted satellite or<br>the subframe from the 1st of January in a<br>DF128         DF129           GLONASS-M NT         11         uint1         332 </td <td>Posz</td> <td>27</td> <td>intS27</td> <td>248</td> <td>2<sup>-11</sup>*1000</td> <td></td> <td>GLONASS ECEF-Z component of satellite coor-<br/>dinates in PZ-90 datum</td> <td>DF118</td> | Posz                                   | 27  | intS27 | 248 | 2 <sup>-11</sup> *1000 |             | GLONASS ECEF-Z component of satellite coor-<br>dinates in PZ-90 datum                                                             | DF118 |
| P31bit1280P3 flag (see GLONASS ICD)DF120 $7_6$ 11intS11281 $2^{40}$ Relative deviation of predicted satellite carrier<br>frequency from nominal valueDF121GLONASS-M P2bit2292GLONASS-M P wordDF122GLONASS-M In<br>(3 string)1bit1294GLONASS-M In, word extracted from third string<br>of the subframeDF123 $\tau_n$ 22intS22295 $2^{30}$ CLONASS system timeDF124GLONASS-M / $\pi_n$ 5intS5317 $2^{30}$ Time difference between navigation RF signal<br>transmitted in L1 sub-band and navigation RFDF125GLONASS-M / $\pi_n$ 5uint53221 dayThe age of GLONASS navigation dataDF126En5uint53221 dayGLONASS -M P4 wordDF127GLONASS-M P41bit1327GLONASS -M P4 wordDF127GLONASS-M FT4uint4328GLONASS -M P4 wordDF127GLONASS-M NT11uint13321 dayGLONASS calendar number of day within four-<br>year interval starting from the 1s of January in a<br>leap year.DF129GLONASS-M M2bit2343Type of GLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referencedDF130Availability of additional<br>data1bit1345See DF131 field description in official RTCM-3<br>documents.DF131N^A11uint5389 $4$ -year<br>intervalGLONASS system time and<br><td>Accz</td> <td>5</td> <td>intS5</td> <td>275</td> <td>2<sup>-30</sup>*1000</td> <td></td> <td>GLONASS ECEF-Z component of satellite<br/>acceleration in PZ-90 datum</td> <td>DF119</td>                                                                                                                                                                                                                                                                                                            | Accz                                   | 5   | intS5  | 275 | 2 <sup>-30</sup> *1000 |             | GLONASS ECEF-Z component of satellite<br>acceleration in PZ-90 datum                                                              | DF119 |
| $\chi_h$ 11intS11281 $2^{40}$ Relative deviation of predicted satellite carrier<br>frequency from nominal valueDF121GLONASS-M P2bit2292GLONASS-M P wordDF122GLONASS-M In<br>(3 string)1bit1294GLONASS-M P wordDF123 $\tau_h$ 22intS22295 $2^{30}$ GLONASS correction to the satellite time relative<br>to GLONASS system timeDF124 $\tau_h$ 22intS2295 $2^{30}$ GLONASS system timeDF124GLONASS-M $\bot \tau_n$ 5intS5317 $2^{30}$ Time difference between navigation RF signal<br>transmitted in L1 sub-band and navigation RF<br>signal transmitted in L1 sub-band and navigation RFDF125GLONASS-M P41bit1327GLONASS-M P4 wordDF127GLONASS-M F74uint4328accuracy at time $t_b$ DF128GLONASS-M N711uint13321 dayType of GLONASS calendar number of day within four-<br>year interval starting from the 1st of January in a<br>leap year.DF129GLONASS-M M2bit2343Type of GLONASS satellite. If this data field con-<br>tains '01', the satellite is GLONASS-MDF130Availability of additional<br>data1bit1345GLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referenced<br>documents.DF132N^A11uint11345GLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referenced<br>from 1986DF132GLONASS-M N45uint5<                                                                                                                                                                                                                                                                                                                                                                                               | P3                                     | 1   | bit1   | 280 |                        |             | P3 flag (see GLONASS ICD)                                                                                                         | DF120 |
| GLONASS-M P       2       bit2       292       GLONASS-M P word       DF122         GLONASS-M In       1       bit1       294       GLONASS-M In, word extracted from third string of the subframe       DF123 $r_n$ 22       intS22       295       2-30       GLONASS correction to the satellite time relative to GLONASS system time       DF124         GLONASS-M $\Delta r_n$ 5       intS5       317       2-30       Time difference between navigation RF signal transmitted in L1 sub-band       DF125         GLONASS-M P4       1       bit1       327       GLONASS-M P4 word       DF126         GLONASS-M P4       1       bit1       327       GLONASS correction to the satellite user range accuracy at time to       DF127         GLONASS-M P4       1       bit1       327       GLONASS calendar number of day within four-year interval starting from the 1st of January in a leap year.       DF128         GLONASS-M N_T       11       uint11       332       1 day       GLONASS satellite. If this data field contains "01", the satellite is GLONASS-M       DF130         Availability of additional data       1       bit1       345       See DF131 field description in official RTCM-3 documents.       DF132 $r_c$ 32       intS32       357       2 <sup>311</sup> Difference between GLO                                                                                                                                                                                                                                                                                                                                             | γ'n                                    | 11  | intS11 | 281 | 2 <sup>-40</sup>       |             | Relative deviation of predicted satellite carrier frequency from nominal value                                                    | DF121 |
| GLONASS-M In<br>(3 string)       1       bit1       294       GLONASS-M In<br>(a string)       word extracted from third string<br>of the subframe       DF123 $r_n$ 22       intS22       295       2-30       GLONASS correction to the satellite time relative<br>to GLONASS system time       DF124         GLONASS-M $\Delta r_n$ 5       intS5       317       2-30       Time difference between navigation RF signal<br>transmitted in L1 sub-band       DF125         En       5       uint5       322       1 day       The age of GLONASS mayigation data       DF126         GLONASS-M P4       1       bit1       327       GLONASS-M P4 word       DF127         GLONASS-M FT       4       uint4       328       GLONASS-M P4 word       DF128         GLONASS-M NT       11       uint11       332       1 day       GLONASS calendar number of day within four-<br>year interval starting from the 1st of January in a<br>leap year.       DF130         GLONASS-M M       2       bit2       343       Type of GLONASS satellite. If this data field con-<br>tains "01", the satellite is GLONASS and the store of day within the<br>four-year period to which $r_c$ is referenced       DF130 $Availability of additionaldata       1       bit1       345       See DF131 field description in official RTCM-3documents.       DF131         N^A $                                                                                                                                                                                                                                                                                                     | GLONASS-M P                            | 2   | bit2   | 292 |                        |             | GLONASS-M P word                                                                                                                  | DF122 |
| $r_n$ 22intS222952-30GLONASS correction to the satellite time relative<br>to GLONASS system timeDF124GLONASS-M_4 $r_n$ 5intS53172-30Time difference between navigation RF signal<br>transmitted in L2 sub-band and navigation RF signal<br>transmitted in L2 sub-band and navigation RF<br>signal transmitted in L1 sub-bandDF125En5uint53221 dayThe age of GLONASS navigation dataDF126GLONASS-M P41bit1327GLONASS-M P4 wordDF127GLONASS-M FT4uint4328GLONASS-M P4 wordDF128GLONASS-M FT4uint4328GLONASS-M ped iterval starting from the 1s of January in a<br>leap year.DF128GLONASS-M M2bit2343Type of GLONASS satellite. If this data field con-<br>tains '01", the satellite is GLONASS-M<br>ped iterval starting from the 1st of January in a<br>leap year.DF130N^A11uint11345See DF131 field description in official RTCM-3<br>documents.DF131N^A11uint113461 dayGLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referenced<br>to its '357DF131GLONASS-M N_45uint53894-year<br>intervalGLONASS four-year interval number starting<br>from 1996DF133GLONASS-M N_45uint53892-31Correction to GPS system time relative to<br>GLONASS system timeDF136GLONASS-M N_61bit1416GLONASS-MI, word extracted from fifth string<br>of the subframe                                                                                                                                                                                                                                                                                                                                                                                           | GLONASS-M I <sub>n</sub><br>(3 string) | 1   | bit1   | 294 |                        |             | GLONASS-M I <sub>n</sub> word extracted from third string of the subframe                                                         | DF123 |
| GLONASS-M $\varDelta t_n$ 5intS5317 $2^{30}$ Time difference between navigation RF signal<br>transmitted in L2 sub-band and navigation RF<br>signal transmitted in L2 sub-bandDF125En5uint53221 dayThe age of GLONASS-M P4 wordDF126GLONASS-M P41bit1327GLONASS-M P4 wordDF127GLONASS-M FT4uint4328GLONASS-M predicted satellite user range<br>accuracy at time $t_0$ DF128GLONASS-M NT11uint113321 dayGLONASS-M predicted satellite user range<br>accuracy at time $t_0$ DF129GLONASS-M M2bit2343Type of GLONASS calendar number of day within four-<br>year interval starting from the 1st of January in a<br>leap year.DF130GLONASS-M M2bit1345See DF131 field description in official RTCM-3<br>documentsDF131N^A11uint113461 dayGLONASS four-year interval number of day within the<br>locumentsDF132 $r_c$ 32intS323572-31Difference between GLONASS system time and<br>UTCDF133GLONASS-M N_45uint5389 $\frac{4}{-year}$<br>intervalGLONASS four-year interval number starting<br>from 1996DF136GLONASS-M I_n<br>(5 string)1bit1416GLONASS-M I_n word extracted from fifth string<br>of the subframeDF136GLONASS-M I_n<br>(5 string)1bit1416GLONASS-M I_n word extracted from fifth string<br>of the subframeDF136GLONASS-M I_n<br>(5 string)1b                                                                                                                                                                                                                                                                                                                                                                                                                      | τ <sub>n</sub>                         | 22  | intS22 | 295 | 2 <sup>-30</sup>       |             | GLONASS correction to the satellite time relative to GLONASS system time                                                          | DF124 |
| En5uint53221 dayThe age of GLONASS navigation dataDF126GLONASS-M P41bit1327GLONASS-M P4 wordDF127GLONASS-M F74uint4328GLONASS-M predicted satellite user range<br>accuracy at time $t_b$ DF128GLONASS-M N711uint13321 dayGLONASS calendar number of day within four-<br>year interval starting from the 1st of January in a<br>leap year.DF129GLONASS-M M2bit2343Type of GLONASS satellite. If this data field con-<br>tains "01", the satellite is GLONASS-MDF130Availability of additional<br>data1bit1345See DF131 field description in official RTCM-3<br>documents.DF132N^A11uint113461 dayGLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referencedDF132 $\tau_c$ 32intS323572 <sup>31</sup> Difference between GLONASS system time and<br>UTCDF133GLONASS-M N45uint53894-year<br>intervalGLONASS four-year interval number starting<br>from 1996DF134GLONASS-M In<br>(5 string)1bit1416GLONASS M in word extracted from fifth string<br>of the subframeDF136GLONASS-M In<br>(5 string)1bit7417Set to 000000DF136END TRANSPORTCRC24uint24424CARC 24uint24Carce 24uint24448 <td>GLONASS-M <math>\Delta \tau_n</math></td> <td>5</td> <td>intS5</td> <td>317</td> <td>2<sup>-30</sup></td> <td></td> <td>Time difference between navigation RF signal<br/>transmitted in L2 sub-band and navigation RF<br/>signal transmitted in L1 sub-band</td> <td>DF125</td>                                                                                                                                                                                                                                                                   | GLONASS-M $\Delta \tau_n$              | 5   | intS5  | 317 | 2 <sup>-30</sup>       |             | Time difference between navigation RF signal<br>transmitted in L2 sub-band and navigation RF<br>signal transmitted in L1 sub-band | DF125 |
| GLONASS-M P41bit1327GLONASS-M P4 wordDF127GLONASS-M FT4uint4328GLONASS-M predicted satellite user range<br>accuracy at time $t_b$ DF128GLONASS-M NT11uint113321 dayGLONASS calendar number of day within four-<br>year interval starting from the 1st of January in a<br>leap year.DF129GLONASS-M M2bit2343Type of GLONASS satellite. If this data field con-<br>tains "01", the satellite is GLONASS-MDF130Availability of additional<br>data1bit1345See DF131 field description in official RTCM-3<br>documents.DF131N^A11uint113461 dayGLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referencedDF132 $\tau_c$ 32intS323572-31Difference between GLONASS system time and<br>UTCDF133GLONASS-M N_45uint53894-year<br>intervalGLONASS four-year interval number starting<br>from 1996DF134GLONASS-M I_n<br>(5 string)1bit1416GLONASS-M I_n word extracted from fifth string<br>of the subframeDF136GLONASS-M I_n<br>(5 string)1bit7417Set to 000000DF136END TRANSPORTCRC24uint2442424-bit Cyclic Redundancy Check (CRC)Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | En                                     | 5   | uint5  | 322 | 1 day                  |             | The age of GLONASS navigation data                                                                                                | DF126 |
| GLONASS-M F <sub>T</sub> 4       uint4       328       GLONASS-M predicted satellite user range accuracy at time t <sub>b</sub> DF128         GLONASS-M N <sub>T</sub> 11       uint11       332       1 day       GLONASS calendar number of day within four-year interval starting from the 1st of January in a leap year.       DF129         GLONASS-M M       2       bit2       343       Type of GLONASS satellite. If this data field contains "01", the satellite is GLONASS-M       DF130         Availability of additional data       1       bit1       345       See DF131 field description in official RTCM-3 documents.       DF131         N <sup>A</sup> 11       uint11       346       1 day       GLONASS calendar number of day within the four-year period to which $\tau_c$ is referenced       DF132 $\tau_c$ 32       intS32       357       2 <sup>-31</sup> Difference between GLONASS system time and UTC       DF133         GLONASS-M N <sub>4</sub> 5       uint5       389 <sup>4</sup> -year interval       GLONASS four-year interval number starting from 1996       DF134         GLONASS-M In       1       bit1       416       GLONASS system time relative to GLONASS system time relative to GLONASS system time field to on GLONASS system time field to GLONASS system time field to GLONASS system time fiel                                                                                                                                                 | GLONASS-M P4                           | 1   | bit1   | 327 |                        |             | GLONASS-M P4 word                                                                                                                 | DF127 |
| GLONASS-M N <sub>T</sub> 11       uint11       332       1 day       GLONASS calendar number of day within four-<br>year interval starting from the 1st of January in a<br>leap year.       DF129         GLONASS-M M       2       bit2       343       Type of GLONASS satellite. If this data field con-<br>tains "01", the satellite is GLONASS-M       DF130         Availability of additional<br>data       1       bit1       345       See DF131 field description in official RTCM-3<br>documents.       DF131         N <sup>A</sup> 11       uint11       346       1 day       GLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referenced       DF132 $\tau_c$ 32       intS32       357       2 <sup>-31</sup> Difference between GLONASS system time and<br>UTC       DF133         GLONASS-M N <sub>4</sub> 5       uint5       389       4-year<br>interval       GLONASS four-year interval number starting<br>from 1996       DF134         GLONASS-M In<br>(5 string)       1       bit1       416       Correction to GPS system time relative to<br>GLONASS-M In word extracted from fifth string<br>of the subframe       DF136         END TRANSPORT         CRC       24       uint24       424       24-bit Cyclic Redundancy Check (CRC)         Total                                                                                                                                                                                                                                                                                                                                                       | GLONASS-M $F_T$                        | 4   | uint4  | 328 |                        |             | GLONASS-M predicted satellite user range accuracy at time $t_b$                                                                   | DF128 |
| GLONASS-M M2bit2343Type of GLONASS satellite. If this data field contains "01", the satellite is GLONASS-MDF130Availability of additional data1bit1345See DF131 field description in official RTCM-3 documents.DF131N^A11uint113461 dayGLONASS calendar number of day within the four-year period to which $\tau_c$ is referencedDF132 $\tau_c$ 32intS32357 $2^{-31}$ Difference between GLONASS system time and UTCDF133GLONASS-M N_45uint53894-year intervalGLONASS four-year interval number starting from 1996DF134GLONASS-M $\tau_{GPS}$ 22intS22394 $2^{-31}$ Correction to GPS system time relative to GLONASS system timeDF135GLONASS-M In<br>(5 string)1bit1416GLONASS-M In, word extracted from fifth string of the subframeDF136Reserved7bit7417Set to 0000000ENTATIONEND TRANSPORTCRC24uint2424-bit Cyclic Redundancy Check (CRC)Total44824-bit Cyclic Redundancy Check (CRC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GLONASS-M N <sub>T</sub>               | 11  | uint11 | 332 | 1 day                  |             | GLONASS calendar number of day within four-<br>year interval starting from the 1st of January in a<br>leap year.                  | DF129 |
| Availability of additional<br>data1bit1345See DF131 field description in official RTCM-3<br>documents.DF131NA11uint113461 dayGLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referencedDF132 $\tau_c$ 32intS323572 <sup>-31</sup> Difference between GLONASS system time and<br>UTCDF133GLONASS-M N_45uint53894-year<br>intervalGLONASS four-year interval number starting<br>from 1996DF134GLONASS-M $\tau_{GPS}$ 22intS223942 <sup>-31</sup> Correction to GPS system time relative to<br>GLONASS system timeDF135GLONASS-M In<br>(5 string)1bit1416GLONASS-M In<br>of the subframeDF136END TRANSPORTCRC24uint2442424-bit Cyclic Redundancy Check (CRC)Total448448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GLONASS-M M                            | 2   | bit2   | 343 |                        |             | Type of GLONASS satellite. If this data field con-<br>tains "01", the satellite is GLONASS-M                                      | DF130 |
| NA11uint113461 dayGLONASS calendar number of day within the<br>four-year period to which $\tau_c$ is referencedDF132 $\tau_c$ 32intS32357 $2^{-31}$ Difference between GLONASS system time and<br>UTCDF133GLONASS-M N_45uint5389 $\frac{4-year}{interval}$ GLONASS four-year interval number starting<br>from 1996DF134GLONASS-M $\tau_{GPS}$ 22intS22394 $2^{-31}$ Correction to GPS system time relative to<br>GLONASS system timeDF135GLONASS-M In<br>(5 string)1bit1416GLONASS-M In<br>of the subframeDF136END TRANSPORTCRC24uint2442424-bit Cyclic Redundancy Check (CRC)Total448448448448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Availability of additional data        | 1   | bit1   | 345 |                        |             | See DF131 field description in official RTCM-3 documents.                                                                         | DF131 |
| $\tau_c$ 32intS32357 $2^{\cdot 31}$ Difference between GLONASS system time and<br>UTCDF133GLONASS-M N_45uint53894-year<br>intervalGLONASS four-year interval number starting<br>from 1996DF134GLONASS-M $\tau_{GPS}$ 22intS22394 $2^{\cdot 31}$ Correction to GPS system time relative to<br>GLONASS system timeDF135GLONASS-M I_n<br>(5 string)1bit1416GLONASS-M I_n word extracted from fifth string<br>of the subframeDF136END TRANSPORTCRC24uint2442424-bit Cyclic Redundancy Check (CRC)Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N <sup>A</sup>                         | 11  | uint11 | 346 | 1 day                  |             | GLONASS calendar number of day within the four-year period to which $\tau_c$ is referenced                                        | DF132 |
| GLONASS-M N <sub>4</sub> 5       uint5       389       4-year interval       GLONASS four-year interval number starting from 1996       DF134         GLONASS-M r <sub>GPS</sub> 22       intS22       394       2 <sup>-31</sup> Correction to GPS system time relative to GLONASS system time       DF135         GLONASS-M I <sub>n</sub> (5 string)       1       bit1       416       GLONASS-M I <sub>n</sub> of the subframe       DF136         Reserved       7       bit7       417       Set to 000000       DF136         CRC       24       uint24       424       24-bit Cyclic Redundancy Check (CRC)         Total       448       448       448       448       448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | τ <sub>c</sub>                         | 32  | intS32 | 357 | 2 <sup>-31</sup>       |             | Difference between GLONASS system time and UTC                                                                                    | DF133 |
| GLONASS-M τ <sub>GPS</sub> 22         intS22         394         2 <sup>-31</sup> Correction to GPS system time relative to GLONASS system time         DF135           GLONASS-M I <sub>n</sub><br>(5 string)         1         bit1         416         GLONASS-M I <sub>n</sub> word extracted from fifth string of the subframe         DF136           Reserved         7         bit7         417         Set to 000000         DF136           CRC         24         uint24         424         24-bit Cyclic Redundancy Check (CRC)           Total         448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GLONASS-M N <sub>4</sub>               | 5   | uint5  | 389 | 4-year<br>interval     |             | GLONASS four-year interval number starting from 1996                                                                              | DF134 |
| GLONASS-M In<br>(5 string)       1       bit1       416       GLONASS-M In<br>of the subframe       word extracted from fifth string<br>of the subframe       DF136         Reserved       7       bit7       417       Set to 0000000       P         END TRANSPORT         CRC       24       uint24       424       24-bit Cyclic Redundancy Check (CRC)         Total       448       448       448       448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GLONASS-M $	au_{ m GPS}$               | 22  | intS22 | 394 | 2 <sup>-31</sup>       |             | Correction to GPS system time relative to<br>GLONASS system time                                                                  | DF135 |
| Reserved         7         bit7         417         Set to 0000000           END TRANSPORT           CRC         24         uint24         424         24-bit Cyclic Redundancy Check (CRC)           Total         448         448         448         448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GLONASS-M I <sub>n</sub><br>(5 string) | 1   | bit1   | 416 |                        |             | GLONASS-M In word extracted from fifth string of the subframe                                                                     | DF136 |
| END TRANSPORT           CRC         24         uint24         424         24-bit Cyclic Redundancy Check (CRC)           Total         448         448         448         448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reserved                               | 7   | bit7   | 417 | +                      |             | Set to 0000000                                                                                                                    |       |
| CRC         24         uint24         424         24-bit Cyclic Redundancy Check (CRC)           Total         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448         448                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | Ľ   | 1.510  | 1,  | EN EN                  | ND TRANSPOR |                                                                                                                                   |       |
| Total 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CRC                                    | 24  | uint24 | 424 |                        |             | 24-bit Cyclic Redundancy Check (CRC)                                                                                              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total                                  | 448 |        |     | L                      | I           | , , , , , , , , , , , , , , , , , , , ,                                                                                           | I     |

NOTES:

- The 12-bit standardized message number is used in this message as a switch taking the value 1020 or 0. It was created to ensure backward compatibility with legacy Ashtech messages SNG, which do not contain some important fields.
- The "intS" data type refers to a a sign-magnitude value. Sign-magnitude representation records the number's sign and magnitude. MSB is 0 for positive numbers and 1 for negative numbers. The rest of the bits represents the number's magnitude. For example, for 8-bit words, the representations of the numbers "-7" and "+7" in a binary form are 10000111 and 00000111, respectively. Negative zero is not used.

**SBAS** This message contains SBAS ephemeris data for a given SBAS satellite. For detailed information about SBAS ephemeris data, please refer to the *WAAS ICD* document.

- **Output logic**: on time/on change/on new
- Message binary size: 39 bytes (312 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&EPH
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHR,SNW

| Data item            | Bits | Data type | Offset | Scale            | Range      | Comments                                                                                | DF Number |
|----------------------|------|-----------|--------|------------------|------------|-----------------------------------------------------------------------------------------|-----------|
|                      |      |           |        | STAF             | RT TRANSPO | DRT                                                                                     | •         |
| Transport Preamble   | 8    | uint8     | 0      |                  |            | Set to 0xD3 (HEX Code)                                                                  |           |
| Reserved             | 6    | bit6      | 8      |                  |            | Set to 000000                                                                           |           |
| Message Length       | 10   | unt10     | 14     |                  |            | Message length in bytes. Set to 33 for this mes-<br>sage                                |           |
|                      |      |           |        | MES              | SAGE HEAD  | ER                                                                                      |           |
| Message number       | 12   | uint12    | 24     |                  | 1001-4095  | 4095 is reserved for Ashtech                                                            | DF002     |
| Message sub-number   | 4    | uint4     | 36     |                  | 0-15       | 5 is reserved for ATOM NAV message                                                      |           |
| Version              | 3    | uint3     | 40     |                  | 0-7        | ATOM version number, set to 1                                                           |           |
| Reference station ID | 12   | uint12    | 43     |                  | 0-4095     | Reference station ID                                                                    | DF003     |
| NAV message type     | 9    | uint9     | 55     |                  | 0-511      | Specifies which NAV message follows. For this message, set to 3                         |           |
|                      |      |           |        | ME               | SSAGE DAT  | A                                                                                       |           |
| SVPRN                | 8    | uint8     | 64     |                  |            | SBAS satellite number                                                                   |           |
| lode                 | 8    | uint8     | 72     |                  |            | Issue of data                                                                           |           |
| T <sub>0</sub>       | 13   | uint13    | 80     | 16               |            | Ephemeris data reference time within the day expressed in the SBAS time scale (seconds) |           |
| Accuracy             | 4    | uint4     | 93     |                  |            | Accuracy                                                                                |           |
| Rx                   | 30   | int30     | 97     | 0.08             |            | Satellite ECEF X coordinates (meters)                                                   |           |
| Ry                   | 30   | int30     | 127    | 0.08             |            | Satellite ECEF Y coordinates (meters)                                                   |           |
| Rz                   | 25   | int25     | 157    | 0.4              |            | Satellite ECEF Z coordinates (meters)                                                   |           |
| Vx                   | 17   | int17     | 182    | 0.000625         |            | Satellite ECEF velocity X' coordinates (m/s)                                            |           |
| Vy                   | 17   | int17     | 199    | 0.000625         |            | Satellite ECEF velocity Y' coordinates (m/s)                                            |           |
| Vz                   | 18   | int18     | 216    | 0.004            |            | Satellite ECEF velocity Z' coordinates (m/s)                                            |           |
| Ax                   | 10   | int10     | 234    | 0.0000125        |            | Satellite ECEF acceleration X'" (m/s <sup>2</sup> )                                     |           |
| Ау                   | 10   | int10     | 244    | 0.0000125        |            | Satellite ECEF acceleration Y" (m/s <sup>2</sup> )                                      |           |
| Az                   | 10   | int10     | 254    | 0.0000625        |            | Satellite ECEF acceleration Z" (m/s <sup>2</sup> )                                      |           |
| aGf0                 | 12   | int12     | 264    | 2 <sup>-31</sup> |            | Time offset between satellite time scale and SBAS system time scale (seconds)           |           |
| aGf1                 | 8    | int8      | 276    | 2 <sup>-40</sup> |            | Time drift between satellite time scale and SBAS system time scale (seconds)            |           |
| Reserved             | 4    | bit4      | 284    |                  |            | Set to 0000                                                                             |           |
|                      |      |           |        | END              | TRANSPO    | रा                                                                                      |           |
| CRC                  | 24   | uint24    | 288    |                  |            | 24-bit Cyclic Redundancy Check (CRC)                                                    |           |
| Total                | 312  |           |        |                  |            |                                                                                         |           |

# **GPS Almanac** This message contains GPS almanac data for a given GPS satellite. For detailed information about GPS almanac data, please refer to the *ICD-GPS-200* document.

- Output logic: on time/on change/on new
- Message binary size: 36 bytes (288 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&ALM
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHR,SAL

# Structure & Content:

| Data item               | Bits | Data type | Offset | Scale            | Range     | Comments                                                              | DF Number |
|-------------------------|------|-----------|--------|------------------|-----------|-----------------------------------------------------------------------|-----------|
|                         |      |           |        |                  | START T   | RANSPORT                                                              |           |
| Transport Preamble      | 8    | uint8     | 0      |                  |           | Set to 0xD3 (HEX Code)                                                |           |
| Reserved                | 6    | bit6      | 8      |                  |           | Set to 000000                                                         |           |
| Message Length          | 10   | unt10     | 14     |                  |           | Message length in bytes. Set to 30 for this message                   |           |
|                         |      |           |        |                  | MESSAC    | SE HEADER                                                             | •<br>•    |
| Message number          | 12   | uint12    | 24     |                  | 1001-4095 | 4095 is reserved for Ashtech                                          | DF002     |
| Message sub-num-<br>ber | 4    | uint4     | 36     |                  | 0-15      | 5 is reserved for ATOM NAV message                                    |           |
| Version                 | 3    | uint3     | 40     |                  | 0-7       | ATOM version number, set to 1                                         |           |
| Reference station<br>ID | 12   | uint12    | 43     |                  | 0-4095    | Reference station ID                                                  | DF003     |
| NAV message type        | 9    | uint9     | 55     |                  | 0-511     | Specifies which NAV message follows. For this mes-<br>sage, set to 11 |           |
|                         |      |           |        |                  | MESSA     | AGE DATA                                                              | •         |
| SVPRN                   | 5    | uint5     | 64     |                  | 0-31      | Satellite PRN number                                                  |           |
| Health                  | 8    | uint8     | 69     |                  |           | Satellite Health                                                      |           |
| E                       | 16   | int16     | 77     | 2 <sup>-21</sup> |           | Eccentricity                                                          |           |
| Тоа                     | 8    | uint8     | 93     | 2 <sup>12</sup>  |           | Reference time of almanac                                             |           |
| ⊿i                      | 16   | int16     | 101    | 2 <sup>-19</sup> |           | Inclination angle at reference time (semi-circles)                    |           |
| OMEGADOT                | 16   | int16     | 117    | 2 <sup>-38</sup> |           | Rate of right Asc. (semi-circles per sec)                             |           |
| ROOT_A                  | 24   | uint24    | 133    | 2 <sup>-11</sup> |           | Square root of semi-major axis (meters <sup>1/2</sup> )               |           |
| OMEGA0                  | 24   | int24     | 157    | 2 <sup>-23</sup> |           | Longitude of ascending node (semicircles)                             |           |
| Ω                       | 24   | int24     | 181    | 2 <sup>-23</sup> |           | Argument of Perigee (semi-circles)                                    |           |
| M0                      | 24   | int24     | 205    | 2 <sup>-23</sup> |           | Mean anomaly at reference time (semi-circle)                          |           |
| Af0                     | 11   | int11     | 229    | 2-20             |           | Clock correction (sec)                                                |           |
| Af1                     | 11   | int11     | 240    | 2 <sup>-38</sup> |           | Clock correction (sec/sec)                                            |           |
| Wna                     | 8    | uint8     | 251    |                  |           | Almanac week number                                                   |           |
| Reserved                | 5    | bit5      | 259    |                  |           | Set to 00000                                                          |           |
|                         |      |           |        |                  | END TR    | ANSPORT                                                               | •         |
| CRC                     | 24   | uint24    | 264    |                  |           | 24-bit Cyclic Redundancy Check (CRC)                                  |           |
| Total                   | 288  |           |        |                  |           |                                                                       |           |

NOTE: The value of  $\Delta i$  generated from field  $i_0$  (Inclination Angle at Reference Time) from GPS ephemeris data is scaled by 0.1.

**GLONASS** This message contains GLONASS almanac data for a given GLONASS satellite. For detailed information about GLONASS almanac data, please refer to the *GLONASS ICD ver.5* document.

- **Output logic**: on time/on change/on new
- Message binary size: 31 bytes (248 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&ALM
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHR,SAG

| Data item                   | Bits | Data<br>type | Offset | Scale            | Range     | Comments                                                                                                                                                                                                                                                     | DF Number |
|-----------------------------|------|--------------|--------|------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                             |      |              |        |                  | START TF  | ANSPORT                                                                                                                                                                                                                                                      |           |
| Transport Preamble          | 8    | uint8        | 0      |                  |           | Set to 0xD3 (HEX Code)                                                                                                                                                                                                                                       |           |
| Reserved                    | 6    | bit6         | 8      |                  |           | Set to 000000                                                                                                                                                                                                                                                |           |
| Message Length              | 10   | unt10        | 14     |                  |           | Message length in bytes. Set to 24 for this message                                                                                                                                                                                                          |           |
|                             |      |              |        |                  | MESSAG    | E HEADER                                                                                                                                                                                                                                                     |           |
| Message number              | 12   | uint12       | 24     |                  | 1001-4095 | 4095 is reserved for Ashtech                                                                                                                                                                                                                                 | DF002     |
| Message sub-number          | 4    | uint4        | 36     |                  | 0-15      | 5 is reserved for ATOM NAV message                                                                                                                                                                                                                           |           |
| Version                     | 3    | uint3        | 40     |                  | 0-7       | ATOM version number, set to 1                                                                                                                                                                                                                                |           |
| Reference station ID        | 12   | uint12       | 43     |                  | 0-4095    | Reference station ID                                                                                                                                                                                                                                         | DF003     |
| NAV message type            | 9    | uint9        | 55     |                  | 0-511     | Specifies which NAV message follows. For this message, set to 12                                                                                                                                                                                             |           |
|                             | •    | 1            |        |                  | MESSA     | GE DATA                                                                                                                                                                                                                                                      |           |
| SatNum                      | 5    | uint5        | 64     |                  | 1-24      | GLONASS satellite number                                                                                                                                                                                                                                     |           |
| Frequency Channel<br>Number | 8    | uint8        | 69     |                  |           | The GLONASS Satellite Frequency Channel Num-<br>ber identifies the frequency of the GLONASS satel-<br>lite.<br>0 indicates channel number –07<br>1 indicates channel number –06<br><br>13 indicates channel number +6<br>31 indicates invalid channel number |           |
| Health                      | 1    | bit1         | 77     |                  |           | Satellite Health, 0 – bad, 1 – good                                                                                                                                                                                                                          |           |
| E                           | 15   | uint15       | 78     | 2 <sup>-20</sup> |           | Eccentricity                                                                                                                                                                                                                                                 |           |
| Na                          | 11   | uint11       | 93     |                  |           | Reference day number                                                                                                                                                                                                                                         |           |
| Di                          | 18   | int18        | 104    | 2-20             |           | Correction to inclination (semicircles)                                                                                                                                                                                                                      |           |
| La                          | 21   | int21        | 122    | 2 <sup>-20</sup> |           | Longitude of first ascension node (semicircles)                                                                                                                                                                                                              |           |
| Та                          | 21   | uint21       | 143    | 2 <sup>-5</sup>  |           | Reference time of longitude of first node (seconds)                                                                                                                                                                                                          |           |
| W                           | 16   | int16        | 164    | 2 <sup>-15</sup> |           | Argument of perigee (semicircles)                                                                                                                                                                                                                            |           |
| Dta                         | 7    | int7         | 180    | 2 <sup>-9</sup>  |           | Correction to mean value of Draconic period (sec-<br>onds)                                                                                                                                                                                                   |           |
| Reserved                    | 12   | bit12        | 202    |                  |           | Af1=d(Af0)/dt(sec/sec)                                                                                                                                                                                                                                       |           |
| Clock Offset                | 10   | int10        | 214    | 2 <sup>-18</sup> |           | Clock offset (seconds)                                                                                                                                                                                                                                       |           |
|                             |      |              |        |                  | END TR/   | ANSPORT                                                                                                                                                                                                                                                      |           |
| CRC                         | 24   | uint24       | 224    |                  |           | 24-bit Cyclic Redundancy Check (CRC)                                                                                                                                                                                                                         |           |
| Total                       | 248  |              |        |                  |           |                                                                                                                                                                                                                                                              |           |

# **SBAS Almanac** This message contains SBAS almanac data for a given SBAS satellite. For detailed information about SBAS almanac data, please refer to the *WAAS ICD* document.

- Output logic: on time/on change/on new
- Message binary size: 21 bytes (168 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&ALM
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHR,SAW

| Data item            | Bits | Data type | Offset   | Scale | Range      | Comments                                                                                                                                                                                                                                                                                                    | DF Number |  |  |
|----------------------|------|-----------|----------|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
|                      |      | •         |          |       | START TRAN | SPORT                                                                                                                                                                                                                                                                                                       |           |  |  |
| Transport Preamble   | 8    | uint8     | 0        |       |            | Set to 0xD3 (HEX Code)                                                                                                                                                                                                                                                                                      |           |  |  |
| Reserved             | 6    | bit6      | 8        |       |            | Set to 000000                                                                                                                                                                                                                                                                                               |           |  |  |
| Message Length       | 10   | unt10     | 14       |       |            | Message length in bytes. Set to 16 for this message                                                                                                                                                                                                                                                         |           |  |  |
| MESSAGE HEADER       |      |           |          |       |            |                                                                                                                                                                                                                                                                                                             |           |  |  |
| Message number       | 12   | uint12    | 24       |       | 1001-4095  | 4095 is reserved for Ashtech                                                                                                                                                                                                                                                                                | DF002     |  |  |
| Message sub-number   | 4    | uint4     | 36       |       | 0-15       | 5 is reserved for ATOM NAV message                                                                                                                                                                                                                                                                          |           |  |  |
| Version              | 3    | uint3     | 40       |       | 0-7        | ATOM version number, set to 1                                                                                                                                                                                                                                                                               |           |  |  |
| Reference station ID | 12   | uint12    | 43       |       | 0-4095     | Reference station ID                                                                                                                                                                                                                                                                                        | DF003     |  |  |
| NAV message type     | 9    | uint9     | 55       |       | 0-511      | Specifies which NAV message follows. For this message, set to 13                                                                                                                                                                                                                                            |           |  |  |
|                      |      |           | <u> </u> |       | MESSAGE    | DATA                                                                                                                                                                                                                                                                                                        | •         |  |  |
| Data ID              | 2    | uint2     | 64       |       |            | Data ID                                                                                                                                                                                                                                                                                                     |           |  |  |
| SVPRN                | 8    | uint8     | 66       |       | 1-19       | SBAS satellite number                                                                                                                                                                                                                                                                                       |           |  |  |
| Health               | 8    | bit8      | 74       |       |            | Satellite Health&Status bitwise meaning is:<br>Bit0 – Ranging On(0), Off(1)<br>Bit1 – Corrections On(0), Off(1)<br>Bit2 – Broadcast Integrity On(0), Off(1)<br>Bit3 – Reserved<br>Bit4-7 – SBAS provider ID (0-15):<br>0 – WAAS,<br>1 – EGNOS,<br>2 – MSAS,<br>3-13 – Not assigned yet,<br>14-15 – Reserved |           |  |  |
| Х                    | 15*  | int15     | 82       | 2600  |            | Satellite ECEF X coordinates (meters)                                                                                                                                                                                                                                                                       |           |  |  |
| Y                    | 15*  | int15     | 97       | 2600  |            | Satellite ECEF Y coordinates (meters)                                                                                                                                                                                                                                                                       |           |  |  |
| Z                    | 9*   | int9      | 112      | 26000 |            | Satellite ECEF Z coordinates (meters)                                                                                                                                                                                                                                                                       |           |  |  |
| Vx                   | 3*   | int3      | 121      | 10    |            | Satellite ECEF velocity X' coordinates (m/s)                                                                                                                                                                                                                                                                |           |  |  |
| Vy                   | 3*   | int3      | 124      | 10    |            | Satellite ECEF velocity Y' coordinates (m/s)                                                                                                                                                                                                                                                                |           |  |  |
| Vz                   | 4*   | int4      | 127      | 60    |            | Satellite ECEF velocity Z' coordinates (m/s)                                                                                                                                                                                                                                                                |           |  |  |
| tO                   | 11   | uint11    | 131      | 64    |            | Almanac data reference time within the day expressed in the SBAS time scale (seconds)                                                                                                                                                                                                                       |           |  |  |
| Reserved             | 2    | bit2      | 142      |       |            | Set to 00                                                                                                                                                                                                                                                                                                   |           |  |  |
|                      |      |           |          |       | END TRAN   | SPORT                                                                                                                                                                                                                                                                                                       |           |  |  |
| CRC                  | 24   | uint24    | 144      |       |            | 24-bit Cyclic Redundancy Check (CRC)                                                                                                                                                                                                                                                                        |           |  |  |
| Total                | 168  |           |          |       |            | •                                                                                                                                                                                                                                                                                                           |           |  |  |

GPS lonosphere and Time Shift Parameters

This message contains GPS ionosphere and time-shift parameters. For detailed information about these parameters, please refer to the *ICD-GPS-200* document.

- **Output logic**: on time/on change/on new
- Message binary size: 32 bytes (256 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&GIT
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: \$PASHR,ION

| Data item            | Bits | Data type | Offset | Scale            | Range      | Comments                                                         | DF Number |  |  |  |
|----------------------|------|-----------|--------|------------------|------------|------------------------------------------------------------------|-----------|--|--|--|
| START TRANSPORT      |      |           |        |                  |            |                                                                  |           |  |  |  |
| Transport Preamble   | 8    | uint8     | 0      |                  |            | Set to 0xD3 (HEX Code)                                           |           |  |  |  |
| Reserved             | 6    | bit6      | 8      |                  |            | Set to 000000                                                    |           |  |  |  |
| Message Length       | 10   | unt10     | 14     |                  |            | Message length in bytes. Set to 26 for this message              |           |  |  |  |
| MESSAGE HEADER       |      |           |        |                  |            |                                                                  |           |  |  |  |
| Message number       | 12   | uint12    | 24     |                  | 1001-4095  | 4095 is reserved for Ashtech                                     | DF002     |  |  |  |
| Message sub-number   | 4    | uint4     | 36     |                  | 0-15       | 5 is reserved for ATOM NAV message                               |           |  |  |  |
| Version              | 3    | uint3     | 40     |                  | 0-7        | ATOM version number, set to 1                                    |           |  |  |  |
| Reference station ID | 12   | uint12    | 43     |                  | 0-4095     | Reference station ID                                             | DF003     |  |  |  |
| NAV message type     | 9    | uint9     | 55     |                  | 0-511      | Specifies which NAV message follows. For this message, set to 21 |           |  |  |  |
|                      |      |           |        | М                | ESSAGE DAT | A                                                                |           |  |  |  |
| al                   | 8    | int8      | 64     | 2-30             |            | lonospheric parameter (seconds)                                  |           |  |  |  |
| <i>α</i> 1           | 8    | int8      | 72     | 2 <sup>-27</sup> |            | lonospheric parameter (seconds/semi-circle)                      |           |  |  |  |
| <i>o</i> 2           | 8    | int8      | 80     | 2-24             |            | lonospheric parameter (seconds/semi-circle)                      |           |  |  |  |
| aЗ                   | 8    | int8      | 88     | 2-24             |            | lonospheric parameter (seconds/semi-circle)                      |           |  |  |  |
| <i>β</i> 0           | 8    | int8      | 96     | 2 <sup>11</sup>  |            | lonospheric parameter (seconds)                                  |           |  |  |  |
| β1                   | 8    | int8      | 104    | 2 <sup>14</sup>  |            | lonospheric parameter (seconds/semi-circle)                      |           |  |  |  |
| β2                   | 8    | int8      | 112    | 2 <sup>16</sup>  |            | lonospheric parameter (seconds/semi-circle)                      |           |  |  |  |
| <i>β</i> 3           | 8    | int8      | 120    | 2 <sup>16</sup>  |            | lonospheric parameter (seconds/semi-circle)                      |           |  |  |  |
| A1                   | 24   | int24     | 128    | 2-50             |            | First order terms of polynomial                                  |           |  |  |  |
| A0                   | 32   | int32     | 152    | 2-30             |            | Constant terms of polynomial                                     |           |  |  |  |
| Tot                  | 8    | int8      | 184    | 2 <sup>12</sup>  |            | Reference time for UTC data                                      |           |  |  |  |
| Wnt                  | 8    | uint8     | 192    |                  | 0-255      | UTC reference week number                                        |           |  |  |  |
| ⊿tLS                 | 8    | int8      | 200    |                  |            | GPS-UTC differences at reference time                            |           |  |  |  |
| WnLSF                | 8    | uint8     | 208    |                  | 0-255      | Week number when leap second became effective                    |           |  |  |  |
| DN                   | 8    | uint8     | 216    |                  | 0-7        | Day number when leap second became effec-<br>tive                |           |  |  |  |
| ⊿tLSF                | 8    | int8      | 224    |                  |            | Delta time between GPS and UTC after correc-<br>tion             |           |  |  |  |
|                      |      |           |        | EN               | D TRANSPOR | λΤ.                                                              |           |  |  |  |
| CRC                  | 24   | uint24    | 232    |                  |            | 24-bit Cyclic Redundancy Check (CRC)                             |           |  |  |  |
| Total                | 256  |           |        |                  |            |                                                                  |           |  |  |  |

# **GPS Full Time** This message contains the full set of GPS time parameters.

# Parameters

- Output logic: on time
- Message binary size: 16 bytes (128 bits)
- How to request? \$PASHS,ATM,NAV,<Port Name>,ON,x,&GFT
- Permissible intervals x (sec): 1, 2, 3, etc., each integer second but less than 999.
- See also: RTCM-3 MT 1013

| Data item            | Bits | Data type | Offset | Scale      | Range     | Comments                                                         | DF Number |  |  |  |
|----------------------|------|-----------|--------|------------|-----------|------------------------------------------------------------------|-----------|--|--|--|
|                      |      |           |        | START      | TRANSPORT | •                                                                |           |  |  |  |
| Transport Preamble   | 8    | uint8     | 0      |            |           | Set to 0xD3 (HEX Code)                                           |           |  |  |  |
| Reserved             | 6    | bit6      | 8      |            |           | Set to 000000                                                    |           |  |  |  |
| Message Length       | 10   | unt10     | 14     |            |           | Message length in bytes. Set to 10 for this message              |           |  |  |  |
| MESSAGE HEADER       |      |           |        |            |           |                                                                  |           |  |  |  |
| Message number       | 12   | uint12    | 24     |            | 1001-4095 | 4095 is reserved for Ashtech                                     | DF002     |  |  |  |
| Message sub-number   | 4    | uint4     | 36     |            | 0-15      | 5 is reserved for ATOM NAV message                               |           |  |  |  |
| Version              | 3    | uint3     | 40     |            | 0-7       | ATOM version number, set to 1                                    |           |  |  |  |
| Reference station ID | 12   | uint12    | 43     |            | 0-4095    | Reference station ID                                             | DF003     |  |  |  |
| NAV message type     | 9    | uint9     | 55     |            | 0-511     | Specifies which NAV message follows. For this message, set to 22 |           |  |  |  |
|                      |      | •         | •      | MES        | SAGE DATA | •                                                                | •         |  |  |  |
| TOW                  | 20   | uint20    | 64     | 0 - 604799 | sec       | GPS time of week                                                 | DF004     |  |  |  |
| WN                   | 12   | uint12    | 84     | 0 - 4095   | week      | GPS week number                                                  | DF076     |  |  |  |
| GPS-UTC              | 6    | uint6     | 96     | 0 - 63     | sec       | GPS-UTC time shift, 63 means unknown                             | DF054     |  |  |  |
| Reserved             | 2    | bit2      | 102    |            |           | Set to 00                                                        |           |  |  |  |
|                      |      |           |        | END        | TRANSPORT | ·                                                                |           |  |  |  |
| CRC                  | 24   | uint24    | 104    |            |           | 24-bit Cyclic Redundancy Check (CRC)                             |           |  |  |  |
| Total                | 128  |           |        |            |           |                                                                  |           |  |  |  |

# **ATOM DAT Messages**

Messages of the DAT (raw DATa) group contain original binary data. Particularly, this group contains GPS, GLONASS and SBAS raw navigation data (streams). Processing raw navigation data, users can extract any navigation information, particularly that from ATOM NAV messages. All DAT messages can be requested independently of each other. For each navigation system, DAT messages are always of fixed length. For messages of this group, there is no need to specify intervals between messages. A message is output after a new frame has been decoded.

The set of default ATOM DAT messages can be enabled/disabled using the following command:

#### \$PASHS,ATM,DAT,<Port Name>,ON/OFF

The general organization of the DAT message is presented on the diagram below.



## DAT Message Organization:

| Data item            | Bits | Data type | Offset | Scale | Range      | Comments                             | DF Number |  |  |
|----------------------|------|-----------|--------|-------|------------|--------------------------------------|-----------|--|--|
| START TRANSPORT      |      |           |        |       |            |                                      |           |  |  |
| Transport Preamble   | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)               |           |  |  |
| Reserved             | 6    | bit6      | 8      |       |            | Set to 000000                        |           |  |  |
| Message Length       | 10   | unt10     | 14     |       |            | Message length in bytes              |           |  |  |
| MESSAGE HEADER       |      |           |        |       |            |                                      |           |  |  |
| Message number       | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech         | DF002     |  |  |
| Message sub-number   | 4    | uint4     | 36     |       | 0-15       | 6 is reserved for ATOM DAT message   |           |  |  |
| Version              | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1        |           |  |  |
| Reference station ID | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                 | DF003     |  |  |
| DAT message type     | 9    | uint9     | 55     |       | 0-511      | Specifies which DAT message follows  |           |  |  |
|                      |      |           |        | M     | ESSAGE DA  | TA                                   |           |  |  |
| Raw Data content     |      |           |        |       |            | See sub-sections below               |           |  |  |
|                      |      |           |        | EN    | ID TRANSPO | RT                                   |           |  |  |
| CRC                  | 24   | uint24    |        |       |            | 24-bit Cyclic Redundancy Check (CRC) |           |  |  |
| Total                |      |           |        |       |            |                                      |           |  |  |

The supported DAT messages are presented in the table below.

| NAV message type | ASCII identifier | Attribute description    | Comments                                                                           | Counterpart |
|------------------|------------------|--------------------------|------------------------------------------------------------------------------------|-------------|
| 1                | GPS              | GPS raw navigation data  | All raw data from GPS signal                                                       | N/A         |
| 2                | GLO              | GLO raw navigation data  | All raw data from GLONASS signal                                                   | N/A         |
| 3                | SBA              | SBAS raw navigation data | All raw data from SBAS signal                                                      | \$PASHR,SBD |
| 11               | EXT              | Original binary stream   | Data entering (flowing inside) receiver<br>via internal/external port(s) / sockets | N/A         |

**GPS Raw** This message contains a GPS raw subframe. A raw GPS subframe is 300 bits in total. **Subframe** For detailed information about the structure of GPS raw subframes, please refer to *ICD-GPS-200*. Note that any bit inversion in subframe data has been removed, so the first byte in the data buffer will be 0x8B (Hex) - TLM word preamble.

- Output logic: on change
- Message binary size: 52 bytes (416 bits)
- How to request? \$PASHS,ATM,DAT,<Port Name>,ON,&GPS
- Permissible intervals x (sec): N/A
- See also: N/A

| Data item            | Bits     | Data type | Offset | Scale | Range       | Comments                                                        | DF Number |  |
|----------------------|----------|-----------|--------|-------|-------------|-----------------------------------------------------------------|-----------|--|
|                      | <u> </u> |           |        | ę     | START TRANS | PORT                                                            | •         |  |
| Transport Preamble   | 8        | uint8     | 0      |       |             | Set to 0xD3 (HEX Code)                                          |           |  |
| Reserved             | 6        | bit6      | 8      |       |             | Set to 000000                                                   |           |  |
| Message Length       | 10       | unt10     | 14     |       |             | Message length in bytes. Set to 46 for this message             |           |  |
| MESSAGE HEADER       |          |           |        |       |             |                                                                 |           |  |
| Message number       | 12       | uint12    | 24     |       | 1001-4095   | 4095 is reserved for Ashtech                                    | DF002     |  |
| Message sub-number   | 4        | uint4     | 36     |       | 0-15        | 6 is reserved for ATOM DAT message                              |           |  |
| Version              | 3        | uint3     | 40     |       | 0-7         | ATOM version number, set to 1                                   |           |  |
| Reference station ID | 12       | uint12    | 43     |       | 0-4095      | Reference station ID                                            | DF003     |  |
| DAT message type     | 9        | uint9     | 55     |       | 0-511       | Specifies which DAT message follows. For this message, set to 1 |           |  |
| MESSAGE DATA         |          |           |        |       |             |                                                                 |           |  |
| Sat ID               | 6        | uint6     | 64     |       | 1-32        | Satellite PRN number<br>0: Sat ID is not defined                | DF009     |  |
| Signal ID            | 3        | uint3     | 70     |       | 0-7         | Type of signal<br>0: Signal is not defined<br>1: L1CA signal    |           |  |
| Channel number       | 8        | uint8     | 73     |       | 0-255       | Receiver channel number<br>0: channel number is unknown         |           |  |
| Subframe             | 3        | uint3     | 81     |       | 1-5         | GPS subframe number                                             |           |  |
| Reserved             | 4        | bit4      | 84     |       |             | Set to 0000                                                     |           |  |
| Subframe data        | 300      | bit300    | 88     |       |             | GPS raw subframe                                                |           |  |
| Reserved             | 4        | bit4      | 388    |       |             | Set to 0000                                                     |           |  |
|                      |          |           |        |       | END TRANSF  | ORT                                                             |           |  |
| CRC                  | 24       | uint24    | 392    |       |             | 24-bit Cyclic Redundancy Check (CRC)                            |           |  |
| Total                | 416      |           |        |       |             | ·                                                               | •         |  |

**GLONASS Raw** This message contains GLONASS raw string data. A GLONASS raw string is 100 bits in total. For detailed information about the structure of GLONASS raw strings, please refer to the *GLONASS ICD*.

- Output logic: on change
- Message binary size: 28 bytes (224 bits)
- How to request? \$PASHS,ATM,DAT,<Port Name>,ON,&GLO
- Permissible intervals x (sec): N/A
- See also: N/A

| Data item                   | Bits | Data type | Offset | Scale | Range      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DF Number |
|-----------------------------|------|-----------|--------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| START TRANSPORT             | _    |           |        |       | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>  |
| Transport Preamble          | 8    | uint8     | 0      |       |            | Set to 0xD3 (HEX Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| Reserved                    | 6    | bit6      | 8      |       |            | Set to 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| Message Length              | 10   | unt10     | 14     |       |            | Message length in bytes. Set to 22 for this message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                             |      |           |        | MESS  | SAGE HEADE | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Message number              | 12   | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DF002     |
| Message sub-number          | 4    | uint4     | 36     |       | 0-15       | 6 is reserved for ATOM DAT message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| Version                     | 3    | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| Reference station ID        | 12   | uint12    | 43     |       | 0-4095     | Reference station ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DF003     |
| DAT message type            | 9    | uint9     | 55     |       | 0-511      | Specifies which DAT message follows. For this message, set to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                             |      |           |        | ME    | SSAGE DATA | l de la constante de la consta |           |
| Sat ID                      | 5    | uint5     | 64     |       | 1-24       | GLONASS satellite number<br>0: Sat ID is not defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DF038     |
| Signal ID                   | 3    | bit3      | 69     |       | 0-7        | Type of signal<br>0: Signal is not defined<br>1: L1CA signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| Channel number              | 8    | uint8     | 72     |       | 0-255      | Receiver channel number<br>0: channel number is unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| Frequency Channel<br>number | 5    | uint5     | 80     |       | 0-31       | The GLONASS Satellite Frequency Channel<br>Number identifies the frequency of the<br>GLONASS satellite.<br>0 indicates channel number –07<br>1 indicates channel number –06<br><br>13 indicates channel number +6<br>31 indicates invalid channel number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DF040     |
| String Number               | 4    | uint4     | 85     |       | 1-15       | GLONASS string number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| Reserved                    | 7    | bit7      | 89     |       |            | Set to 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t         |
| String data                 | 100  | bit100    | 96     |       |            | GLONASS string                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| Reserved                    | 4    | bit4      | 196    |       |            | Set to 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|                             |      |           |        | END   | TRANSPOR   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| CRC                         | 24   | uint24    | 200    |       |            | 24-bit Cyclic Redundancy Check (CRC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Total                       | 224  |           |        |       |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |

**SBAS Subframe** This message contains an SBAS raw subframe. A raw SBAS subframe is 250 bits in total. For detailed information about the structure of SBAS raw subframes, please refer to the *WAAS ICD*.

- Output logic: on change
- Message binary size: 49 bytes (392 bits)
- How to request? \$PASHS,ATM,DAT,<Port Name>,ON,&SBA
- Permissible intervals x (sec): N/A
- See also: \$PASHR,SBD

| Data item            | Bits     | Data type | Offset | Scale | Range      | Comments                                                                                               | DF Number |  |  |
|----------------------|----------|-----------|--------|-------|------------|--------------------------------------------------------------------------------------------------------|-----------|--|--|
| START TRANSPORT      |          |           |        |       |            |                                                                                                        |           |  |  |
| Transport Preamble   | 8        | uint8     | 0      | 1     |            | Set to 0xD3 (HEX Code)                                                                                 |           |  |  |
| Reserved             | 6        | bit6      | 8      |       |            | Set to 000000                                                                                          |           |  |  |
| Message Length       | 10       | unt10     | 14     |       |            | Message length in bytes. Set to 43 for this message                                                    |           |  |  |
| MESSAGE HEADER       |          |           |        |       |            |                                                                                                        |           |  |  |
| Message number       | 12       | uint12    | 24     |       | 1001-4095  | 4095 is reserved for Ashtech                                                                           | DF002     |  |  |
| Message sub-number   | 4        | uint4     | 36     |       | 0-15       | 6 is reserved for ATOM DAT message                                                                     |           |  |  |
| Version              | 3        | uint3     | 40     |       | 0-7        | ATOM version number, set to 1                                                                          |           |  |  |
| Reference station ID | 12       | uint12    | 43     |       | 0-4095     | Reference station ID                                                                                   | DF003     |  |  |
| DAT message type     | 9        | uint9     | 55     |       | 0-511      | Specifies which DAT message follows. For this message, set to 3                                        |           |  |  |
|                      | <u> </u> |           |        | М     | ESSAGE DAT | Ā                                                                                                      |           |  |  |
| Sat ID               | 5        | uint5     | 64     |       | 0-19       | SBAS satellite number<br>0: Sat ID is not defined<br>1 -> PRN#120<br>2 -> PRN#121<br><br>19 -> PRN#138 |           |  |  |
| Signal ID            | 3        | bit3      | 69     |       | 0-7        | Type of signal<br>0: Signal is not defined<br>1: L1CA signal                                           |           |  |  |
| Channel number       | 8        | uint8     | 72     |       | 0-255      | Receiver channel number<br>0: channel number is unknown                                                |           |  |  |
| Message Type         | 6        | uint6     | 80     |       | 0-63       | SBAS subframe number                                                                                   |           |  |  |
| Receiver time (GPS)  | 20       | uint20    | 86     | 1 sec | 0-604799   | GPS second within GPS week, 2 <sup>20-1</sup> if not defined                                           | DF004     |  |  |
| Reserved             | 6        | bit6      | 106    |       |            | Set to 000000                                                                                          |           |  |  |
| Subframe data        | 250      | bit250    | 112    |       |            | SBAS subframe data                                                                                     |           |  |  |
| Reserved             | 6        | bit6      | 362    |       |            | Set to 000000                                                                                          |           |  |  |
|                      |          |           |        | EN    | ID TRANSPO | RT                                                                                                     |           |  |  |
| CRC                  | 24       | uint24    | 368    |       |            | 24-bit Cyclic Redundancy Check (CRC)                                                                   |           |  |  |
| Total                | 392      |           |        |       |            | ·                                                                                                      |           |  |  |

**EXTernal Port** This message contains the binary data entering (and traveling inside) the receiver via one of its ports. Particularly this message can contain incoming differential corrections and/or commands used to configure the receiver.

- Output logic: on change
- Message binary size: Depends on buffer organization
- How to request? \$PASHS,ATM,DAT,<Port Name>,ON,&EXT
- Permissible intervals x (sec): N/A
- See also: N/A

Structure & Content:

| Data item               | Bits | Data type | Offset | Scale  | Range     | Comments                                                                                                                                                                                  | DF Number |  |  |
|-------------------------|------|-----------|--------|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| START TRANSPORT         |      |           |        |        |           |                                                                                                                                                                                           |           |  |  |
| Transport Preamble      | 8    | uint8     | 0      |        |           | Set to 0xD3 (HEX Code)                                                                                                                                                                    |           |  |  |
| Reserved                | 6    | bit6      | 8      |        |           | Set to 000000                                                                                                                                                                             |           |  |  |
| Message Length          | 10   | unt10     | 14     |        |           | Message length in bytes.                                                                                                                                                                  |           |  |  |
| MESSAGE HEADER          |      |           |        |        |           |                                                                                                                                                                                           |           |  |  |
| Message number          | 12   | uint12    | 24     |        | 1001-4095 | 4095 is reserved for Ashtech                                                                                                                                                              | DF002     |  |  |
| Message sub-number      | 4    | uint4     | 36     |        | 0-15      | 6 is reserved for ATOM DAT message                                                                                                                                                        |           |  |  |
| Version                 | 3    | uint3     | 40     |        | 0-7       | ATOM version number, set to 1                                                                                                                                                             |           |  |  |
| Reference station ID    | 12   | uint12    | 43     |        | 0-4095    | Reference station ID                                                                                                                                                                      | DF003     |  |  |
| DAT message type        | 9    | uint9     | 55     |        | 0-511     | Specifies which DAT message follows. For this message set to 11                                                                                                                           |           |  |  |
| MESSAGE DATA            |      |           |        |        |           |                                                                                                                                                                                           |           |  |  |
| Source identifier       | 16   | uint16    |        |        | 0-65535   | The port/socket original data come from.<br>65535 means no source defined                                                                                                                 |           |  |  |
| Reserved                | 16   | Bit16     |        |        | 0-65535   | Set to 00                                                                                                                                                                                 |           |  |  |
| Cumulative data counter | 8    | uint8     |        |        | 0-255     | Incremented with each new data portion cor-<br>responding to the same source identifier                                                                                                   |           |  |  |
| Type of data packing    | 6    | uint6     |        |        | 0-63      | Specifies original data packing method<br>0: Original binary data<br>1: Inverted original binary data<br>2: Adding number 2 to each byte<br>3-62: reserved<br>63: unknown type of packing |           |  |  |
| Length of data, X       | 10   | Uint10    |        |        | 0-1000    | The length of data (in bytes) which follow.<br>Length > 1000 is invalid                                                                                                                   |           |  |  |
| The data                | 8*X  | Char(X)   |        |        |           | The spied data themselves. Each byte is<br>converted with "Type of data packing" algo-<br>rithm                                                                                           |           |  |  |
|                         |      |           |        | END TH | RANSPORT  |                                                                                                                                                                                           |           |  |  |
| CRC                     | 24   | uint24    |        |        |           | 24-bit Cyclic Redundancy Check (CRC)                                                                                                                                                      |           |  |  |
| Total                   |      |           |        |        |           |                                                                                                                                                                                           |           |  |  |

Adding Number 2 (examples):

| Original byte | Converted byte |
|---------------|----------------|
| 0x13          | 0x15           |
| 0xAF          | 0xB1           |
| 0xFE          | 0x00           |
| 0xFF          | 0x01           |

# Source Identifiers:

| Code     | Source description                           | Comment                                  |
|----------|----------------------------------------------|------------------------------------------|
| 0        | Port A                                       | The data from physical port A are packed |
| 1        | Port B                                       | The data from physical port B are packed |
| 2        | Port C                                       | The data from physical port C are packed |
| 3-22     | Reserved for other physical or virtual ports |                                          |
| 23       | Port X                                       | The data from virtual port X are packed  |
| 24       | Port Y                                       | The data from virtual port Y are packed  |
| 25       | Port Z                                       | The data from virtual port Z are packed  |
| 26-65535 | Reserved for other sources identifiers       |                                          |

The ATOM DAT (EXT) message is universal. Referring to physical receiver ports (source description 0, 1, 2), it allows users to spy all the data entering the receiver via its ports A, B, C, etc. There is no need to parse the incoming data. The ATOM coder just takes the appropriate part from the input stream (buffer), wraps it into an ATOM DAT (EXT) message which is then output via the desired receiver port(s). Thus ATOM DAT (EXT) is a very effective transport to do the following:

- Spy all receiver configuration oriented commands (from whichever port) without the need to parse them.
- Spy incoming differential stream(s) without the need to decode them.

It is worth noting that, being requested to be output via a given receiver port, ATOM DAT (EXT) will not interfere with any other receiver message requested on the same port (data packing methods are applied to additionally guarantee that the content of spied data will not be recognized mechanically by other procedures). The composite log file can then be easily processed to extract all the spied data, for example to create a reference station raw data file.

# **ATOM RNX Message**

The ATOM RNX (RiNeX) message is intended to generate receiver observations to allow their future, effective, unambiguous conversion to RINEX-3. In that sense, the RNX message does the same job as BINEX, but with much better throughput efficiency, flexibility and compatibility.

In most cases, this message can also be used as differential protocol between RTK base and RTK rover. The RNX message can contain observables from more than one GNSS and (optionally) receiver reference position (stationary or moving).

The RNX message can be customized using the existing serial interface. Customization may range from fully expanded to fully compacted, allowing users to select the desired trade-off between message size and data availability.

The RNX message supports the generation of different GNSS (as well as reference position) inside separated ATOM transmissions, as well as inside a single ATOM transmission. The description below is focused on the latter case while staying a general description of the message.

To match general RTCM-3 standards, observables presented in the ATOM RNX messages are always steered for the receiver clock offset. At the same time, an optional ATOM RNX block provides the original receiver clock offset and clock drift. So the decoding equipment can restore original (i.e. not steered) observables if needed.

The particularities that stand behind generating, presenting and restoring the ATOM RNX message can be found in *Compression Options for ATOM RNX and BAS Observables on page 77* and Appendices C, D, E and F from *page 93*.

The default ATOM RNX message can be enabled/disabled using the following command:

# \$PASHS,ATM,RNX,<Port Name>,ON/OFF

The general organization of the RNX message is presented below.



Fig. 1. ATOM RNX Message Organization

Message • Output logic: on time

#### Structure and Header

- Message binary size: Depends on message content
- How to request? \$PASHS,ATM,RNX,<Port Name>,ON,x
- **Permissible intervals x (sec)**: 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120 etc., each integer minute but less than 15 min.
- See also: \$PASHR,MPC; \$PASHR,PBN; RTCM-3 MT 1001-1006, 1009-1012; RTCM-2 MT 18, 19, 24

| Data item                                                                                                                                                     | Bits                                                                                                                                    | Data type    | Offset    | Scale   | Range        | Comments                                                                                                               | DF Number |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------|--------------|------------------------------------------------------------------------------------------------------------------------|-----------|--|
|                                                                                                                                                               |                                                                                                                                         |              |           | STAF    | T TRANSP     | ORT                                                                                                                    |           |  |
| Transport Preamble                                                                                                                                            | 8                                                                                                                                       | uint8        | 0         |         |              | Set to 0xD3 (HEX Code)                                                                                                 |           |  |
| Reserved                                                                                                                                                      | 6                                                                                                                                       | bit6         | 8         |         |              | Set to 000000                                                                                                          |           |  |
| Message Length                                                                                                                                                | 10                                                                                                                                      | unt10        | 14        |         |              | Message length in bytes                                                                                                |           |  |
|                                                                                                                                                               |                                                                                                                                         |              |           | MES     | SAGE HEA     | DER                                                                                                                    |           |  |
| Message number                                                                                                                                                | 12                                                                                                                                      | uint12       | 24        |         | 1001-4095    | 4095 is reserved for Ashtech                                                                                           | DF002     |  |
| Message sub-number                                                                                                                                            | 4                                                                                                                                       | uint4        | 36        |         | 0-15         | 7 is reserved for ATOM RNX                                                                                             |           |  |
| Version                                                                                                                                                       | 3                                                                                                                                       | uint3        | 40        |         | 0-7          | ATOM version number, set to 1                                                                                          |           |  |
| Reference station ID                                                                                                                                          | 12                                                                                                                                      | uint12       | 43        |         | 0-4095       | Reference station ID                                                                                                   | DF003     |  |
| Multiple message bit                                                                                                                                          | 1                                                                                                                                       | bit1         | 55        |         | 0-1          | 1, if more ATOM RNX data follow tagged to<br>the same physical time and reference station<br>ID                        |           |  |
| Reserved                                                                                                                                                      | 6                                                                                                                                       | bit6         | 56        |         | 0-63         | Set to 000000                                                                                                          |           |  |
| Position presentation                                                                                                                                         | 2                                                                                                                                       | bit2         | 62        |         | 0-3          | 0: position does not follow<br>1: compact position follows<br>2: extended position follows<br>3: full position follows |           |  |
| GNSS mask     8     bit8     64     0-255     Bit1: GPS data follow<br>Bit2: SBAS data follow<br>Bit3: GLONASS data follow<br>Bit4-8: reserved for other GNSS |                                                                                                                                         |              |           |         |              |                                                                                                                        |           |  |
| Primary GNSS system                                                                                                                                           | nary GNSS system 3 bit3 72 0-7 0: GPS is primary<br>1: reserved for other GNSS<br>2: GLONASS is primary<br>2-7: reserved for other GNSS |              |           |         |              |                                                                                                                        |           |  |
| Time tag                                                                                                                                                      | 21                                                                                                                                      | bit21        | 75        |         |              | See Table 2, Table 3 and Table 4.                                                                                      |           |  |
| Reserved                                                                                                                                                      | 8                                                                                                                                       | bit8         | 96        |         | 0-255        | Set to 00000000                                                                                                        |           |  |
| -                                                                                                                                                             | F                                                                                                                                       | IRST GNSS    | BLOCK     | DATA (  | see GNSS r   | nask in the message header)                                                                                            |           |  |
| Observables Mask                                                                                                                                              | 16                                                                                                                                      |              |           |         |              | See Table 5.                                                                                                           |           |  |
| Capability Mask                                                                                                                                               | [72]                                                                                                                                    |              |           |         |              | See Table 6.                                                                                                           |           |  |
| Cell Mask                                                                                                                                                     | [<64]                                                                                                                                   |              |           |         |              | See Table 7.                                                                                                           |           |  |
| Satellite Data                                                                                                                                                | []                                                                                                                                      |              |           |         |              | See Table 8.                                                                                                           |           |  |
| Signal Data                                                                                                                                                   | []                                                                                                                                      |              |           |         |              | See Table 9.                                                                                                           |           |  |
|                                                                                                                                                               | SE                                                                                                                                      | COND GNS     | S BLOC    | K DATA  | (see GNSS    | mask in the message header)                                                                                            |           |  |
| Meanings of data packing an                                                                                                                                   | d fields                                                                                                                                | are the same | e for eac | h GNSS  | 6            |                                                                                                                        |           |  |
|                                                                                                                                                               |                                                                                                                                         | N-th GNSS I  | BLOCK [   | DATA (s | ee GNSS m    | ask in the message header)                                                                                             |           |  |
| Meanings of data packing an                                                                                                                                   | d fields                                                                                                                                | are the same | e for eac | h GNSS  | 6            |                                                                                                                        |           |  |
|                                                                                                                                                               | REFE                                                                                                                                    | RENCE POS    | SITION (  | see pos | ition presen | tation flag in the message header)                                                                                     |           |  |
| Reference position                                                                                                                                            |                                                                                                                                         |              |           |         |              | See Table 10, Table 11 and Table 12.                                                                                   |           |  |
|                                                                                                                                                               |                                                                                                                                         |              |           | END     | D TRANSPC    | DRT                                                                                                                    |           |  |
| CRC                                                                                                                                                           | 24                                                                                                                                      | uint24       |           |         |              | 24-bit Cyclic Redundancy Check (CRC)                                                                                   |           |  |
| Total                                                                                                                                                         |                                                                                                                                         |              |           |         |              |                                                                                                                        |           |  |

| Table 1. ATOM RNX Message | Structure & C | ontent |
|---------------------------|---------------|--------|
|---------------------------|---------------|--------|

NOTES:

• The sequence of GNSS data is fixed and always follows "GNSS mask" (GPS, then SBAS, then GLONASS) regardless of the primary GNSS used.

- Reference position is always last and can be presented in different forms as indicated by the "Position presentation" flag.
- The Multiple message bit allows the complete GNSS data epoch (including reference position) to be compiled from different ATOM RNX messages tagged to the same physical receiver time.



#### Fig. 2. Time Tag Organization

Table 2. Time Tag Presentation

| Data item               | Bits | Data type | Offset | Scale    | Range  | Comments                                                                 | DF Number |
|-------------------------|------|-----------|--------|----------|--------|--------------------------------------------------------------------------|-----------|
| Primary time tag        | 12   | uint12    | 0      | 1 second | 0-3599 | GNSS time modulo 1 hour, 4095 means invalid time                         |           |
| Time tag extension type | 1    | bit1      | 12     |          | 0-1    | 0: full time tag extension follows<br>1: fine time tag extension follows |           |
| Time tag extension      | 8    |           | 13     |          |        | Primary time tag extension (see <i>Table 3</i> and <i>Table 4</i> ).     |           |
| Total                   | 21   |           |        |          |        |                                                                          |           |

Table 3. Full Time Tag Presentation

| Data item | Bits | Data type | Offset | Scale  | Range | Comments                                                                                      | DF Number |
|-----------|------|-----------|--------|--------|-------|-----------------------------------------------------------------------------------------------|-----------|
| Hour      | 5    | uint5     | 0      | 1 hour | 0-23  | GNSS hour within GNSS day                                                                     |           |
| Day       | 3    | uint3     | 5      | 1 day  | 0-6   | Set to GPS day (06) within GPS week, 0 is<br>Sunday, 1 is Monday etc.<br>Set to 0 for GLONASS |           |
| Total     | 8    |           |        |        |       |                                                                                               |           |

| Tabla 1  | Fino  | Timo | taa | Procontation |
|----------|-------|------|-----|--------------|
| Table 4. | riile | nine | Lag | Fresentation |

| Data item         | Bits | Data type | Offset | Scale | Range | Comments               | DF Number |
|-------------------|------|-----------|--------|-------|-------|------------------------|-----------|
| Fractional second | 8    | uint8     | 0      | 5 ms  | 0-995 | GNSS time modulo 1 sec |           |
| Total             | 8    |           |        |       |       |                        |           |

NOTES:

- The time tag always refers to the time scale of the primary GNSS system used, i.e. UTC + NIs (where NIs is the number of leap seconds, i.e.15 as from Jan 1 2009) for GPS, and UTC-3 hours for GLONASS
- The size of the time tag is always fixed.
- Using the switchable time tag presentation, users can cover a full range of GNSS time tags with fine resolution. If the time tag is an integer second, the ATOM generator will insert full extension information to reduce the whole time tag ambiguity down to the GPS week number or GLONASS day number. If the time tag is a fractional second,

then the ATOM generator will insert a fine time tag extension thus allowing data to be generated at up to 200 Hz.

- If a leap second occurs, the primary time tag is set to 3600.
- **GNSS Header** The GNSS header is described below by sequentially introducing the description of the Observable mask (fixed size), the optional Capability mask (fixed size), and the optional Cell mask (float size).

| Data item              | Bits | Data type | Offset | Scale  | Range | Comments                                                                                                                    | DF Number |
|------------------------|------|-----------|--------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------|-----------|
|                        |      |           | OBSEF  | RVABLE | MASK  |                                                                                                                             |           |
| Data ID change counter | 5    | uint5     | 0      |        | 0-31  | Incremented each time the content of<br>capability or cell mask is changed                                                  |           |
| Data ID follow         | 1    | bit1      | 5      |        | 0-1   | 0: no capability&cell mask follow<br>1: capability&cell mask follow                                                         |           |
| N <sub>ms</sub> follow | 1    | bit1      | 6      |        | 0-1   | 0: no N <sub>ms</sub> follow<br>1: N <sub>ms</sub> follow                                                                   |           |
| Supplementary follow   | 2    | bit2      | 7      |        | 0-3   | 0: no supplementary data follow<br>1: compact supplementary data follow<br>2: full supplementary data follow<br>3: reserved |           |
| Pseudo-range follow    | 2    | bit2      | 9      |        | 0-3   | 0: no pseudo-range follow<br>1: fine pseudo-range follow<br>2: full pseudo-range follow<br>3: reserved                      |           |
| Carrier phase follow   | 2    | bit2      | 11     |        | 0-3   | 0: no carrier phase follow<br>1: fractional carrier phase follow<br>2: full carrier phase follow<br>3: reserved             |           |
| Reserved               | 3    | bit3      | 13     |        | 0-7   | Set to 000                                                                                                                  |           |
| Total                  | 16   |           |        |        |       |                                                                                                                             |           |

| TADIE J. ODSELVADIE IVIASK DESCITIDUOT | Table 5. | Observable | Mask | Description |
|----------------------------------------|----------|------------|------|-------------|
|----------------------------------------|----------|------------|------|-------------|

Table 6. Capability Mask Description (inserted if "Data ID follow"=1 in Observable mask)

| Data item      | Bits | Data type | Offset | Scale     | Range | Comments        | DF Number |
|----------------|------|-----------|--------|-----------|-------|-----------------|-----------|
|                |      |           | CAPAB  | ILITY MAS | SΚ    |                 |           |
| Satellite mask | 40   | bit40     | 0      |           |       | See Appendix E  |           |
| Signal mask    | 24   | bit24     | 40     |           |       | See Appendix E  |           |
| Reserved       | 8    | bit8      | 64     |           |       | Set to 00000000 |           |
| Total          | 72   |           |        |           |       |                 |           |

Table 7. Cell Mask Description (inserted if "Data ID follow"=1 in Observable mask)

| Data item | Bits           | Data type | Offset | Scale | Range | Comments       | DF Number |
|-----------|----------------|-----------|--------|-------|-------|----------------|-----------|
| CELL MASK |                |           |        |       |       |                |           |
| Cell mask | X= Nsat x Nsig | bitX      |        |       |       | See Appendix E |           |
| Total     | X≤ 64          |           |        |       |       |                |           |

#### NOTES:

- The Cell mask is of float size, but its size is known after decoding the capability mask (see *Table 6*).
- Nsat is the number of tracked satellites (the number of 1's in Satellite mask), Nsig is the number of available signals (the number of 1's in Signal mask).
- The ATOM generator checks X, and if it is actually >64, then ATOM RNX data are to be split into more than one transmission, in which case the Multiple message bit in the ATOM RNX header is set accordingly (see *Table 1*).

- The availability of the "Data ID change counter" allows the decimation of the Capability and Cell masks to be applied. For some epochs, observations can come without identification information. In this case, the previously decoded identification information can be used, provided the Data ID change counter has not changed meanwhile.
- **Satellite Data** Satellite data have three optional blocks that can be inserted in the message, depending on configuration bits in the Observable mask (see *Table 5*). These blocks contain the information common to each signal from the same satellite.

In each of these three blocks, the field(s) having the same meaning for each of the satellites from a given GNSS are internally repeated Nsat times in order to output the value(s) of this or these fields for each of the satellites. The value of Nsat is known after decoding the Capability mask (see *Table 6*).

| Data item                                | Bits               | Data type                 | Offset | Scale     | Range              | Comments                                                                            | DF Number |
|------------------------------------------|--------------------|---------------------------|--------|-----------|--------------------|-------------------------------------------------------------------------------------|-----------|
|                                          |                    |                           |        | SATELLI   | TE DATA            |                                                                                     |           |
| Integer number of ms in Satellite ranges | 8 x<br>Nsat times  | uint8(N <sub>sat</sub> )  |        | 1 ms      | 0-255 ms           | Inserted if Nms follows                                                             | DF014     |
| Satellite rough range modulo 1 ms        | 10 x<br>Nsat times | uint10(N <sub>sat</sub> ) |        | 1/1024 ms | 0-(1023 / 1024) ms | Inserted if full pseudo-range follows                                               |           |
| Extended Satellite supplementary data    | 32 x<br>Nsat times | bit32(N <sub>sat</sub> )  |        |           |                    | Inserted if full supplementary data follow (See Extended ATOM RNX Data on page 63). |           |
| Total                                    |                    |                           |        |           |                    |                                                                                     |           |

NOTE:

- Considering "Integer number of ms in Satellite range" for example, "repeating" this field means that the value of the field will be provided in succession for each of the satellites for which the Satellite mask is "1" (see *Table 6*). With 10 tracked satellites for example, the field size will finally be 80=10 x 8 bits.
- **Signal Data** Signal data have five optional blocks that can be inserted in the message, depending on configuration bits in the Observable mask (see *Table 5*). These blocks contain information specific to each signal.

In each of these five blocks, the field(s) having the same meaning for each of the signals from a given GNSS are internally repeated Ncell times in order to output the value(s) of this or these fields for each of the signals. The value of Ncell is known after decoding the Cell mask (see *Table 7*).

| Data item                                | Bits                   | Data type                  | Offset | Scale       | Range             | Comments                                                                                  | DF Number |  |
|------------------------------------------|------------------------|----------------------------|--------|-------------|-------------------|-------------------------------------------------------------------------------------------|-----------|--|
| SIGNAL DATA                              |                        |                            |        |             |                   |                                                                                           |           |  |
| Fine pseudo-range data                   | 15<br>Ncell times      | uint15(N <sub>cell</sub> ) |        | 0.02m       | 0-655.34 m        | Inserted if fine or full pseudo-<br>range follows                                         |           |  |
| Integer cycle carrier<br>phase data      | 16=4+12<br>Ncell times | uint16(N <sub>cell</sub> ) |        | 1 cycle     | 0-4095 cycle      | Inserted if full carrier phase fol-<br>lows (see notes below)                             |           |  |
| Fractional cycle car-<br>rier phase data | 8<br>Ncell times       | uint8(N <sub>cell</sub> )  |        | 1/256 cycle | 0-(255/256) cycle | Inserted if fractional or full carrier<br>phase follows                                   |           |  |
| SNR                                      | 6<br>Ncell times       | uint6(N <sub>cell</sub> )  |        | 1dBHz       | 0-63 dBHz         | Inserted if compact or full supple-<br>mentary data follow                                |           |  |
| Extended supplemen-<br>tary data         | 56<br>Ncell times      | bit56(N <sub>cell</sub> )  |        |             |                   | Inserted if full supplementary data follow (see <i>Extended ATOM RNX Data on page</i> 63) |           |  |
| Total                                    |                        |                            |        |             | •                 | •                                                                                         | •         |  |

Table 9. Signal Data

NOTES:

- Considering "Fine pseudo-range data" for example, "repeating" this field means that the value of this field will be provided in succession for each of the signals for which the Cell mask is "1" (see *Table 7*). With 20 available cells, the field size will finally be 300=20x15 bits.
- Each cell in the "integer cycle carrier phase data" field actually includes a 4-bit cumulative loss of continuity indicator, followed by the 12-bit integer cycle carrier phase as such.
- The Cumulative loss of continuity indicator is incremented by 1 each time a nonrecovered carrier cycle slip occurs for this particular signal. The indicator takes values from 0 to 15 (and then back to 0 after 15 has been reached).
- All reported carrier phases of different signals belonging to the same band are aligned with each other, i.e. a <sup>1</sup>/<sub>4</sub> cycle correction is possibly applied.
- Fine pseudo-range data are always smoothed properly. Optional parameters (smooth count and smoothing residuals) are used to indicate the smoothing status and restore the unsmoothed fine pseudo-range, if needed.
- If the pseudo-range for some signal is invalid, then its corresponding fine pseudorange field is reported as zero. If the pseudo-range for some signal is valid and the corresponding fine pseudo-range field actually takes the value "zero", then the ATOM generator adds 0.02 m to it, thereby inserting a negligible error not affecting the final performance.
- If the carrier phase for some signal is invalid, then the corresponding integer cycle carrier phase and fractional cycle carrier phase are both set to zero. If the carrier phase for some signal is valid but actually takes the value "zero", then the ATOM generator adds 1/256 cycle to it, thereby inserting a negligible error not affecting the final performance.

Reference Position

Reference position refers to the "default" datum associated with the GNSS indicated as primary in the Message header (see *Table 1*). Depending on the position presentation flag in the Message header (see *Table 1*), the reference position can be generated in one of the following four different forms:

- No reference position
- Compact reference position (see *Table 10*)
- Compact reference position + clarification data (see *Table 11*)
- Compact reference position + clarification data + velocity & clock (see Table 12)

| Data item             | Bits | Data type | Offset | Scale    | Range            | Comments                                                                                                                                                                                              | DF Number |
|-----------------------|------|-----------|--------|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                       |      | •         | REFERE | NCE POS  | ITION            |                                                                                                                                                                                                       | •         |
| Motion flag           | 1    | bit1      | 0      |          | 0-1              | 0: stationary<br>1: moving                                                                                                                                                                            |           |
| Position quality flag | 3    | bit3      | 1      |          | 0-7              | 0: precise (mm accuracy)<br>1: RTK fixed (cm accuracy)<br>2: RTK float (dm accuracy)<br>3: DGNSS (sub-meter accu-<br>racy)<br>4: Standalone (a few meters<br>accuracy)<br>5-6: reserved<br>7: unknown |           |
| Reserved              | 7    | bit7      | 4      |          | 0-127            | Set to 0000000                                                                                                                                                                                        |           |
| Position tagging      | 3    | bit3      | 11     |          | 0-7              | 0: Antenna reference point<br>1-7: other                                                                                                                                                              |           |
| X coordinate          | 38   | int38     | 14     | 0.0001 m | ±13743895.3472 m |                                                                                                                                                                                                       | DF025     |
| Y coordinate          | 38   | int38     | 52     | Ditto    | Ditto            |                                                                                                                                                                                                       | DF026     |
| Z coordinate          | 38   | int38     | 90     | Ditto    | Ditto            |                                                                                                                                                                                                       | DF027     |
| Total                 | 128  |           |        |          |                  |                                                                                                                                                                                                       |           |

Table 10. Compact Reference Position

| Data item             | Bits | Data type | Offset | Scale    | Range            | Comments                                                                                                                                                                                    | DF Number |
|-----------------------|------|-----------|--------|----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                       |      |           |        | REFER    | ENCE POSITION    |                                                                                                                                                                                             |           |
| Motion flag           | 1    | bit1      | 0      |          | 0-1              | 0: stationary<br>1: moving                                                                                                                                                                  |           |
| Position quality flag | 3    | bit3      | 1      |          | 0-7              | 0: precise (mm accuracy)<br>1: RTK fixed (cm accuracy)<br>2: RTK float (dm accuracy)<br>3: DGNSS (sub-meter accuracy)<br>4: Standalone (few meters accuracy)<br>5-6: reserved<br>7: unknown |           |
| Reserved              | 7    | bit7      | 4      |          | 0-127            | Set to 0000000                                                                                                                                                                              |           |
| Position tagging      | 3    | bit3      | 11     |          | 0-7              | 0: Antenna reference point<br>1-7: other                                                                                                                                                    |           |
| X coordinate          | 38   | int38     | 14     | 0.0001 m | ±13743895.3472 m |                                                                                                                                                                                             | DF025     |
| Y coordinate          | 38   | int38     | 52     | Ditto    | Ditto            |                                                                                                                                                                                             | DF026     |
| Z coordinate          | 38   | int38     | 90     | Ditto    | Ditto            |                                                                                                                                                                                             | DF027     |
| Clarifier switch      | 2    | bit2      | 128    |          | 0-3              | 0: ITRF year and antenna height fol-<br>low<br>1: GPS-UTC time offset and GPS<br>week number follow<br>2-3: reserved                                                                        |           |
| Clarification data    | 22   | bit22     | 130    |          |                  | See Table 13 and Table 14.                                                                                                                                                                  |           |
| Total                 | 152  |           |        | •        | •                | ·                                                                                                                                                                                           | •         |

 Table 11. Compact Reference Position + Clarification Data

NOTE:

• The Clarifier switch allows the different clarification data provided in the next 22 bits to be used. For example, a typical transmission scenario can be as follows: In one epoch of REF data, antenna height and ITRF epoch year are generated. In the next epoch of REF data, GPS-UTC time offset and GPS week number are generated.

| Data item             | Bits | Data type | Offset | Scale      | Range            | Comments                                                                                                                                                                                    | DF Number |
|-----------------------|------|-----------|--------|------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                       |      |           |        | RE         | FERENCE DATA     |                                                                                                                                                                                             |           |
| Motion flag           | 1    | bit1      | 0      |            | 0-1              | 0: stationary<br>1: moving                                                                                                                                                                  |           |
| Position quality flag | 3    | bit3      | 1      |            | 0-7              | 0: precise (mm accuracy)<br>1: RTK fixed (cm accuracy)<br>2: RTK float (dm accuracy)<br>3: DGNSS (sub-meter accuracy)<br>4: Standalone (few meters accuracy)<br>5-6: reserved<br>7: unknown |           |
| Reserved              | 7    | bit7      | 4      |            | 0-127            | Set to 0000000                                                                                                                                                                              |           |
| Position tagging      | 3    | bit3      | 11     |            | 0-7              | 0: Antenna reference point<br>1-7: other                                                                                                                                                    |           |
| X coordinate          | 38   | int38     | 14     | 0.0001 m   | ±13743895.3472 m |                                                                                                                                                                                             | DF025     |
| Y coordinate          | 38   | int38     | 52     | Ditto      | Ditto            |                                                                                                                                                                                             | DF026     |
| Z coordinate          | 38   | int38     | 90     | Ditto      | Ditto            |                                                                                                                                                                                             | DF027     |
| Clarifier switch      | 2    | bit2      | 128    |            | 0-3              | 0: ITRF year and antenna height fol-<br>low<br>1: GPS-UTC time offset and GPS<br>week number follow<br>2-3: reserved                                                                        |           |
| Clarification data    | 22   | bit22     | 130    |            |                  | See Table 13 and Table 14.                                                                                                                                                                  |           |
| X velocity            | 25   | int25     | 152    | 0.0001 m/s | ±1677.7216       | -1677.7216 if not defined or invalid                                                                                                                                                        |           |
| Y velocity            | 25   | int25     | 177    | 0.0001 m/s | ±1677.7216       | -1677.7216 if not defined or invalid                                                                                                                                                        |           |
| Z velocity            | 25   | int25     | 202    | 0.0001 m/s | ±1677.7216       | -1677.7216 if not defined or invalid                                                                                                                                                        |           |
| Reserved              | 1    | bit1      | 227    |            | 0-1              | Set to 0                                                                                                                                                                                    |           |
| Receiver clock offset | 30   | int30     | 228    | 0.001 m    | ±500000 m        | -536870.911 if not defined or invalid                                                                                                                                                       |           |
| Receiver clock drift  | 22   | int22     | 258    | 0.001 m/s  | ±2000 m/s        | -2097.151 if not defined or invalid                                                                                                                                                         |           |
| Total                 | 280  |           |        | •          | •                |                                                                                                                                                                                             | •         |

Table 12. Compact Reference Position + Clarification Data + Velocity & Clock

NOTE:

 "Receiver clock offset" and "Receiver clock drift" refer to the original receiver observables the clock of which is typically kept within ±1 ms. By contrast, observables reported in ATOM RNX are clock steered. The availability of the receiver clock offset and clock drift allows third-party users to restore original (not steered) receiver observables.

| Table 13. Cla | rification Data | for Reference | Position (Clarifie | er=0) |
|---------------|-----------------|---------------|--------------------|-------|
| 10010 101 010 | inioación Baca  |               | i contron (channe  |       |

| Data item                              | Bits | Data type | Offset | Scale    | Range    | Comments | DF Number |  |  |
|----------------------------------------|------|-----------|--------|----------|----------|----------|-----------|--|--|
| REFERENCE POSITION CLARIFICATIONS DATA |      |           |        |          |          |          |           |  |  |
| ITRF epoch year                        | 6    | uint6     | 0      |          | 0-63     |          | DF021     |  |  |
| Antenna height                         | 16   | uint16    | 6      | 0.0001 m | 0-6.5535 |          | DF028     |  |  |
| Total                                  | 22   |           |        |          |          |          |           |  |  |

Table 14. Clarification Data for Reference Position (Clarifier=1)

| Data item                              | Bits | Data type | Offset | Scale  | Range  | Comments                        | DF Number |  |
|----------------------------------------|------|-----------|--------|--------|--------|---------------------------------|-----------|--|
| REFERENCE POSITION CLARIFICATIONS DATA |      |           |        |        |        |                                 |           |  |
| GPS-UTC time offset                    | 6    | uint6     | 0      | 1 sec  | 0-63   | 63 means undefined or invalid   | DF054     |  |
| GPS week number                        | 12   | uint12    | 6      | 1 week | 0-4095 | 4095 means undefined or invalid | DF076     |  |
| Reserved                               | 4    | Bit4      | 18     |        | 0-15   | Set to 0000                     |           |  |
| Total                                  | 22   |           |        |        |        |                                 |           |  |

NOTE:

• Official RTCM field "DF021" is actually reserved for the ITRF epoch year, but not claimed as usable. ATOM follows the same strategy. Once RTCM claims that DF021 is usable, ATOM will use it as well.

Extended ATOM<br/>RNX DataThis section describes the extended observation data. The generation of extended<br/>satellite and signal data is controlled by the "supplementary follow" field in the GNSS<br/>header.

| Data item            | Bits | Data type | Offset  | Scale      | Range          | Comments                                                                                                                                                                                                       | DF Number |
|----------------------|------|-----------|---------|------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                      |      | EXTEND    | ED SATE | LLITE DATA | (one Satellite | portion)                                                                                                                                                                                                       |           |
| Azimuth              | 8    | uint8     | 0       | 2 degrees  | 0-358          | >358 means invalid azimuth                                                                                                                                                                                     |           |
| Elevation            | 7    | uint7     | 8       | 1 degree   |                | 0-90 means true positive elevation<br>91 means true elevation -1 degree<br>92 means true elevation -2 degree<br>etc.<br>126 means true elevation less or<br>equal to -36 degree<br>127 means invalid elevation |           |
| Rough Doppler        | 14   | Int14     | 15      | 1 m/s      | ±8192 m/s      | Value -8192 means invalid                                                                                                                                                                                      |           |
| Full range available | 1    | bit1      | 29      |            | 0-1            | 0: Full Sat range available<br>1: No full Sat range available                                                                                                                                                  |           |
| Sat status           | 2    | bit2      | 30      |            | 0-3            | 0: Sat is used in position<br>1: Sat is not used (no ephemeris)<br>2: Sat is not used (other cause)<br>3: Reserved                                                                                             |           |
| Total                | 32   |           |         |            |                |                                                                                                                                                                                                                |           |

| Tahle | 15  | Fxtended | Satellite | Data |
|-------|-----|----------|-----------|------|
| iubic | 10. | LAtenaca | outchild  | Dutu |

NOTES:

- No "Full Sat range available" means that the original receiver pseudo-range contains an unknown integer number of milliseconds, but pseudo-range is still valid modulo 1 ms.
- A satellite (Sat) is considered as used in internal receiver position if at least one satellite observable was used in position computation. A satellite may not be used because healthy ephemeris data are not available in the receiver or for some other reason (e.g. satellite under elevation mask). A satellite not used in internal receiver position does not imply that its observables are bad.

| Data item          | Bits | Data type | Offset  | Scale       | Range          | Comments                                                                                                                                                                                                                                                                 | DF Number |
|--------------------|------|-----------|---------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                    |      | EXT       | ENDED S | SIGNAL DATA | (one Signal po | rtion)                                                                                                                                                                                                                                                                   |           |
| Channel number     | 8    | unt8      | 0       |             | 0-255          | Value 0 means not defined                                                                                                                                                                                                                                                |           |
| Fine Doppler       | 15   | int15     | 8       | 0.0001 m/s  | ±1.6384 m/s    | Value -1.6384 means invalid                                                                                                                                                                                                                                              |           |
| Smoothing residual | 11   | int11     | 23      | 0.02 m      | ±20.48 m       | To be added to pseudo-range to get<br>unsmoothed value. The copy of<br>MPC smooth correction, but with<br>opposite sign.<br>Value -20.48 means invalid<br>Value (-20.46) means less than or<br>equal to (-20.46)<br>Value 20.46 means greater than or<br>equal to 20.46. |           |
| Smooth count       | 8    | uint8     | 34      | 1 sec       | 0-255          | The copy of MPC smooth count.<br>Value 255 means 255+                                                                                                                                                                                                                    |           |
| Signal warnings    | 14   | bit14     | 42      |             |                | Original channel warnings (see <i>Table 17</i> ).                                                                                                                                                                                                                        |           |

| Table 1 | 6 Fxt | ended S | Signal | Data |
|---------|-------|---------|--------|------|

NOTES:

Total

• Full Doppler(j) for each Signal(j) is restored as:

56

FullDoppler(j)=RoughDoppler+FineDoppler(j)

• "MPC" refers to the legacy output message \$PASHR,MPC containing the GNSS measurement from one satellite for one epoch.

| Data item               | Bits | Data type | Offset | Scale  | Range  | Comments                                                                                                                                         | DF Number                                                |
|-------------------------|------|-----------|--------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                         |      |           | SIGN   | AL WAF | RNINGS | (one signal portion)                                                                                                                             |                                                          |
| Fractional carrier bias | 2    | bit2      | 0      |        | 0-3    | 0: zero fractional bias (polarity known)<br>1: possible half a cycle bias (polarity not<br>resolved)<br>2: arbitrary carrier bias<br>3: reserved | Similar to MPC polar-<br>ity byte                        |
| Carrier quality         | 1    | bit1      | 2      |        | 0-1    | 0: carrier tracking is OK<br>1: possible carrier drift                                                                                           | Same as MPC warn-<br>ing (bit 2)                         |
| pseudo-range quality    | 2    | bit2      | 3      |        | 0-3    | 0: OK<br>1: satisfactory<br>2: admissible<br>3: bad                                                                                              | Same as MPC warn-<br>ing (bits 3-4). See<br>notes below. |
| Doppler quality         | 1    | bit1      | 5      |        | 0-1    | 0: Smoothed Doppler<br>1: Not smoothed Doppler                                                                                                   |                                                          |
| Cycle Slip possible     | 1    | bit1      | 6      |        | 0-1    | 0: no cycle slip suspected<br>1: cycle slip is possible                                                                                          | Same as MPC warn-<br>ing (bit 6)                         |
| Loss of Continuity      | 1    | bit1      | 7      |        | 0-1    | 0: continuous carrier tracking<br>1: loss of lock occurred                                                                                       | Same as MPC warn-<br>ing (bit 7)                         |
| Reserved                | 6    | Bit6      | 8      |        | 0-63   | See Appendix G                                                                                                                                   | AF005                                                    |
| Total                   | 14   |           |        |        |        |                                                                                                                                                  |                                                          |

Table 17. Signal Warnings

NOTES:

- The bits in the MPC warning byte are counted from 0 to 7.
- A special state for "fractional carrier bias" was reserved to allow a "not fixable" carrier to be generated (applicable to carriers from some consumer receivers such as SiRF). This state indicates that the carrier can have an arbitrary float bias during its continuous tracking. Because of that, its Double-Difference ambiguity can never be fixed to integers.
- Indicators relating to carrier phase (carrier quality, cycle slip possible and loss of continuity) actually refer to the interval between the current and previously generated ATOM RNX epoch, and not to the receiver time tag.
- "Smoothed Doppler" means that is was derived from carrier phase samples through appropriate filtering. "Not smoothed Doppler" refers to Doppler extracted directly from the carrier/frequency tracking loop (NCO).

• Matching table for pseudo-range quality:

| Pseudo-range quality | Pseudo-range<br>quality value | MPC bit 3 | MPC bit 4 |  |
|----------------------|-------------------------------|-----------|-----------|--|
| Good                 | 0                             | 0         | 0         |  |
| Satisfactory         | 1                             | 1         | 0         |  |
| Admissible           | 2                             | 0         | 1         |  |
| Bad                  | 3                             | 1         | 1         |  |

Table 18. Pseudo-range Quality

This section is intentionally left blank.

Messages of the EVT (EVenTs) group contain various information for some particular events occurring in the receiver firmware. This information can include precise time tags for event pulses the receiver generates or gets from an external equipment. Also this group can contain the description of some events internal to the receiver, such as receiver reset or initialization. Different alarms that the receiver generates (e.g. exceptions, overflow, etc.) can also be inserted inside this EVT group.

The set of default ATOM EVT messages can be enabled/disabled using the following command:

# \$PASHS,ATM,EVT,<Port Name>,ON/OFF

The general organization of the EVT message is presented on the diagram below.



# EVT Message Organization:

| Data item            | Bits | Data type | Offset | Scale | Range     | Comments                             | DF Number |  |
|----------------------|------|-----------|--------|-------|-----------|--------------------------------------|-----------|--|
| START TRANSPORT      |      |           |        |       |           |                                      |           |  |
| Transport Preamble   | 8    | Uint8     | 0      |       |           | Set to 0xD3 (HEX Code)               |           |  |
| Reserved             | 6    | Bit6      | 8      |       |           | Set to 000000                        |           |  |
| Message Length       | 10   | unt10     | 14     |       |           | Message length in bytes              |           |  |
| MESSAGE HEADER       |      |           |        |       |           |                                      |           |  |
| Message number       | 12   | uint12    | 24     |       | 1001-4095 | 4095 is reserved for Ashtech         | DF002     |  |
| Message sub-number   | 4    | Uint4     | 36     |       | 0-15      | 14 is reserved for ATOM EVT messages |           |  |
| Version              | 3    | Uint3     | 40     |       | 0-7       | ATOM version number, set to 1        |           |  |
| Reference station ID | 12   | uint12    | 43     |       | 0-4095    | Reference station ID                 | DF003     |  |
| EVT type             | 9    | Uint9     | 55     |       | 0-511     | Specifies which EVT message follows  |           |  |
| MESSAGE DATA         |      |           |        |       |           |                                      |           |  |
| Event information    |      |           |        |       |           | See sub-sections below               |           |  |
| END TRANSPORT        |      |           |        |       |           |                                      |           |  |
| CRC                  | 24   | uint24    |        |       |           | 24-bit Cyclic Redundancy Check (CRC) |           |  |
| Total                |      |           |        |       |           |                                      |           |  |

The currently supported EVT messages are presented in the table below.

| EVT message type | ASCII identifier | Attribute description   | Comments | Counterpart |
|------------------|------------------|-------------------------|----------|-------------|
| 1                | TTT              | External event time tag |          | \$PASHR,TTT |
| 2                | PTT              | PPS time tag            |          | \$PASHR,PTT |

NOTE:

• For more information about how to generate the TTT and PTT messages, please see the documentation relevant to the receiver used.

# **External Event** This message contains the precise GPS time tag for an external event pulse.

- Time Tag
- Output logic: on detection of a pulse at the event input
- Message binary size: 18 bytes (144 bits)
- How to request? \$PASHS,ATM,EVT,<Port Name>,ON,&TTT
- Permissible intervals x (sec): N/A (not processed)
- See also: \$PASHR,TTT

| Data item            | Bits     | Data type | Offset | Scale            | Range       | Comments                             | DF Number |  |
|----------------------|----------|-----------|--------|------------------|-------------|--------------------------------------|-----------|--|
| START TRANSPORT      |          |           |        |                  |             |                                      |           |  |
| Transport Preamble   | 8        | uint8     | 0      |                  |             | Set to 0xD3 (HEX Code)               |           |  |
| Reserved             | 6        | bit6      | 8      |                  |             | Set to 000000                        |           |  |
| Message Length       | 10       | unt10     | 14     |                  |             | Message length in bytes, set to 12.  |           |  |
| MESSAGE HEADER       |          |           |        |                  |             |                                      |           |  |
| Message number       | 12       | uint12    | 24     |                  | 1001-4095   | 4095 is reserved for Ashtech         | DF002     |  |
| Message sub-number   | 4        | uint4     | 36     |                  | 0-15        | 14 is reserved for ATOM EVT message  |           |  |
| Version              | 3        | uint3     | 40     |                  | 0-7         | ATOM version number, set to 1        |           |  |
| Reference station ID | 12       | uint12    | 43     |                  | 0-4095      | Reference station ID                 | DF003     |  |
| EVT type             | 9        | uint9     | 55     |                  | 0-511       | Set to 1 for this message            |           |  |
|                      | <u> </u> |           | •      | М                | ESSAGE DAT  | Ā                                    |           |  |
| Day                  | 3        | uint3     | 64     | 1 day            | 1-7         | 1 is Sunday,7 is Saturday            |           |  |
| Hour                 | 5        | uint5     | 67     | 1 hour           | 0-23        |                                      |           |  |
| Minute               | 6        | uint6     | 72     | 1 minute         | 0-59        |                                      |           |  |
| Second               | 6        | uint6     | 78     | 1 second         | 0-59        |                                      |           |  |
| Fractional Second    | 30       | uint30    | 84     | 1 nano<br>second | 0-999999999 |                                      |           |  |
| Reserved             | 6        | uint6     | 114    |                  | 0-63        | Set to 00                            |           |  |
| END TRANSPORT        |          |           |        |                  |             |                                      |           |  |
| CRC                  | 24       | uint24    | 120    |                  | 1           | 24-bit Cyclic Redundancy Check (CRC) |           |  |
| Total                | 144      |           | •      | •                | •           |                                      | •         |  |
# **PPS Time Tag** This message contains the precise GPS time tag of the PPS pulse the receiver generates.

- Output logic: On each occurrence of a 1PPS pulse
- Message binary size: 18 bytes (144 bits)
- How to request? \$PASHS,ATM,EVT,<Port Name>,ON,&PTT
- Permissible intervals x (sec): N/A (not processed)
- See also: \$PASHR,PTT

#### Structure & Content:

| Data item            | Bits | Data type | Offset | Scale            | Range       | Comments                             | DF Number |
|----------------------|------|-----------|--------|------------------|-------------|--------------------------------------|-----------|
|                      |      | •         |        | START            | TRANSPORT   | •                                    | •         |
| Transport Preamble   | 8    | uint8     | 0      |                  |             | Set to 0xD3 (HEX Code)               |           |
| Reserved             | 6    | bit6      | 8      |                  |             | Set to 000000                        |           |
| Message Length       | 10   | unt10     | 14     |                  |             | Message length in bytes, set to 12.  |           |
|                      |      | •         |        | MESSA            | GE HEADER   | •                                    | •         |
| Message number       | 12   | uint12    | 24     |                  | 1001-4095   | 4095 is reserved for Ashtech         | DF002     |
| Message sub-number   | 4    | uint4     | 36     |                  | 0-15        | 14 is reserved for ATOM EVT message  |           |
| Version              | 3    | uint3     | 40     |                  | 0-7         | ATOM version number, set to 1        |           |
| Reference station ID | 12   | uint12    | 43     |                  | 0-4095      | Reference station ID                 | DF003     |
| EVT type             | 9    | uint9     | 55     |                  | 0-511       | Set to 2 for this message            |           |
|                      |      | •         |        | MESS             | SAGE DATA   | ·                                    | •         |
| Day                  | 3    | uint3     | 64     | 1 day            | 1-7         | 1 is Sunday,7 is Saturday            |           |
| Hour                 | 5    | uint5     | 67     | 1 hour           | 0-23        |                                      |           |
| Minute               | 6    | uint6     | 72     | 1 minute         | 0-59        |                                      |           |
| Second               | 6    | uint6     | 78     | 1 second         | 0-59        |                                      |           |
| Fractional Second    | 30   | uint30    | 84     | 1 nano<br>second | 0-999999999 |                                      |           |
| Reserved             | 6    | uint6     | 114    |                  | 0-63        | Set to 00                            |           |
|                      |      |           |        | END T            | RANSPORT    |                                      |           |
| CRC                  | 24   | uint24    | 120    |                  |             | 24-bit Cyclic Redundancy Check (CRC) |           |
| Total                | 144  |           |        |                  |             |                                      |           |

#### **ATOM STA Messages**

This section is intentionally left blank.

## **Chapter 4. ATOM Serial Interface**

This chapter is organized as follows. First we describe the simplest ways to request each group of ATOM messages. Second we describe how to request each particular ATOM sub-message or sub-block from groups PVT, ATR, NAV, DAT, STA and EVT. Then we show how to customize ATOM observables messages (RNX and BAS) for user-specific needs.

#### **Getting Started**

To request the output of any of the ATOM groups on a specified port with its default parameters, use the following command: \$PASHS,ATM,<Group type>,<Port Name>,ON

Where:

- <Group type> is any of the available messages (MES, PVT, ATR, NAV, DAT, RNX, BAS, STA or EVT)
- <Port Name> is any of the supported receiver ports (A, B, etc.)

Using this type of request, default data outputs will be available. Examples of default outputs are given in the table below (defaults may be receiver/firmware dependent).

| Group type                | 4095 subID | ATM subID | Default sub-messages/sub-blocks or scenario | Default intervals   |
|---------------------------|------------|-----------|---------------------------------------------|---------------------|
| GNSS observables          | 2          | MES       | not configurable                            | 1 second            |
| Positioning results       | 3          | PVT       | COO,ERR,LCY,SVS                             | 1 second for all    |
| Receiver attributes       | 4          | ATR       | ANM,RNM                                     | 30 seconds for all  |
| Navigation information    | 5          | NAV       | EPH,GIT,GFT                                 | 300 seconds for all |
| Binary data frames        | 6          | DAT       | EXT                                         | N/A                 |
| GNSS RINEX observables    | 7          | RNX       | SCN,4                                       | 1 second            |
| GNSS RTK base corrections | 8          | BAS       | SCN,4                                       | 1 second            |
| Receiver status           | 13         | STA       | BLA                                         | N/A                 |
| Receiver events           | 14         | EVT       | TTT,PTT                                     | N/A                 |

To request the output of any ATOM message on a specified port at the desired output rate (period), use the following command:

#### \$PASHS,ATM,<Group type>,<Port Name>,ON,<Per>

Where:

 - <Per> is the period (in sec) of the group (i.e. of each default sub-message or subblock).

To disable all the ATOM messages on a given port, use the following command:

#### \$PASHS,ATM,ALL,<Port\_Name>,OFF

The existing ATOM groups can be divided into two categories: those configurable by submessages or sub-blocks (PVT, ATR, NAV, DAT, STA, EVT), and those configurable by scenario (RNX, BAS). The way ATOM messages are output is under the control of the "ATOM setup". Users can configure the ATOM setup using the extended serial interface described in the sections below.

#### Using the Extended Serial Interface For Sub-Message & Sub-Block Customization

ATOM messages PVT, ATR, NAV, DAT, STA and EVT contain different sub-messages/subblocks which users can choose to generate (with their own period) or not.

"Sub-block" means a data block inserted under a message header, i.e. generated within the same transmission, together with other sub-blocks.

"Sub-message" means independently generated data belonging to a given group type. To customize these groups, the extended serial interface should be used:

\$PASHS,ATM, <Group type>,<Port Name>,ON[,Per],&mm1,mm2,mm3,...
or
\$PASHS,ATM, <Group type>,<Port Name>,OFF[,Per],&mm1,mm2,mm3,...

Where:

- mm1,mm2,mm3, ... are sub-message/sub-group identifiers
- [Per] is the optional period in seconds.

Users can request sub-messages/sub-groups one by one, or multiplex them into a single string. For example, the first command line below describes the same ATOM setup as the next three command lines, provided the same [Per] is specified in all four command lines:

#### \$PASHS,ATM, <Group type>,<Port Name>,ON[,Per],&mm1,mm2,mm3

\$PASHS,ATM, <Group type>,<Port Name>,ON[,Per],&mm1
\$PASHS,ATM, <Group type>,<Port Name>,ON[,Per],&mm2
\$PASHS,ATM, <Group type>,<Port Name>,ON[,Per],&mm3

The receiver stores the ATOM setup independently for each <Port Name>. This means for example that users can enable a PVT message on port B and port A simultaneously, and generally with different periods and sub-blocks/sub-messages. When configuring the ATOM setup, each new setup command adds (or modifies) particular settings to the already existing (previous) setup, but does not reset it. That is why before requesting a setup update, it may be convenient first to disable all the ATOM outputs, using the following command:

#### \$PASHS,ATM,ALL,<Port Name>,OFF

Any command in the form below will initialize the corresponding default ATOM setup for <Port Name>:

#### \$PASHS,ATM, <Group type>,<Port Name>,ON

Currently the following sub-messages/sub-blocks are supported:

- PVT: COO, ERR, VEL, CLK, LCY, HPR, BLN, MIS, PRR, SVS (see also Appendix G)
- ATR: ANM, RNM, UEM, AOP, OCC, SNS
- NAV: EPH, ALM, GIT, GFT

- DAT: GPS, GLO, SBA, EXT
- STA: BLA
- EVT: TTT, PTT

It should be noted that when requesting the EPH sub-message, one actually gets EPH for multiple GNSS (GPS,GLO,SBA if all are tracked). There is no way to request EPH data separately for each GNSS. The same is true for ALM data. Also, if a user requested raw data reduction to the virtual antenna (e.g. ADVNULLANTENNA) and asks for the ANM sub-message, two different ANM messages will result: one for the physical antenna and the other for the virtual antenna the reported observables data correspond to.

Below are typical examples to enable some ATOM data outputs. All the examples suppose that the \$PASHS,ATM, ALL,<Port name>,OFF command has been run previously.

• Enable ATOM PVT data on port A with position, followed by accuracy, both at 0.1second interval, and by satellite status at 1-second interval:

#### \$PASHS,ATM, PVT,A,ON,0.1,&COO,ERR \$PASHS,ATM, PVT,A,ON,1,&SVS

• Enable ATOM NAV (EPH) data on port A and port B with different intervals (600 and 300 seconds respectively):

#### \$PASHS,ATM, NAV,A,ON,600,&EPH \$PASHS,ATM, NAV,B,ON,300,&EPH

• Enable ATOM DAT (GPS,GLONASS,SBAS) data on port C:

#### \$PASHS,ATM, DAT,C,ON,&GPS,GLO,SBA

The following rules should be known when applying customization to sub-messages/subblocks:

- Requesting a sub-message without specifying its period will result in a sub-message output with the default period.
- Requesting several sub-messages through a single string that contains at least one syntax error will result in no new setting applied at all.
- Requesting several sub-messages with different periods will result in each of the submessages output with its specific period.
- Disabling all previously enabled sub-messages will put an end to the generation of the complete group (message).

Unlike the other ATOM messages, RNX and BAS have an extra-feature: they can generate the same observation data in different forms, thereby allowing some trade-off between data quality/availability and message throughput. These different forms of data presentation can be available through the so-called **SCN**,**x** scenario, where integer x stands for the scenario number.

RNX/BAS messages can then be enabled/disabled through a single command:

# \$PASHS,ATM, RNX,<Port Name>,ON/OFF,<Per>,&SCN,x \$PASHS,ATM, BAS,<Port Name>,ON/OFF<Per>,&SCN,x

The table below shortly describes the scenarios currently supported (for more details please refer to *Compression Options for ATOM RNX and BAS Observables on page 77* and *Appendices C through F from page 93*).

| User case                                 | SCN,x | Comment                                                                                                                                                                                                                      |
|-------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Raw data recording                        |       |                                                                                                                                                                                                                              |
|                                           | 0     | All available raw data in full presentation, full computed reference position follows each epoch                                                                                                                             |
| 'Standard' differential                   |       |                                                                                                                                                                                                                              |
| protocols                                 |       |                                                                                                                                                                                                                              |
|                                           | 1     | L1 pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs; the analog of RTCM-3 MT 1001,1009,1006                                                                               |
|                                           | 2     | L1 SNR, pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs, the analog of RTCM-3 MT 1002,1010,1006                                                                          |
|                                           | 3     | L1&L2 pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs, the analog of RTCM-3 MT 1003,1011,1006                                                                            |
|                                           | 4     | L1 &L2 SNR, pseudo-range and carrier phase in full presentation, extended fixed position follows each 12 epochs, the analog of RTCM-3 MT 1004,1012,1006                                                                      |
| Compact differential<br>protocols         |       |                                                                                                                                                                                                                              |
|                                           | 100   | L1&L2 compact pseudo-range and full carrier phase, extended fixed position follows each 12 epochs, all<br>the data are decimated in 5 times compared to L1 carrier phase                                                     |
|                                           | 101   | L1&L2 compact pseudo-range and compact carrier phase, extended fixed position follows each 12 epochs, all the data are decimated in 5 times compared to L1 carrier phase. This scenario cannot be used with moving receiver. |
| Differential protocols<br>for moving base |       |                                                                                                                                                                                                                              |
|                                           | 201   | Same as scenario 1, but extended computed reference position follows each epoch                                                                                                                                              |
|                                           | 202   | Same as scenario 2, but extended computed reference position follows each epoch                                                                                                                                              |
|                                           | 203   | Same as scenario 3, but extended computed reference position follows each epoch                                                                                                                                              |
|                                           | 204   | Same as scenario 4, but extended computed reference position follows each epoch                                                                                                                                              |
|                                           | 300   | Same as scenario 100, but extended computed reference position follows each epoch                                                                                                                                            |

#### NOTES:

- Receiver port, scenario and interval can be set independently.
- No more than one RNX (or BAS) message can be requested on the same receiver port.
- RNX (or BAS) messages with different scenarios/intervals can be requested on different receiver ports.
- The default RNX (or BAS) scenario and interval can be receiver type and/or firmware version dependent.
- As the ATOM protocol continues to evolve, more available scenarios will be published.
- Scenario SCN,0 depends on receiver capability, firmware version and/or available options.

 Each newly specified scenario or interval overwrites the previous setup for a given port.

#### Encapsulation

To allow each ATOM message to be wrapped into the Ashtech \$PASHR frame, the following command should be used:

#### **\$PASHS,ENC,<Port Name>,ASH**

Where ENC stands for ENCapsulation, and ASH stands for ASHtech.

To return ATOM presentation to the basic RTCM-3 frame, one of the following commands should be used:

\$PASHS,ENC,<Port Name>,RT3
or
\$PASHS,ENC,<Port Name>,NTV

Where RT3 stands for RTcm-3, and NTV stands for NaTiVe (default). It must be noted that the ENC setting affects equally all the messages (ATOM and non-ATOM) enabled through a given port.

#### **Querying ATOM Setup**

The current ATOM setup for each available receiver port can be read using the following command sent to any of the receiver ports:

#### \$PASHQ,PAR,ATM

The receiver response (user readable) will be available through the same port. An example of ATOM setup is provided below.

MES:

A: 1.0,-T-B: OFF.---C: OFF,---PVT: COO ERR VEL CLK LCY HPR BLN MIS PRR SVS 1.0,-T- OFF,--- OFF,--- 1.0,-T- OFF,--- OFF,--- OFF,--- OFF,--- 1.0,-T-A: 1.0,-T-C: OFF,--- OFF,--- OFF,--- OFF,--- OFF,--- OFF,--- OFF,--- OFF,--- OFF,---ATR: ANM RNM ANM UEM A: 030,-T- 030,-T- 030,-T- OFF,---B: OFF,--- OFF,--- OFF,---C: OFF,--- OFF,--- OFF,---NAV: EPH ALM GIT GFT 300,-TN OFF,--- 300,-TN 300,-T-A: OFF,--- OFF,--- OFF,---B: C: OFF,--- OFF,--- OFF,---

 DAT:
 GPS
 GLO
 SBA
 EXT

 A:
 OFF,-- OFF,-- OFF,-- ON,--N

 B:
 OFF,-- OFF,-- OFF,-- OFF,-- 

 C:
 OFF,-- OFF,-- OFF,-- OFF,--

 RNX:
 SETTINGS

 A:
 1.0,-T SCN,004

 B:
 OFF,-- SCN,004

 C:
 OFF,-- SCN,004

 EVT:
 TTT
 PTT

 A:
 ON,--N
 ON,--N

 B:
 OFF,-- OFF,-- 

 C:
 OFF,-- OFF,--

# **Chapter 5. Compression Options for ATOM RNX and BAS Observables**

Messages RNX and BAS can serve two important cases of use:

- Data recording for further post-processing, and/or
- Data generation from base to rover for RTK function

Each of them can correspond to a static or moving receiver. In each case, it is desirable to apply special configurations allowing the size of the ATOM messages to be extended or reduced very effectively. These configurations are available for end users as a set of supported scenarios (SCN). Each RNX/BAS message includes two quite independent parts:

- Receiver observables/corrections as such
- Receiver reference position, which can optionally be disabled.

Receiver observables can be sorted using the so-called "observables table". Receiver position can also be described through the so-called "reference position table".

#### **Receiver Observables Table**

The data a receiver generates can be represented in the so-called receiver observables table, which uses the RINEX-3.0 naming convention. An example of this table, for most of the currently existing GPS+GLONASS+SBAS signals, is shown below.

|   | GPS | GPS | GPS | GPS | GPS | GPS | GLO | GLO | GLO | GLO | SBA |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|   | 1C  | 1P  | 2P  | 2S  | 2L  | 2X  | 1C  | 1P  | 2C  | 2P  | 1C  |
| С |     |     |     |     |     |     |     |     |     |     |     |
| L |     |     |     |     |     |     |     |     |     |     |     |
| S |     |     |     |     |     |     |     |     |     |     |     |
| D |     |     |     |     |     |     |     |     |     |     |     |

The letters in the first column have the following meaning:

- C refers to pseudo-range observable
- L refers to carrier phase observable
- S refers to signal strength (SNR)
- D refers to Doppler observable

Each of the 2-symbol signal names in the second row refers to a particular GNSS signal the receiver tracks. The first symbol (a digit) refers to the frequency band. The second symbol refers to the type of signal (and the method to process it). Particularly, 1C means L1CA signal for each of the GNSS. Names 2S, 2L, 2X refer to different signals the receiver generates when tracking GPS L2C.

To simplify the writing conventions, 1P and 2P for GPS can actually be substitutes for each of the letters P, W, Y referring to different Y code processing techniques (e.g. W refers to Z-tracking or similar cross-correlation methods).

Some receivers can track all signals simultaneously, some others can also track all signals, but not simultaneously. The latter case is illustrated in the table below.

|   | GPS<br>1C | GPS<br>1P | GPS<br>2P 2S | GLO<br>1C | GLO<br>2C:2P | SBA<br>1C |
|---|-----------|-----------|--------------|-----------|--------------|-----------|
| С |           |           |              |           |              |           |
| L |           |           |              |           |              |           |
| S |           |           |              |           |              |           |
| D |           |           |              |           |              |           |

In the above table, writing 2C:2P for GLONASS means that a receiver can track L2C signal for some GLONASS satellites and L2P signal for other GLONASS satellites (e.g. L2C for new GLONASS-M and L2P for old GLONASS). Writing 2PI2S for GPS means that a receiver tracks either 2P for all GPS, or tracks 2S for all GPS (depending on receiver option).

Any of the observables a receiver can generate may be represented in a cell in the table above. If some observable is generated, then the corresponding cell is marked with a Y, if some observable is not generated, then the corresponding cell is marked with an N or left empty. For C (pseudo-range) and L (carrier phase) observables, ATOM can generate the so-called compact presentation (see below the description of the OPT choice), in which case Y is replaced with C.

An example is given below (only L1CA data are generated for each of the three GNSS: pseudo-range, carrier phase and SNR; carrier phase is generated in compact form).

|   | GPS | GPS | GPS   | GLO | GLO   | SBA |
|---|-----|-----|-------|-----|-------|-----|
|   | 1C  | 1P  | 2P 2S | 1C  | 2C:2P | 1C  |
| С | Y   |     |       | Y   |       | Y   |
| L | С   |     |       | С   |       | С   |
| S | Y   |     |       | Y   |       | Y   |
| D |     |     |       |     |       |     |

ATOM also allows different data presentations for different epochs (see below the description of the DEC option). In this case, each cell in the observables table contains as many letters as needed to reflect the complete period of the transmission scenario. An example for one possible transmission can be as follows.

|   | GPS<br>1C | GPS<br>1P | GPS<br>2P 2S | GLO<br>1C | GLO<br>2C:2P | SBA<br>1C |
|---|-----------|-----------|--------------|-----------|--------------|-----------|
| С | YN        |           |              | YN        |              | YN        |
| L | YY        |           | NY           | YY        | NY           | YY        |
| S | YN        |           |              | YN        |              | YN        |
| D |           |           |              |           |              |           |

Here the complete scenario period is 2 epochs. The first symbol (Y or N) refers to the 1st, 3rd, 5th, etc. epochs, while the second symbol (Y or N) refers to the 2nd, 4th, 6th, etc. epochs. For example with 1 Hz data generation:

- Each odd epoch generates L1 pseudo-range, carrier phase and SNR data
- Each even epoch generates only L1&L2 carrier phase data
- Doppler data are not generated
- L1P GPS data are not generated.

When processing receiver observables, it is often essential to know the corresponding receiver position. There are at least two good reasons for that:

- Precise receiver (base) position is needed on rover side to compute accurate RTK position.
- Rough receiver position is needed on decoding side to restore the complete observables if they are generated in compact form.

RNX and BAS messages can generate static or moving reference position. When RNX and/or BAS is used as differential protocol generated by a static base receiver, this reference position is usually entered at the base and generated in RNX or BAS with its own update rate (usually lower than the observables update rate).

When RNX or BAS is used for receiver raw data recording or as differential protocol generated by a moving base receiver, this reference position is typically a receivercomputed position with an update rate usually equal to that of the observables.

Additionally RNX and BAS allow three different types of reference position presentation, from the most compact to the fullest. Also, the reference position can optionally be disabled if it is known a priori that it is not needed on decoding side.

The table below summarizes all the types of reference position that can be found in RNX/BAS messages.

| Receiver motion      | Position type                                                                     | Position interval                               |
|----------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|
| Static, or<br>Moving | No position, or<br>Compact position, or<br>Extended position, or<br>Full position | Position decimation against observables (1-999) |

#### **Internal Options Used to Customize Scenarios**

To customize receiver observations, the ATOM generator internally supports the following options:

- Shape (SPE)
- Optimization (OPT)
- Decimation (DEC)

Any reasonable combination of these options can graphically be presented in the receiver observable table (see *Receiver Observables Table on page 77*).

**Option SPE** best refers to the high-level observable table view. This option defines the "shape" of the table, i.e. the potentially available signals/observables in RNX/BAS messages. The following four tables clarify what is behind the choices SPE=1, 2, 3, 4 in general, and what SPE represents for a particular receiver/firmware.

| SPE=1      | GPS | GLO | SBA |
|------------|-----|-----|-----|
| General    | 1?  | 1?  | 1C  |
| Particular | 1C  | 1C  | 1C  |
| C          |     |     |     |
| L          |     |     |     |

| SPE=2   | GPS | GLO | SBA |
|---------|-----|-----|-----|
| General | 1?  | 1?  | 1C  |

| SPE=2      | GPS | GLO | SBA |
|------------|-----|-----|-----|
| Particular | 1C  | 1C  | 1C  |
| C          |     |     |     |
| L          |     |     |     |
| S          |     |     |     |

| SPE=3      | GPS | GPS   | GLO | GLO   | SBA |
|------------|-----|-------|-----|-------|-----|
| General    | 1?  | 2?    | 1?  | 2?    | 1C  |
| Particular | 1C  | 2P 2S | 1C  | 2C:2P | 1C  |
| C          |     |       |     |       |     |
| L          |     |       |     |       |     |

| SPE=4      | GPS | GPS   | GLO | GLO   | SBA |
|------------|-----|-------|-----|-------|-----|
| General    | 1?  | 2?    | 1?  | 2?    | 1C  |
| Particular | 1C  | 2P 2S | 1C  | 2C:2P | 1C  |
| C          |     |       |     |       |     |
| L          |     |       |     |       |     |
| S          |     |       |     |       |     |

Choice SPE=0 is receiver type and firmware version dependent. The table below shows what SPE=0 can be for a particular receiver.

| SPE=0      | GPS | GPS | GPS   | GLO | GLO   | SBA |
|------------|-----|-----|-------|-----|-------|-----|
| Particular | 1C  | 1P  | 2P 2S | 1C  | 2C:2P | 1C  |
| C          |     |     |       |     |       |     |
| L          |     |     |       |     |       |     |
| S          |     |     |       |     |       |     |
| D          |     |     |       |     |       |     |

**Option OPT** allows pseudo-range (C) and carrier phase (L) observables to be presented in different forms. Internally each C or L observable can be presented in one of three forms:

- No observable at all
- Compact presentation
- Full presentation

These 3\*3=9 choices are mapped to particular values for OPT, as shown in the table below.

|           | No C | Compact C | Full C |
|-----------|------|-----------|--------|
| No L      | 0    | 1         | 2      |
| Compact L | 3    | 4         | 5      |
| Full L    | 6    | 7         | 8      |

To see how the different choices for OPT appear in the ATOM presentation, please refer to *Appendix C* on *page 93*.

**Option DEC** allows all requested observables (except L1CA carrier) to be decimated with time. The value given to DEC represents the decimation parameter (unitless), which can take values DEC=1, 2, 5, 10, 20, 50. Decimation is a very useful option when observables are requested at high speed (e.g. 10 Hz) while keeping the throughput at a reasonable level.

The Decimation option allows dramatic saving of the mean throughput while not reducing data performance, because all the decimated data can be restored easily with L1CA carrier data, provided continuous tracking is achieved over the needed interval. For more details regarding decimation, please see *Appendix D* on *page 97*.

To customize the presentation of the receiver reference position, the ATOM generator internally supports the following options:

- Mode (MOD)
- Position interval (XYZ)

The **MOD option** allows the mapping of the receiver motion and position type to an integer value from 0 to 6. The mapping table is given below.

| Type \ Motion | Static | Moving |
|---------------|--------|--------|
| No            | 0      | 0      |
| Compact       | 1      | 4      |
| Extended      | 2      | 5      |
| Full          | 3      | 6      |

The **XYZ option** allows the decimation applied to the reference position to be specified in comparison with observables. XYZ is unitless and can take any integer value from 1 to 999.

| User case                                       | SCN | SPE | DEC | OPT | XYZ | MOD | Comment                                                                                                                                                                                                                                  | Approximate relative mean throughput (GPS+GLONASS)                                                                  |
|-------------------------------------------------|-----|-----|-----|-----|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Raw data<br>recording                           |     |     |     |     |     |     |                                                                                                                                                                                                                                          |                                                                                                                     |
|                                                 | 0   | 0   | 1   | 8   | 1   | 6   | All available raw data in full presentation, full computed reference position follows each epoch                                                                                                                                         | k*200% (k depends on receiver<br>configuration, k=1 if one signal<br>for L1 and one signal for L2 are<br>generated) |
| 'Standard'<br>differential<br>protocols         |     |     |     |     |     |     |                                                                                                                                                                                                                                          |                                                                                                                     |
|                                                 | 1   | 1   | 1   | 8   | 12  | 2   | L1 pseudo-range and carrier phase in full presentation,<br>extended fixed position follows each 12 epochs; the<br>analog of RTCM-3 MT 1001,1009,1006                                                                                     | 55%                                                                                                                 |
|                                                 | 2   | 2   | 1   | 8   | 12  | 2   | L1 SNR, pseudo-range and carrier phase in full presen-<br>tation, extended fixed position follows each 12 epochs,<br>the analog of RTCM-3 MT 1002,1010,1006                                                                              | 60%                                                                                                                 |
|                                                 | 3   | 3   | 1   | 8   | 12  | 2   | L1&L2 pseudo-range and carrier phase in full presenta-<br>tion, extended fixed position follows each 12 epochs,<br>the analog of RTCM-3 MT 1003,1011,1006                                                                                | 95%                                                                                                                 |
|                                                 | 4   | 4   | 1   | 8   | 12  | 2   | L1 &L2 SNR, pseudo-range and carrier phase in full<br>presentation, extended fixed position follows each 12<br>epochs, the analog of RTCM-3 MT 1004,1012,1006                                                                            | 100% ~ 300 bytes/epoch                                                                                              |
| Compact<br>differential<br>protocols            |     |     |     |     |     |     |                                                                                                                                                                                                                                          |                                                                                                                     |
|                                                 | 100 | 3   | 5   | 4   | 12  | 2   | L1&L2 compact pseudo-range and full carrier phase,<br>extended fixed position follows each 12 epochs, all the<br>data are decimated in 5 times compared to L1 carrier<br>phase                                                           | 50%                                                                                                                 |
|                                                 | 101 | 3   | 5   | 7   | 12  | 2   | L1&L2 compact pseudo-range and compact carrier<br>phase, extended fixed position follows each 12 epochs,<br>all the data are decimated in 5 times compared to L1<br>carrier phase. This scenario cannot be used with<br>moving receiver. | 27%                                                                                                                 |
| Differential<br>protocols<br>for moving<br>base |     |     |     |     |     |     |                                                                                                                                                                                                                                          |                                                                                                                     |
|                                                 | 201 | 1   | 1   | 8   | 1   | 5   | Same as scenario 1, but extended computed reference position follows each epoch                                                                                                                                                          | 57%                                                                                                                 |
|                                                 | 202 | 2   | 1   | 8   | 1   | 5   | Same as scenario 2, but extended computed reference position follows each epoch                                                                                                                                                          | 62%                                                                                                                 |
|                                                 | 203 | 3   | 1   | 8   | 1   | 5   | Same as scenario 3, but extended computed reference position follows each epoch                                                                                                                                                          | 96%                                                                                                                 |
|                                                 | 204 | 4   | 1   | 8   | 1   | 5   | Same as scenario 4, but extended computed reference position follows each epoch                                                                                                                                                          | 101%                                                                                                                |
|                                                 | 300 | 3   | 5   | 4   | 1   | 5   | Same as scenario 100, but extended computed reference position follows each epoch                                                                                                                                                        | 53%                                                                                                                 |

The supported RNX/BAS scenarios are presented in the table below.

The table above is a copy of the table from *Using the Extended Serial Interface For Observables Scenario Cutomization on page 74*, in which the chosen value for each of the different customization options (see *Internal Options Used to Customize Scenarios on page 79*) is provided in the description of each scenario. The provided throughput figures are approximate and can vary depending on the number of satellites from the different constellations. *Appendix F*, on *page 103*, provides a comparison table showing

the different ATOM throughputs obtained in the same typical case of use, but with different customization options.

Once more, it should be noted that if the size of a single ATOM message exceeds 1023 bytes (say too many GNSS signals to generate), then more than one ATOM,RNX message will be generated for the same time tag (M-bit will be managed correspondingly).

Special emphasis should be put on the fact that any of the supported scenarios can potentially serve either raw data recording or real time differential protocol. In other words, one can use, say, SCN,100 or SCN,300 for raw data recording, and SCN,0 as a differential protocol. But the available spectrum of supported scenarios allows users to select the best way to serve the targeted application, with constrained or unconstrained data link and/or storage device.

The universality of ATOM often makes it possible to easily serve raw data recording and differential operation through the same scenario. In this case SCN,4 is the most preferable. This scenario is the best choice if the recorded ATOM raw data corresponding to a static receiver are to be used by third-party processing software. Because in this case third-party users will first convert ATOM to RINEX, thus resulting in the loss of most of the extra data generated in SCN,0 (compared to SCN,4), there is no advantage in using SCN,0 instead of SCN,4.

It should also be noted that each ATOM scenario is "self-optimized" in regard to "ghost data". For example, SCN,4 is designed to send as maximum GPS L1/L2, GLONASS L1/L2 and SBAS L1. Yet, if a receiver can only track L1, SCN,4 will stay as effective as SCN,2 in terms of throughput, because no "ghost L2 data" are generated. This is one of the advantages of ATOM compared to standardized RTCM-3, where message 1004 cannot generate L1-only data with the same throughput efficiency as message 1002. So in most cases, SCN,4 can be used regardless of the receiver capability. On the other hand, the availability of SCN,2 gives users the possibility to generate L1-only data while the receiver tracks L1&L2.

Observables tables for all supported scenarios are presented below.

|   | GPS | GLO | SBA |
|---|-----|-----|-----|
|   | 1?  | 1?  | 1C  |
| С | Y   | Y   | Y   |
| L | Y   | Y   | Y   |

Table 19. SCN=1, 201

Table 20. SCN=2, 102

|   | GPS | GLO | SBA |
|---|-----|-----|-----|
|   | 1?  | 1?  | 1C  |
| С | Y   | Y   | Y   |
| L | Y   | Y   | Y   |
| S | Y   | Y   | Y   |

Table 21. SCN=3, 203

|   | GPS | GPS | GLO | GLO | SBA |
|---|-----|-----|-----|-----|-----|
|   | 1?  | 2?  | 1?  | 2?  | 1C  |
| C | Y   | Y   | Y   | Y   | Y   |
| L | Y   | Y   | Y   | Y   | Y   |

Table 22. SCN=4, 204

|   | GPS | GPS | GLO | GLO | SBA |
|---|-----|-----|-----|-----|-----|
|   | 1?  | 2?  | 1?  | 2?  | 1C  |
| С | Y   | Y   | Y   | Y   | Y   |
| L | Y   | Y   | Y   | Y   | Y   |
| S | Y   | Y   | Y   | Y   | Y   |

| Table | 22  | CON O |
|-------|-----|-------|
| Table | 23. | 3UN=0 |

|   | GPS | GPS | GPS   | GLO | GLO   | SBA |
|---|-----|-----|-------|-----|-------|-----|
|   | 1C  | 1P  | 2P 2S | 1C  | 2C:2P | 1C  |
| C | Y   | Y   | Y     | Y   | Y     | Y   |
| L | Y   | Y   | Y     | Y   | Y     | Y   |
| S | Y   | Y   | Y     | Y   | Y     | Y   |
| D | Y   | Y   | Y     | Y   | Y     | Y   |

Table 24. SCN=100, 300

|   | GPS   | GPS   | GLO   | GLO   | SBA   |
|---|-------|-------|-------|-------|-------|
|   | 1?    | 2?    | 1?    | 2?    | 1C    |
| C | CNNNN | CNNNN | CNNNN | CNNNN | CNNNN |
| L | YYYYY | YNNNN | YYYYY | YNNNN | YYYYY |

Table 25. SCN=101

|   | GPS   | GPS   | GLO   | GLO   | SBA   |
|---|-------|-------|-------|-------|-------|
|   | 1?    | 2?    | 1?    | 2?    | 1C    |
| С | CNNNN | CNNNN | CNNNN | CNNNN | CNNNN |
| L | CCCCC | CNNNN | CCCCC | CNNNN | CCCCC |

Reference position tables for all supported scenarios are presented below.

Table 26. SCN=0

| Receiver motion | Position type | Position interval |
|-----------------|---------------|-------------------|
| Moving          | Full position | 1                 |

Table 27. SCN=1, 2, 3, 4, 100, 101

| Receiver motion | Position type     | Position interval |
|-----------------|-------------------|-------------------|
| Static          | Extended position | 12                |

Table 28. SCN=201, 202, 203, 204, 300

| Receiver motion | Position type     | Position interval |
|-----------------|-------------------|-------------------|
| Moving          | Extended position | 1                 |

The overall trade-off between throughput and data quality for different ATOM scenarios primarily depends on the presentation of observables. The reference position usually plays a secondary role. Let us consider in more details the rover RTK performance that can be expected from different ATOM scenarios used as differential protocol. In general, all existing and future ATOM scenarios can be divided among three principal groups:

- Complete observables (scenarios 0, 2, 4, 202, 204)
- Incomplete observables (1, 3, 201, 203)
- Compact observables (100, 101, 300)

Complete observables are those containing complete observation epoch and for this reason do not require any extra information or memory from the previous epoch to process a given epoch. As a result they are the most bandwidth consuming. They are

customarily used either for raw data recording or as differential protocols when there are no constraints of data link bandwidth or traffic cost.

Incomplete observables are those either not containing all the required observables (e.g. no SNR), or only containing observables presented in reduced form (e.g. pseudo-range modulo 1ms only). Usually processing these data requires approximate reference position and ephemeris data to make these observations complete on receiving side. Absence of SNR can be not so critical if the incomplete scenario is generated by a static reference station. In this case, the SNR information usually brings nothing valuable to the rover. As a result, incomplete observables give some small improvements in the final throughput without any loss in the final differential performance.

The mean throughput can be reduced dramatically by using compact observables. Restoring compact observables on rover side requires the following:

- Knowing reference position and ephemeris to restore complete observables from (super) compact presentation
- Applying some kind of ingenious decoded data processing which includes memorizing the previously processed epochs (i.e. filter is needed).

When a base generates compact observables to save the data link, users should be aware that it can affect the final rover performance. If the data link is ideal, i.e. no data epochs are missing or corrupted, then the final rover performance with compact observations is the very same as that with complete observations.

However, when data are lost through the data link, then the final performance with compact data can be impaired. This is caused by the fact that compact observables have some kind of "between epochs" memory. So missing one epoch can result in the inability to restore some others that follow, even if they are decoded correctly. However, it must be noted that the presentation of compact ATOM observations is designed in such a robust way that these "additional losses of epochs" would not be dramatic in most cases, especially when compact data are generated by static open sky receivers.

More details can be found in the paper entitled *ATOM: Super Compact and Flexible Format to Store and Transmit GNSS Data* by I. Artushkin, A. Boriskin and D. Kozlov. This paper was presented at the ION GNSS International Conference in 2008.

# **Chapter 6. ATOM Utilities**

There are a number of existing PC tools that help view ATOM messages and their transformations into other presentation forms. These are:

- bin2txt
- bin2std
- DATAVIEW (+ areader.dll)

Bin2txt is a command line utility allowing users to read any log file with arbitrary ATOM content and generate the ASCII equivalent of each ATOM message/field in a user-readable form. Please note that the original log file can contain not only ATOM messages, but also any other messages, which will not interfere with the binary-to-ASCII transformation process.

The bin2std utility allows users to read any log file with arbitrary ATOM content and generate different standardized messages/files, provided ATOM messages are properly formed. This utility has an entry-level self-explanatory GUI.

The DATAVIEW tool allows users to read any log file with arbitrary ATOM content and plot the most valuable ATOM message/field using standard DATAVIEW screens.

These three tools not only allow ATOM messages to be processed, but also any binary streams other receivers support. These include RTCM-2/3 and CMR/CMR+ data.

Each utility has its own short description available separately.

### **Appendix A. \$PASHR Transport Decoding Sample**

Below is a raw ATOM message in hex format. Each byte is represented as a 2-byte hex number:

24 50 41 53 48 52 2C 41 54 52 2C 00 15 D3 00 0F FF F4 20 3E 01 07 55 4E 4B 4E 4F 57 4E 00 00 00 D0 5B 6C 42

Where:

24 50 41 53 48 52 2C 41 54 52 2C = \$PAHSR,ATR

**00 15** = 21 bytes in length

D3 00 0F FF F4 20 3E 01 07 55 4E 4B 4E 4F 57 4E 00 00 00 D0 5B = ATOM message

6C 42 = binary checksum

Computing Check Sum:

00 15 + D3 00 + OF FF + F4 20 + 3E 01 + 07 55 + 4E 4B + 4E 4F + 57 4E + 00 00 + 00 D0+ 5B <here, virtual 00 is added>, because length is not even = 36C42

0x36C42 & 0xFFFF = 6C42, which is indeed the value of checksum found at the end of the message.

### **Appendix B. ATOM Message Decoding Sample**

Using an example of ATOM NAV / GPS ephemeris message, this Appendix gives the method to decode an ATOM message from binary to ASCII.

#### Full binary message content:

D3 00 42 FF F5 20 3E 01 3F B2 1D 90 03 03 2A 72 42 00 FF F1 E9 A0 54 2A FC 95 2A 94 14 A6 F0 58 FC 8B 05 69 B3 06 13 E2 A1 0D C9 32 72 42 00 59 29 D9 CF 58 FF E4 28 22 18 45 19 F5 76 70 BA D7 FF AB 27 F8 02 D8 82 21

#### Different parts of the message:

- Start Transport (3 bytes):
   D3 00 42
- Message Header (5 bytes): FF F5 20 3E 01
- Message Data (61 bytes):

3F B2 1D 90 03 03 2A 72 42 00 FF F1 E9 A0 54 2A FC 95 2A 94 14 A6 F0 58 FC 8B 05 69 B3 06 13 E2 A1 0D C9 32 72 42 00 59 29 D9 CF 58 FF E4 28 22 18 45 19 F5 76 70 BA D7 FF AB 27 F8 02

• End Transport (3 bytes):

D8 82 21

Resulting ASCII Presentation:

| Data item            | # Bits | Offset | Binary (HEX) | Scale | ASCII (Decimal) |
|----------------------|--------|--------|--------------|-------|-----------------|
|                      |        | STAF   | RT TRANSPORT |       | ·               |
| Transport Preamble   | 8      | 0      | D3           |       | 211             |
| Reserved             | 6      | 8      | 00           |       | 0               |
| Message Length       | 10     | 14     | 42           |       | 66              |
|                      | •      | MES    | SAGE HEADER  |       | •               |
| Message number       | 12     | 24     | 0F FF        |       | 4095            |
| Message sub-number   | 4      | 36     | 05           |       | 5               |
| Version              | 3      | 40     | 01           |       | 1               |
| Reference station ID | 12     | 43     | 00 1F        |       | 31              |
| NAV message type     | 9      | 55     | 00 01        |       | 1               |
|                      | •      | ME     | SSAGE DATA   |       |                 |

| Standardized message number | 12  | 64  | 03 FB         |                  | 1019           |
|-----------------------------|-----|-----|---------------|------------------|----------------|
| SVPRN                       | 6   | 76  | 08            |                  | 8              |
| Wn                          | 10  | 82  | 01 D9         | **               | 1497           |
| Accuracy                    | 4   | 92  | 00            |                  | 0              |
| Code on L2                  | 2   | 96  | 00            |                  | 0              |
| ldot                        | 14  | 98  | 03 03         | 2 <sup>-43</sup> | 8.765255E-011  |
| lode                        | 8   | 112 | 2A            |                  | 42             |
| Тос                         | 16  | 120 | 72 42         | 16               | 468000         |
| af2                         | 8   | 136 | 00            | 2 <sup>-55</sup> | 0.000000E+000  |
| af1                         | 16  | 144 | FF F1         | 2 <sup>-43</sup> | -1.705303E-012 |
| af0                         | 22  | 160 | 3A 68 15      | 2 <sup>-31</sup> | -1.706979E-004 |
| lodc                        | 10  | 182 | 2A            |                  | 42             |
| Crs                         | 16  | 192 | FC 95         | 2 <sup>-5</sup>  | -2.734375E+001 |
| ⊿n                          | 16  | 208 | 2A 94         | 2-43             | 1.239187E-009  |
| m0                          | 32  | 224 | 14 A6 F0 58   | 2 <sup>-31</sup> | 1.613446E-001  |
| Cuc                         | 16  | 256 | FC 8B         | 2-29             | -1.648441E-006 |
| E                           | 32  | 272 | 05 69 B3 06   | 2 <sup>-33</sup> | 1.057205E-002  |
| Cus                         | 16  | 304 | 13 E2         | 2 <sup>-29</sup> | 9.480864E-006  |
| A <sup>1/2</sup>            | 32  | 320 | A1 0D C9 32   | 2 <sup>-19</sup> | 5.153723E+003  |
| Тое                         | 16  | 352 | 72 42         | 16               | 468000         |
| Cic                         | 16  | 368 | 00 59         | 2-29             | 1.657754E-007  |
| w0                          | 32  | 384 | 29 D9 CF 58   | 2 <sup>-31</sup> | 3.269595E-001  |
| Cis                         | 16  | 416 | FF E4         | 2-29             | -5.215406E-008 |
| iO                          | 32  | 432 | 28 22 18 45   | 2 <sup>-31</sup> | 3.135405E-001  |
| Crc                         | 16  | 464 | 19 F5         | 2 <sup>-5</sup>  | 2.076563E+002  |
| ω                           | 32  | 480 | 76 70 BA D7   | 2 <sup>-31</sup> | 9.253152E-001  |
| ωdot                        | 24  | 512 | FF AB 27      | 2-43             | -2.469392E-009 |
| Tgd                         | 8   | 536 | F8            | 2 <sup>-31</sup> | -3.725290E-009 |
| Health                      | 6   | 544 | 00            |                  | 0              |
| L2 P data flag              | 1   | 550 | 01            |                  | 1              |
| Fit Interval                | 1   | 551 | 00            |                  | 0              |
|                             |     | _   | END TRANSPORT |                  |                |
| CRC                         | 24  | 552 | D8 82 21      |                  |                |
| Total                       | 576 |     |               |                  |                |

### **Appendix C. Decomposition for ATOM RNX and BAS Observables**

This Appendix describes in detail the principles of breaking down ATOM observables (RNX and BAS), thus providing a bridge between the different choices for the OPT optimization option (see *page 79*) and the corresponding ATOM presentations (see *page 54* and *page 66*).

With proper receiver design, basic observables (pseudo-range and carrier phase) always appear as being controlled by the same receiver clock. As a result, the "dynamic" of all pseudo-ranges and carrier phases corresponding to the same satellite is almost the same. Only ionosphere divergence, receiver biases and some other negligible factors can cause the divergence of one observable against another. This fact is used when generating compact observations. It was initially introduced in the Trimble CMR format, and later appeared as a primary concept in standardized RTCM-3 observation messages. Being quite attractive at that time, it has now become some kind of showstopper. The problem is that some signal (L1 pseudo-range) is selected as "primary" observable, while all the other ("secondary") signals (e.g. L2 pseudo-range, L1&L2 carrier phase) are generated as the difference against this primary signal.

With the multiple signals we now get from each GNSS, it seems that such a "primary-secondary" concept is not convenient. It has at least the following disadvantages:

- Invalid L1 pseudo-range (for whatever reason) automatically leads to inability to present all the other data.
- There is no possibility to send L2 data without sending L1 data. Earlier this was not so important, but with the current and future availability of L2C and L5, such L1 centered scheme can be ineffective (L5-only receivers can be manufactured in future).
- There is no possibility to send carrier phase data without sending pseudo-range. Carrier phase data have some interest primarily for precise applications, while (well smoothed) pseudo-range data are usually not needed with the same update rate as the carrier phase.

Of course, there already exists some actions to mitigate the negative effect of the L1 pseudo-range centered scheme. However, all of them are not so effective compared to the rough/fine range concept used in ATOM.

The idea behind the rough/fine range concept used in ATOM is very simple: each GNSS observable contains a "regular term" and a "specific term":

• Under "regular term", we mean approximate range to a given satellite from a given position at a given receiver time. This regular term is the same for any type of observable corresponding to a given satellite. Moreover it does not contain site-specific information because it can be estimated (restored) easily, providing ephemeris and reference position are available.

• Under "specific term", we mean "thin" components including site-specific information, such as local ionosphere/troposphere conditions, receiver biases and multipath. This information cannot be restored.

That is why it is often possible to generate only the "specific term" and not the "regular term", as the latter can be restored on decoding side. To apply effectively this concept, the reference receiver should apply the following obvious principles:

- The carrier phase observable must be "matched" to the corresponding pseudo-range by proper adjustment of the integer number of cycles.
- All receiver observables must be receiver clock steered to guarantee minimum possible receiver clock error.

These two principles are general for each standardized RTCM-3 observable.

ATOM RNX can generate the "regular term" as the so-called "rough\_range", which has not exactly a physical meaning, but is rather some technological value that will be used on the decoding side to restore the complete observable. There can be different algorithms to generate rough\_range, based on:

- Some particular pseudo-range (e.g. L1CA)
- The mean value of all available pseudo-ranges
- Computed range

Rough\_range is generated with a resolution of 1/1024 ms (about 300 meters) and is broken down into two components:

- The number of integer milliseconds in rough\_range (8 bits covering the interval 0 to 255 ms)
- The rough\_range modulo 1 millisecond (10 bits covering the interval 0 to (1023/ 1024) ms)

The receiver can generate the following:

- Full rough\_range (18 bits)
- Fractional rough\_range (10 bits)
- No rough\_range at all (0 bits)

ATOM RNX can generate "specific terms" for each observable as follows:

- Fine pseudo-range as original full pseudo-range modulo 655.36 meters with a resolution of 0.02 meters (15 bits covering the interval 0 to 655.34 meters)
- Fractional carrier phase as original carrier phase modulo 1 cycle with a resolution of 1/256 cycles (8 bits covering the interval 0 to (255/256) cycles)
- Integer cycle carrier phase as original carrier phase modulo 4096 cycles with a resolution of 1 cycle (12 bits covering the interval 0 to 4095 cycles)

The general algorithm to restore any "Full" observable (pseudo-range or carrier phase) from the "specific term" should be based on the following formula:

$$Full \equiv Specific + (K \times resolution)$$

where K is the integer to be determined. The resolution is 655.36 meters for pseudoranges and 4096 cycles for carrier phases. The integer value K can be found with the help of rough \_range (if it is provided by ATOM) or can be restored (if rough\_range is not provided by ATOM) using the knowledge of the reference position and the availability of ephemeris data.

Some applications can work with the fractional carrier phase only. That is why ATOM allows such an option: sending only the fractional carrier phase. Also, there is a possibility to restore the full carrier phase from the fractional carrier. However, this is only possible if it is known a priori that the receiver generating the fractional carrier is a static receiver.

The table below (to be compared to the 6th table in *Internal Options Used to Customize Scenarios on page 79*) shows which components of the original observables are generated depending on the choice made for the OPT (optimization) option. The generated rough\_range can either be full rough\_range or rough\_range modulo 1 ms. The generation of the number of integer ms in rough\_range is not controlled by the OPT setting. In contrast, this value can be generated, or not generated, depending on the choice made for the SCN option.

|           | No C                  | Compact C             | Full C                                |
|-----------|-----------------------|-----------------------|---------------------------------------|
| No L      | 0: Not any data       | 1: Fine pseudo-range  | 2: Fine pseudo-range                  |
|           |                       |                       | Rough_range (same for all satellites) |
| Compact L | 3. Factional carrier  | 4: Fine pseudo-range  | 5: Fine pseudo-range                  |
|           |                       | Fractional carrier    | Fractional carrier                    |
|           |                       |                       | Rough_range (same for all satellites) |
| Full L    | 6: Fractional carrier | 7: Fine pseudo-range  | 8: Fine pseudo-range                  |
|           | Integer cycle carrier | Fractional carrier    | Fractional carrier                    |
|           |                       | Integer cycle carrier | Integer cycle carrier                 |
|           |                       |                       | Rough_range (same for all satellites) |

### **Appendix D. Decimation for ATOM RNX and BAS Observables**

The idea of decimation is well known. It comes from the simple fact that the "dynamic" of all the basic observables (pseudo-ranges and carrier phases) corresponding to a given satellite is almost the same. Their divergence due to the ionosphere and some other factors is usually a slow process. This means that having acquired only one precise observable (e.g. L1 carrier phase) for all the epochs allows the observables that are missing at some epochs to be restored.

Decimation for ATOM observations refers to a special scenario in which all the data, except the L1 carrier phase, are generated at a slower rate. For example, with the L1 carrier phase generated at 1 second, the L2 carrier phase and L1 and L2 pseudo-ranges can be generated with a 5-second interval, resulting in 5 times decimation. On decoder side, the decimated data can be restored easily, provided the continuous tracking of the L1 carrier phase is achieved. Restoring pseudo-ranges is trivial, even for 10-to-30 seconds decimation. Restoring a decimated L2 (or L5) carrier is different as a second-order estimator has to be applied to more precisely eliminate ionosphere divergence. In all cases, the rover must monitor the continuity indicator of the received L1 carrier phase to prevent the decimated data from being restored incorrectly.

The decimation (DEC) option can be applied to static and moving receivers equally. However, with moving receivers, performance degradation is foreseeable (higher percentage of missing data on rover side). This is because moving receivers are usually more affected by cycle slips and constellation changes than static open sky receivers. In combination with possible short-term data link outages, this can lead to potentially more unavailable epochs on rover side.

It must be noted that pseudo-range and carrier phase data are not the only data that can be decimated. There is one extra "observable" in ATOM, which consists of the data identifiers represented by the Satellite, Signal, and Cell masks (see *Appendix E*). In static open sky conditions, this identification information does not usually change very quickly. This gives a convenient possibility to freeze most of this information (i.e. decimate headers). Although a simple idea, it is not however trivial to implement, because irregular constellation changes as well as short-term data link blockage have to be taken into account. The careful implementation of the "header freezing" process in ATOM avoids degrading RTK performance against a static open sky reference receiver. Since header data can be considered as an observable along with pseudo-range and carrier phase, then it was decided that the DEC setting would affect header decimation in the same manner as it affects decimated pseudo-ranges and carrier phases

It must be emphasized that the decimation option is implemented in an "adaptive" way, i.e. it does not use fixed decimation/freezing intervals. On the contrary, it applies some flexible strategy depending on the current situation at the reference site. As for the decoder (on rover side), it does not make any a priori assumptions regarding the data decimation scenario used on reference side. On the contrary, all the information about the data presentation form is extracted from the ATOM message itself.

Although the decimation option allows the reduction of the mean throughput, it does not however allow the reduction of the peak throughput. However, for many data links (e.g. GPRS), it is the mean throughput that really matters.

The decimation technique described above for RNX (observations) data is equally applicable to BAS (corrections) data.

## Appendix E. Data Identifiers for ATOM RNX and BAS Observables

#### **Satellite Mask**

Satellite mask is a bitset indicating which satellites from a given GNSS provide at least one signal (it does not matter which). The Satellite mask contains 40 positions for each GNSS. Currently:

- GPS occupies 32 positions (theoretically there can be up to 39 PRN for GPS)
- GLO occupies 24 positions (24, but probably 28 slots, can be available)
- SBAS reserves 19 positions
- Probably Galileo will not reserve more than 40 positions (current estimate is 36).

#### **Signal Mask**

Signal mask is a bitset indicating which signals from a given GNSS are available from at least one of the multitude of tracked satellites. The Signal mask includes 24 bits. Each bit is representative of a specific GNSS signal. The definition of the Signal mask bits for each GNSS is given below (already existing signals are shaded). 1M and 1N for GPS L1 and 2M, 2N and 2D for GPS L2 are not mentioned just to make the table clearer. Besides, there is a sufficient number of reserved positions in Signal mask to make these signals available.

| Rank | GPS,<br>RINEX code | SBAS,<br>RINEX code | GLONASS,<br>RINEX code | Galileo,<br>RINEX code | Comment |
|------|--------------------|---------------------|------------------------|------------------------|---------|
| 1    |                    |                     |                        |                        |         |
| 2    | 1C                 | 1C                  | 1C                     | 1C                     |         |
| 3    | 1P                 |                     | 1P                     | 1A                     |         |
| 4    | 1W                 |                     |                        | 1B                     |         |
| 5    | 1Y                 |                     |                        | 1X                     |         |
| 6    |                    |                     |                        | 1Z                     |         |
| 7    |                    |                     |                        |                        |         |
| 8    | 2C                 |                     | 2C                     | 6C                     |         |
| 9    | 2P                 |                     | 2P                     | 6A                     |         |
| 10   | 2W                 |                     |                        | 6B                     |         |
| 11   | 2Y                 |                     |                        | 6X                     |         |
| 12   |                    |                     |                        | 6Z                     |         |
| 13   |                    |                     |                        |                        |         |
| 14   |                    |                     |                        | 71                     |         |
| 15   | 2S                 |                     |                        | 7Q                     |         |
| 16   | 2L                 |                     |                        | 7X                     |         |
| 17   | 2X                 |                     |                        |                        |         |
| 18   |                    |                     |                        | 81                     |         |
| 19   |                    |                     |                        | 8Q                     |         |
| 20   |                    |                     |                        | 8X                     |         |
| 21   |                    |                     |                        |                        |         |
| 22   | 51                 | 51                  |                        | 51                     |         |
| 23   | 5Q                 | 5Q                  |                        | 5Q                     |         |
| 24   | 5X                 | 5X                  |                        | 5X                     |         |

#### **Capability Mask**

The Capability mask is the combination of the Satellite mask and Signal mask for a given GNSS at a given time.

#### Cell Mask

For quite a long time to come (or even forever), some satellites from a given GNSS will transmit some set of signals while some other satellites from the same GNSS will continue to transmit another set of signals. The Satellite and Signal masks described above can contain a number of "cross-cells" that cannot correspond to the actual signal available, or the signal cannot be acquired in the given environmental conditions. To save room in the ATOM observation messages, the Cell mask has been introduced.

The Cell mask is a bitset the length of which is Nsat\*Nsig, where Nsat is the number of satellites (= the number of 1's in the Satellite mask) and Nsig is the number of signals (= the number of 1's in the Signal mask). The Cell mask indicates if the "cross-cell" for a given satellite & signal combination actually contains any data (Cell mask=1 means it does).

Signal data are generated only for those satellite & signal combinations where Cell mask=1.

#### Example of Building Satellite, Signal and Cell Masks

Let us consider building masks for the GPS (it works similarly for all the other GNSS). For the current epoch, let the L1&L2&L5 GPS tracking status be as follows: Sats 1, 3, 6, 7, 13, 15, 32 are tracked and provide the following signals:

- 2=1C=L1CA (highest availability)
- 4=1W=L1P with Z tracking (cannot always be tracked because of the Y code)
- 10=2W=L2P with Z tracking (cannot always be tracked because of the Y code)
- 15=2S=L2C(M) (currently not available)

The table below shows the status of the observables in terms of Satellite and Signal masks. It is seen that the number of Sats is 7, and the number of different signals is up to 4. It is clear that such a "status table" gives a full vision of all the available signals. But generating a complete table can lead to a huge bit consumption. On the other hand, in most cases, the "tracking table" is too sparse and so can effectively be presented by the Capability mask, i.e. by two independent masks:

- Signal mask (marked orange)
- Satellite mask (marked blue)

| So the pote     | enti | al n | um | ber | of | Sat | dat | a b | loc | ks i | n tł | nis e | exar | npl | e is | 28 | 8=4 | *7. |    |             |
|-----------------|------|------|----|-----|----|-----|-----|-----|-----|------|------|-------|------|-----|------|----|-----|-----|----|-------------|
| Sats<br>Signals | 1    | 2    | 3  | 4   | 5  | 6   | 7   | 8   | 9   | 10   | 11   | 12    | 13   | 14  | 15   |    | 32  |     | 40 | Signal mask |

| Signals        |   | 2 | 3 | 4 | 5 | 0 | ' | 0 | 9 | 10 |   | 12 | 15 | 14 | 15 | <br>32 | ••• | 40 | Signai mask |
|----------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|--------|-----|----|-------------|
| 1              |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 2              | • |   | • |   |   | • | • |   |   |    |   |    | •  |    | •  | •      |     |    | 1           |
| 3              |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 4              | • |   | • |   |   | • |   |   |   |    |   |    | •  |    |    | •      |     |    | 1           |
| 5              |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 6              |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 7              |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 8              |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 9              |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 10             | • |   | • |   |   | • |   |   |   |    |   |    | •  |    |    | •      |     |    | 1           |
| 11             |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 12             |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 13             |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 14             |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| 15             | • |   |   |   |   |   | • |   |   |    |   |    |    |    | •  | •      |     |    | 1           |
| 16             |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
|                |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    |             |
| 24             |   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |        |     |    | 0           |
| Satellite mask | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0  | 0 | 0  | 1  | 0  | 1  | <br>1  |     | 0  |             |

At the same time, not all four signals are tracked for every satellite. It is seen that actually there are only 21 cells to generate. In order not to occupy empty room for seven untracked (shaded) cells, the Cell mask is additionally created, as shown below.

The first table is a copy of the previous one in which all the columns not containing any signal, as well as all the rows not containing any satellite have been removed. The resulting binary table (in green) is what we call the "Cell mask".

|         | Sats | 1 | 3 | 6 | 7 | 13 | 15 | 32 |
|---------|------|---|---|---|---|----|----|----|
| Signals |      |   |   |   |   |    |    |    |
| 2       |      | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 4       |      | 1 | 1 | 1 | 0 | 1  | 0  | 1  |
| 10      |      | 1 | 1 | 1 | 0 | 1  | 0  | 1  |
| 15      |      | 1 | 0 | 0 | 1 | 0  | 1  | 1  |

The table below shows the same mask but presented by a single bitset as it must be interpreted by coding/decoding equipment. The size of the cell mask is Nsig\*Nsat= 4\*7=28 while the number of available cells with observables is Ncell=21.

| Signal ID | 2 | 4 | 10 | 15 | 2 | 4 | 10 | 15 | 2 | 4 | 10 | 15 | 2 | 4 | 10 | 15 | 2  | 4  | 10 | 15 | 2  | 4  | 10 | 15 | 2  | 4  | 10 | 15 |
|-----------|---|---|----|----|---|---|----|----|---|---|----|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Sat ID    | 1 | 1 | 1  | 1  | 3 | 3 | 3  | 3  | 6 | 6 | 6  | 6  | 7 | 7 | 7  | 7  | 13 | 13 | 13 | 13 | 15 | 15 | 15 | 15 | 32 | 32 | 32 | 32 |
| Cell mask | 1 | 1 | 1  | 1  | 1 | 1 | 1  | 0  | 1 | 1 | 1  | 0  | 1 | 0 | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1  |

The above tables show how the complete (24\*40 bits) but too sparse "status table" can be presented by three bitsets:

- Fixed-size 40-bit Satellite mask
- Fixed-size 24-bit Signal mask
- Float-size Nsig\*Nsat Cell mask (4\*7 bits in the above example).

Consider the example of GPS data described in *Example of Building Satellite, Signal* and Cell Masks on page 100.

Let us decode the Satellite mask as the following 40-bit sequence:

#### 

This means that the receiver generates data for Nsat=7 satellites with Sat IDs: 1, 3, 6, 7, 13, 15 and 32.

Then the Signal mask is decoded as the following 24-bit sequence:

#### 01010000010000100000000

This means that the receiver generates up to Nsig=4 signals of types: 2, 4, 10 and 15 (see signal types definition in the table on *page 99*).

Then, the size of the Cell mask that follows is known to be 28=4x7.

And finally the Cell mask is decoded as the following 28-bit sequence (BITSET):

#### 111111011101001111010011111

After that, the satellite and signal data that follow should be identified correctly. To do this, the following steps should be taken:

1. With 7 satellites received for up to four different types of signals, the Cell mask should be split into seven equal parts (Sub-BITSET):

7

#### 11111110111010011110100111111

1 2 3 4 5 6 First: 1111 Second: 1110 Third: 1110 Fourth: 1001 Fifth: 1110 Sixth: 1001 Seventh: 1111

One can see that the length of each Sub-BITSET is equal to the number of the different tracked signals (Nsig=4).

- 2. The first Sub-BITSET tells us that satellite 1 provides signals: 2, 4, 10, 15
- 3. The second Sub-BITSET tells us that satellite 3 provides signals: 2, 4, 10
- 4. The third Sub-BITSET tells us that satellite 6 provides signals: 2, 4, 10
- 5. The fourth Sub-BITSET tells us that satellite 7 provides signals: 2, 15
- 6. The fifth Sub-BITSET tells us that satellite 13 provides signals: 2, 4, 10
- 7. The sixth Sub-BITSET tells us that satellite 15 provides signals: 2, 15
- 8. The seventh Sub-BITSET tells us that satellite 32 provides signals: 2, 4, 10, 15.

### **Appendix F. Throughput Figures for ATOM RNX and BAS Observables**

The main feature of RNX and BAS messages is their scalability, i.e. the possibility to configure them to save message sizing. A lot of different configurations can be generated using the following options (see also *Internal Options Used to Customize Scenarios on page 79*):

- Shape
- Optimization
- Decimation

Size-optimized configurations can be needed for compact raw data recording. However, in most cases, optimization is applied to reference data generation (RTK base mode) to allow the use of low-band data links or to save throughput in traffic-paid links (e.g. GPRS).

Consider below one typical case of reference data generation:

- Observables generated at 1 Hz
- Reference position is not generated
- The number of GPS+GLONASS satellites is 20 (12+8)
- SBAS is not generated

The throughput estimates for the following three different constellations are provided in the table below:

- GPS+GLONASS L1/L2 data
- GPS L1/L2 data
- GPS+GLONASS L1 data

Throughput includes transport layer as well. In the case of ATOM, it is assumed that the basic (RTCM-3) transport is used.

| Protocol/scenario  | Mean throughput for<br>GPS+GLO L1/L2, bytes/<br>sec | Mean throughput for<br>GPS+GLO L1(L1CA only),<br>bytes/sec | Mean throughput for GPS L1/L2, bytes/sec | Comments                                                        |
|--------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
| Ashtech legacy     | 108*20 = 2160 (MPC)                                 | 50*20 = 1000 (MCA)                                         | 108*12 = 1296 (MPC)                      |                                                                 |
| ATOM MES           | 791                                                 | 400                                                        | 538                                      | Not configurable                                                |
| ATOM RNX (SCN,0)   | 829                                                 | 425                                                        | 561                                      | Fullest presentation                                            |
| ATOM RNX (SCN,4)   | 317                                                 | 205                                                        | 193                                      | Standard presentation                                           |
| RTCM-3             | 338 (MT 1004,10012)                                 | 214 (MT 1002,1010)                                         | 202 (MT 1004)                            | RTCM scenarios matched to<br>ATOM RNX (SCN,4)                   |
| ATOM RNX (SCN,100) | 159*                                                | 140*                                                       | 98*                                      | Compact presentation                                            |
| ATOM RNX (SCN,101) | 86*                                                 | 75*                                                        | 70*                                      | Super compact presentation, only applicable to static receivers |

\*- The worst case. Usually, in normal conditions, 4 bytes can be subtracted for each system.

NOTES:

- The throughput for ATOM RNX and ATOM BAS is the same for the same scenario used.
- Scenario 100 stands for the triplet SPE=3, DEC=5 and OPT=7
- Scenario 101 stands for the triplet SPE=3, DEC=5 and OPT=4

SPE=3 refers to sending L1 and L2 (one signal per band) pseudo-range and carrier phase data modulo 1 ms, and not sending SNR.

DEC=5 refers to decimating all the data in 5 times compared to L1 carrier data.

OPT=7 refers to compact pseudo-range and full carrier phase.

OPT=4 refers to compact pseudo-range and compact carrier phase.

These figures show that:

- Using non-configurable ATOM MES (for raw data downloading) instead of legacy MPC/MCA data can reduce size by 2-3 times without loss of any legacy fields.
- RNX message in its full presentation is almost equivalent to MES message.
- Standard RNX scenario (SCN,4) shows approximately the same throughput as their RTCM-3 counterparts.
- Applying admissible (i.e. not leading to performance degradation) RNX optimization scenarios allows dramatic reduction of data throughput.
## Appendix G. Description of Extra Specific Messages and AFxxx Fields

This section is intentionally left blank.

## Index

Symbols

\$PASHR transport example 89 \$PASHR,PTT 67 \$PASHR,SBD 48 \$PASHR,TTT 67 \$PASHS,ATM 71 Α Accuracy 21 ADVNULLANTENNA 31, 73 Alarms (receiver alarms) 5 ALM 37, 72 Almanac data 4 ANM 31, 71, 72 Antenna attributes 4, 32 Antenna description 30 Antenna offset parameters 30, 35 AOP 31, 72 ASH (Ashtech) 75 ATM 75 ATOM message decoding sample 91 ATOM setup 75 ATOM version 14 ATR 3, 4, 11, 30, 71, 72 ATT 25 Attitude 18, 25 В BAS 3, 4, 7, 8, 11, 13, 31, 66, 71, 74, 79, 82, 98 Base station ID 20 Baseline 18, 26 BIG ENDIAN format 3 bin2std 87 bin2txt 87 Binary data fields (DF) 13 Binary data frames 71 BINEX 54 BLA 71, 73 BLN 6, 18, 72 Breaking down BAS & RNX observables 93 BRMS 25 Building satellite, signal and cell masks 100 С Capability mask 57, 100 Carrier phase 8, 74, 77, 97 Cell mask 28, 29, 57, 97, 100 Checksum 4 Clarification data 60 CLC 6 CLK 18, 72 Clock 23 Clock (internal vs. external) 23 Clock (receiver clock) 9, 93 Clock offset 4 CMR 87 CMR+ 87 Compact protocol 74 Configuration parameters 4 COO 6, 18, 21, 71, 72 Cumulative loss of continuity indicator 59 Customization scenarios 79 D DAT 3, 4, 11, 12, 48, 71, 72

Data field conventions 13

102

Data ID change counter 58 Data link status 4 DATAVIEW 87 DEC 81, 97 DEC customization option 79 DEC decimation option 78 Decimation 58, 79, 81, 97, 103 Decomposition 93 DF (binary data fields) 13 Differential corrections (incoming) 52 Differential protocol 79 Differential protocol (compact) 82 Differential protocol (moving base) 74, 82 Differential protocol (standard) 82 Doppler 8, 64, 77 Ε Elevation 28, 29 ENC (encapsulation) 75 Encapsulation 75 EPH 37, 71, 72 Ephemeris data 4 ERR 6, 18, 71, 72 EVT 3, 4, 11, 67, 71, 72 EXT 48, 71, 73 Extended ATOM RNX data 63 External event 5 External event time tag 68External sensors data 36 F Fast messages 13 Fine pseudo-range data 59 Fractional carrier bias 64 Full sat range available 63G Galileo 99 Geoid height 27 GFT 37, 71, 72 GGA 16, 20 GIT 37, 71, 72 GLO 48, 73, 99 GLONASS almanac data 44 GLONASS ephemeris data 39 GLONASS ICD Vers. 5 44 GNSS mask 55 GNSS observables 71 GNSS RINEX observables 71 GNSS RTK base corrections 71 GPRS 103 GPS 48, 73, 99 GPS almanac data 43 GPS ephemeris data 38 GPS full time parameters 47 GPS ionosphere 46 Group 5 GST 16 GSV 16 н HPR 6, 18, 72 I ICD-GPS-200 38, 43, 46, 49 Integer cycle carrier phase data 59 Interpreting satellite, signal and cell masks

IODE 12 Iono data 4 Ionosphere divergence 97 ITRF 61 L Latency 18, 23, 24 LCY 6, 18, 71, 72 Leap seconds 17 Local zone time offset 27 Μ Magnetic variation 27 MES 3, 4, 7, 8, 11, 13, 15, 71, 104 Message group sub-number 3 Message version number 3 MIS 6, 18, 72 Miscellaneous 27 MOD option 81 Moving base 79 Moving receiver 74 MPC 64 **MRMS 25** MT 18. 19 8 MT 20, 21 8 MT1001-1004 7 MT1002 83 MT1004 83 MT1008 32 MT1009-1012 7 MT1033 33 Multiple message bit 5, 56 NAV 3, 4, 11, 12, 37, 48, 71, 72 Navigation information 71 NMEA-3 1, 4 NMEA-3.0 Definitions 27 NTV 75 Ο Observable mask 57, 58 Observable tables 83 Observables 4, 78, 79, 84, 93, 97, 100 OCC 31, 72 Occupation information 36 On change 12 On event 12 On new 12 On time 12 OPT 80, 95 OPT optimization option 78, 79 Optimization 103 Optimization scenarios 8Ρ PBN 16 POS 16 Position 4, 19 Position type clarifier 20 Positioning results 71 PPS 5 PPS time tag 69 Primary GNSS system 27, 56 Primary GNSS system used 6Primary observables 93 PRR 6, 18, 72 Pseudo-range 8, 74, 77, 97

Pseudo-range residuals 18, 28 PTT 67, 69, 71, 73 PVT 3, 4, 5, 11, 12, 16, 71, 72 PVT engines 17, 20 PVT sub-blocks supported 6R Raw data recording 79, 82 Raw navigation data streams 4 Raw subframe (GLONASS) 50 Raw subframe (GPS) 49 Raw subframe (SBAS) 51 Receiver attributes 4, 33, 71 Receiver clock 23, 62 Receiver description 30 Receiver events 71 Receiver Observables Table 77 Receiver status 71 Reference position 56, 60 Reference position presentation 79 Reference Position Table 79 Reference position tables 84 Reference station ID (DF003) 14 Reset (receiver reset) 5 RINEX-3 1, 7, 8, 54, 77 RNM 31, 71, 72 RNX 3, 4, 7, 8, 11, 13, 14, 28, 31, 54, 71, 74, 79, 82, 83, 94, 98, 104 rough\_range 94 RT3 75 RTCM Message number 4095 3 RTCM-2 8, 13, 87 RTCM-3 1, 3, 7, 9, 14, 32, 33, 54, 74, 75, 83, 87, 93, 104 RTK base mode 8S SAT 16 Sat correcting status 29

Sat usage status 29 Satellite data 28, 29, 58 Satellite information 28

Satellite status *4* SBA *48*, *73* SBAS *20*, *99* 

Shape 103

Shape ("table shape") 79 Signal data 28, 29, 58 Signal mask 57, 97, 99, 100 Signal strength 8, 77 Slow messages 13 Smoothed Doppler 64 Smoothing 59 SNG 41 SNR 28, 29 SNS 31, 72

SBAS almanac data 45 SBAS ephemeris data 42 Scenarios 79, 82 SCN 95 SCN,0 83, 103 SCN,100 83, 103 SCN,101 103 SCN,2 83 SCN,300 83 SCN,4 71, 83, 103 SCN,x scenario 74 Secondary observables 93

Satellite mask 57, 58, 97, 99, 100

Source identifiers 53 SPE 79 SPE customization option 79 Spying 53 STA 3, 4, 11, 69, 71, 72 Standard protocol 74 Static base 79 Sub-block (definition) 72 Sub-blocks 5 Sub-blocks (general -purpose vs. special PVT) 19 Sub-message (definition) 72 Sub-messages 5 Supplementary follow 14 SVS 6, 18, 71, 72 SVS header 28 Т

Throughput (for RNX and SBAS) 103 Time shift parameters 46 Time tag (full vs. fine) 56 Time tag presentation (full vs. fine) 17 Transport layer 1, 3 TTT 67, 68, 71, 73 **U** UEM 31, 72 User message 34 **V** VEL 6, 18, 72 Velocity 4, 22 Velocity 4, 22 Velocity (instant vs. mean) 22 Velocity & clock 60 Velocity smoothing interval 22

## W

WAAS ICD *42* WAAS ICD document *45* **X** XYZ option *81* 

Ashtech Contact Information: In USA +1 408 572 1103 • Fax +1 408 572 1199 In South America +1 786 220 2579

In France +33 2 28 09 38 00 • Fax +33 2 28 09 39 39 In Russia +7 495 980 5400 • Fax +7 495 981 4840

In Singapore +65 9838 4229 • Fax +65 6777 9881 In China +86 10 5802 5174 • Fax +86 10 5802 5135

www.ashtech.com



Ashtech follows a policy of continuous product improvement; specifications and descriptions are thus subject to change without notice. Please contact Ashtech for the latest product information. ©2010 Ashtech. All rights reserved. The Ashtech logo is a trademark of Ashtech LLC. All other product and brand names are trademarks or registered trademarks of their respective holders. PlA631648-B